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1 Introduction

Paired samples occur in microbiome studies when they are collected from different
locations of the same individual or from paired individuals with familial ties.
Human microbiome can be shared among family members with variations in
each individual’s microbial community [16, 18]. Suppose an identifiable “core
microbiome” exists at the microbial gene level and deviations from this core are
associated with different physiologic states. It is of interest to study how family
ties play a role in these deviations. For example, if deviations from a core gut
microbiome are associated with body mass index (BMI), we can define “individual”
and “family” outcomes with labels obese/lean, where for example obese family
means the individual comes from a family containing at least one member who is
obese, and lean family means the individual comes from a family whose members
are all lean. By analyzing such outcomes, we can examine how each array of
microbial genes is associated with obesity both at the family and individual levels.

There are methods available for paired case–control studies, but they have
limitations for analyzing the type of data considered here. For example, McNe-
mar’s test [11] is a statistical test used for paired data. However, it is primarily
intended only for dichotomous features. Multilevel models with binary-dependent
variables [1, 5] are another class of methods used. However, microbiome data is
often high-dimensional, which makes it challenging to implement these approaches.
Another challenge is that these models assume linearity but the association between
obesity and microbiome features is likely to be nonlinear.
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To illustrate our proposed methodology, we will use data from a cross-sectional
study focusing on obesity in twins [9, 16, 17]. Data was collected from human stools
of adult female monozygotic or dyzygotic twins or their mothers. We utilize 142
of these samples with 54 pairs where pair is defined as family members including
mother and daughters. The bacterial lineages present in the fecal microbiota of
these individuals were characterized by 16S rRNA sequencing, targeting the full-
length gene with an ABI 3730xl capillary sequencer. Sequences were identified
by assignment to taxonomic groups using operational taxonomic units (OTUs).
Specific details of how data was processed can be found in [16].

The original analysis found that obesity is associated with phylum-level changes
in the microbiota and reduced bacterial diversity using linear approaches, such
as PCA (principal components analysis). Here, we will focus on detecting which
taxonomic groups are the most informative for obesity risk at both the family and
individual levels using a novel approach that draws upon tree-based concepts.

2 Gini Index

Consider Y a categorical (factor) outcome such that Y ∈ {1, . . . , J } for J ≥ 2.
Given a p-dimensional feature X, the goal is to classify X into one of the J classes.
We call this J -class problem and {1, . . . , J } the J -class labels for Y . Gini index is
widely used for constructing classification trees that are nonparametric estimators
used for the J -class problem. Given an input feature, classification trees work by
identifying the unique leaf (terminal node) of the tree that X resides within. Each
leaf of the tree is labeled with a class among {1, . . . , J } or a probability distribution
over the classes, signifying that the leaf has been classified into either a specific
class or a particular probability distribution, and this information is used for making
decisions about X.

A classification tree is built by splitting the data, constituting the root node of
the tree, into subsets that constitute the successor children. The splitting is applied
to features and is based on a pre-chosen splitting rule, which in addition to the
Gini index includes splitting methods utilizing AUC (area under the ROC curve)
and entropy metrics [3, 12]. This process is repeated on each derived subset in a
recursive manner. The recursion is stopped when the subset at a node has all the
same values of the outcome, or when a prespecified criterion is reached (such as
minimal size of a node). The final nodes of the tree are referred to as the leaves.
Classification trees can be combined to form ensemble estimators. An example is
random forests [2], a popular tree-based learning method capable of handling a large
number of predictors. In order to handle big data, rather than using a classification
tree as just described, random forests is constructed by using random trees where
each tree is constructed from subsampled data and where tree splitting employs
random feature selection [2].

Classification tree splitting based on the Gini index splitting rule can be formally
described as follows. If p = (p1, . . . , pJ ) are the data class proportions of Y for
classes 1 through J , respectively, the Gini index of impurity is defined as



Tree Variable Selection for Paired Case–Control Studies 297

φ(p) =
J∑

j=1

pj (1 − pj ) = 1 −
J∑

j=1

p2
j .

As mentioned, classification trees are grown using the Gini index by splitting
features recursively into left and right daughter nodes. In particular, tree splits are
obtained by minimizing tree impurity. The Gini index split statistic for a split s on a
continuous feature xm at a given tree node is

θ(Y, xm, s) =
nl

n
φ(pl )+

nr

n
φ(pr ),

where the subscripts l = {xm ≤ s} and r = {xm > s} denote the left and right
daughter nodes formed by the split on xm at s (nl and nr are the sample sizes of the
two daughter nodes where n = nl + nr is the parent sample size). To reduce tree
impurity, the goal is to find xm and s to minimize

θ(Y, xm, s) =
nl

n



1 −
J∑

j=1

n2j,l

n2l



+ nr

n



1 −
J∑

j=1

n2j,r

n2r



 ,

where nj,l and nj,r are the number of cases of class j in the left and right daughters,
respectively, and nj = nj,l + nj,r are the number of cases of class j and n =∑J

j=1 nj . With some algebra, it can be shown this is equivalent to maximizing the
split statistic

g(Y, xm, s) =
1
n

J∑

j=1

n2j,l

nl
+ 1

n

J∑

j=1

(nj − nj,l)
2

n − nl
.

Although the Gini index is primarily used as a splitting rule, we observe that it
can be used as a fast preliminary variable ranking method. This is because variables
that are used to split a tree are often those variables that have highest variable
importance as measured by prediction error, especially if these splits occur high
up in the tree, i.e., near the root node that comprised all the data [8]. Thus, it is
reasonable to rank variables in terms of size of their Gini index values calculated
using the full data as this will generally rank variables by predictive power. For each
of the p predictors x1, . . . , xp, define

G(Y, xm) = g(Y, xm, smax),

where

smax = argmax
s

g(Y, xm, s)

and g(Y, xm, s) is the split statistic calculated from the root node data (i.e., using
the full data; thus, n is the sample size). Variables are ranked in order of importance
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by size of G(Y, xm). This variable selection procedure is fully nonparametric and
can be computed quickly even in big data settings. The following section provides
a demonstration of how this approach works for our problem.

2.1 Simulation Analysis

Consider a binary class setting and denote the outcome as Y I ∈ {0, 1}, where Y I =
0 represents a lean individual and Y I = 1 an obese individual. Family outcome is
denoted as YF ∈ {0, 1}, where YF = 0 signifies an individual from a family with all
lean members and YF = 1 indicates an individual from a family where at least one
member is obese. Association with Y I = 1 reflects how host adiposity influences the
gut microbiome, whereas association with YF = 1 reflects environmental exposure
influences. How the host genotype affects the gut microbiome under environmental
exposure is reflected by an association with both Y I = 1 and YF = 1.

We use the following simulation where YF is specified according to

P{YF = 1|X = x} = logistic
(
− 2+ x1 + x2 + x3 + 2 × 1{x1<0.5}

)
(1)

and Y I is specified by

P{Y I = 1|YF = 1,X = x} = logistic
(
− 2+ x4+ x5+ x6+ 2× 1{x4<0.5}

)
, (2)

where logistic(α) = 1/(1 + e−α). In this scenario, x1, x2, and x3 are associated
with environmental exposures that cause the presence of obesity, while x4, x5, and
x6 are associated with host adiposity, given that the host is under these types of
environmental exposures.

The feature space dimension was set to p = 10. Features were independently
drawn from a uniform distribution U(0, 1). Variables unrelated to outcome, rep-
resenting noise variables, were also added to the design matrix. For YF , noise
variables were x4, . . . , x10. For Y I , noise variables were x1, x2, x3 and x7, . . . , x10.
Split statistics, g(Y, xm, s), are plotted in Fig. 1 for features x1, x4, and x10 and for
both outcomes Y = YF and Y = Y I . Red color represents the family-level outcome
YF , and blue is used for the individual-level outcome Y I . Variable x1 in (a) predicts
obesity at the family level and is associated with YF , and the true optimal split point
occurs at 0.5. We can see that the split statistic of x1 is high for both YF and Y I and
both peak at around 0.5. Variable x4 in (b) is associated with P{Y I = 1|YF = 1},
therefore is associated with Y I , and has a true optimal split point of 0.5. We can
see that the split statistic g(Y I , x4, s) is high for Y I and reaches its peak near 0.5
(although not exactly at the true value—we will come back to this point later). In
contrast, the split statistic g(YF , x4, s) for YF does not at all have an optimized
value near 0.5 and its peak value occurs near its edge. This edge effect is typical of
noisy variables and is a property of the Gini splitting rule called end-cut preference,
ECP [6]. Variable x10 in (c) is a noise variable, and its split statistic is low for
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Fig. 1 Univariate split statistics for x1, x4, and x10 from simulation (1)–(2). Values g(Y, xm, s)
are shown across different split values s. Red and blue display family-level outcome YF and
individual-level outcome Y I , respectively. Vertical lines mark the optimal split statistic G(Y, xm).
Variable x1 is associated with YF with true optimal split point of 0.5. Variable x4 is associated with
P{Y I = 1|YF = 1} with true optimal split point of 0.5. Variable x10 is a noise variable

both YF and Y I . Observe that its optimal split points are close to the edge for both
outcomes, which as stated is typical behavior of a noisy variable.

Comparing the results across Fig. 1, it is clear thatG(Y, xm), which is the highest
point of g(Y, xm, s), is useful for variable ranking. However, focusing only on
family-level outcomes (red color) will ignore features like x4 that are related to the
individual-level outcome (blue color). Checking both split statistics clearly helps
better understand the underlying associations.

3 Multivariate Gini Index

Tang and Ishwaran [13] defined a multivariate Gini index split statistic obtained by
averaging univariate Gini split statistics. For the bivariate outcome problem, this can
be described as

gu(Y
F , Y I , xm, s) =

1
2

[
g(YF , xm, s)+ g(Y I , xm, s)

]
.

The subscript “u” is used to emphasize that the split statistic is unweighted. We can
define

Gu(Y
F , Y I , xm) = gu(Y

F , Y I , xm, sumax)

for ranking variables, where

sumax = argmax
s

gu(Y
F , Y I , xm, s).
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Larger values of Gu(Y
F , Y I , xm) identify informative variables and smaller values

indicate noise variables.

3.1 Conditional Gini Index

The problem with the split statistic gu(Y
F , Y I , xm, s) is that by averaging across

the outcomes it ignores the correlation between YF and Y I . To resolve this issue,
we introduce the following conditional Gini split statistic.

Let πc = P{Y I = 1|YF = 1} be the population proportion of obese cases among
individuals with at least one obese family member. The subscript “c” is used to
emphasize this is a conditional probability. Because there are only two classes, we
have pc = (pc, 1−pc) and φ(pc) = 2pc(1−pc), where pc is the sample estimator
of πc. For a split s on variable xm, the conditional Gini split statistic is defined as

θc(Y
F , Y I , xm, s) =

ñl

ñ
φ(pc)+

ñr

ñ
φ(pc),

where as before subscripts l and r denote the left and right daughter nodes formed
by the split. The numbers of cases YF = 1 in the daughters are ñl and ñr , where
ñ = ñl + ñr . The numbers of these cases where Y I = 1 in the left and right
daughters are denoted by ñ1,l and ñ1,r respectively. It can be shown that minimizing
θc(Y

F , Y I , xm, s) is equivalent to maximizing

gc(Y
F , Y I , xm, s) =

ñ21,l

ññl
+

ñ21,r

ññr
.

We can define

Gc(Y
F , Y I , xm) = gc(Y

F , Y I , xm, scmax)

for ranking variables, where scmax = argmaxs gc.
Now because gc(Y

F , Y I , xm, s) conditions on YF = 1, it is not designed to
identify signal affecting YF . To resolve this, define the conditional weighted split
statistic

gcw(Y
F , Y I , xm, s) =

1
wF + wI

[
wF · g(YF , xm, s)+ wI · gc(YF , Y I , xm, s)

]

for detecting features that affect both YF and Y I . Observe that when wF =
wI = 1, this becomes an unweighted split statistic and will be denoted by
gcu(Y

F , Y I , xm, s).
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Weighted indices can be calculated as wF =∑n
i 1{YF

i =1} and wI =∑n
i 1{Y I

i =1},

which adjust for the fact that there are always more obese cases for YF than Y I . The
maximum value for the conditional weighted split statistic is

Gcw(Y
F , Y I , xm) = gcw(Y

F , Y I , xm, scwmax),

where scwmax = argmaxs gcw. In a likewise fashion, define the maximum condi-
tional unweighted split statistic Gcu(Y

F , Y I , xm).
Figure 2 displays: (a) gc(YF , Y I , xm, s), (b) gu(Y

F , Y I , xm, s), (c) gcu(Y
F , Y I ,

xm, s), and (d) gcw(Y
F , Y I , xm, s) for variables x1, x4, and x10 from the simula-

tion (1)–(2). Variable x4 affects the conditional probability P(Y I = 1|YF = 1),
which is plotted in purple color. Returning to the point made earlier regarding
Fig. 1b, when comparing Fig. 2a to Fig. 1b, we find gc(YF , Y I , x4, s) characterizes
x4 better than g(Y I , x4, s) as the maximum value is closer to the true splitting
point 0.5. Another point to observe is that the goal of gu(Y

F , Y I , xm, s) and
gcu(Y

F , Y I , xm, s) is to detect features associated with YF and/or Y I . How-
ever, gu(Y

F , Y I , xm, c) in (b) is less effective than gcu(Y
F , Y I , xm, s) in (c)

because it ranks x4 similarly to noise variable x10 (shown in orange). In contrast,
gcu(Y

F , Y I , xm, s) in (c) and the weighted gcw(Y
F , Y I , xm, s) in (d) properly rank

x4 as more informative than x10. In fact, the weighted split statistic tends to do an
even better job.

Figure 3 displays maximum Gini split statistics for all p = 10 variables averaged
over 100 independent replications. For convenient calibration, the averaged split
statistic for the noise variable x7 is used as a selection cutoff. When comparing
subfigures (c) with (b), we see that Gc(Y

F , Y I , xm) performs better in terms
of selecting the true signals, x4, x5, and x6, than G(Y I , xm). When comparing
subfigures (f) with (d), we observe that the weighted Gini split statistic utilizing
the conditional Gini index, Gcw(Y

F , Y I , xm), outperforms the simple averaged
Gini split statistic,Gu(Y

F , Y I , xm), in selecting the true signal variables x1, . . . , x6
(in (d) the informative variable x6 is not selected, whereas the noise variable
x10 is selected). The performances of Gcu(Y

F , Y I , xm) and Gcw(Y
F , Y I , xm) are

roughly similar except that noise variable x10 is less likely to be chosen using
Gcw(Y

F , Y I , xm). Thus as before, the weighted split statistic tends to do a better job.
Finally, when comparing subpanel (f) to (a) notice thatGcw(Y

F , Y I , xm) is as good
as G(YF , xm) in identifying variables x1, x2, x3 related to YF . However, this does
not mean G(YF , xm) is not useful, since when combined with Gcw(Y

F , Y I , xm) it
allows one to detangle variable relationships with the two outcomes.

4 Variable Importance

Another effective tool for variable selection is variable importance (VIMP). The
permutation VIMP for a variable xm is the prediction error for the model sub-
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Fig. 2 Multivariate split statistics for x1, x4, and x10 from simulation (1)–(2). Curves dis-
played are: (a) gc(Y

F , Y I , xm, s), (b) gu(Y
F , Y I , xm, s), (c) gcu(Y

F , Y I , xm, s), and (d)
gcw(Y

F , Y I , xm, s) with maximum statistic marked by a square point

tracted from the prediction error for the model using data that randomly permutes
xm [7]. This procedure can be implemented over independent bootstrap samples
and the value averaged to obtain a more stable estimator [7]. More formally, let
P̂E(Y ) be the averaged out-of-sample (called out-of-bag and abbreviated as OOB)
misclassification error for the original model. Let P̂E(Y, x∗

m) be the averaged OOB
misclassification error when xm is randomly permuted. The VIMP for xm is

I (Y, xm) = P̂E(Y, x∗
m) − P̂E(Y ).

To determine if variables affect the conditional probability P(Y I = 1|YF = 1),
we define a conditional VIMP analogous to the conditional Gini index. Conditional
VIMP is calculated by restricting the data to those cases where YF = 1. The
conditional VIMP index for xm is
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Fig. 3 Variable ranking from maximum split statistics for simulation (1)–(2) repeated 100 times
independently. Dashed line is the averaged value of maximum Gini split statistic for noise variable
x7 that represents a convenient cut-off value

Ic(Y
I , xm) = P̂Ec(Y

I , x∗
m) − P̂Ec(Y

I ).

Figure 4 displays VIMP for all p features for our simulation. Values have been
averaged over 100 independent replications. Unconditional VIMP, I (YF , xm), for
YF displayed in subpanel (a) successfully ranks the true signal variables x1, x2
and x3 as the most informative. When comparing subpanel (c) to (b), we see that
conditional VIMP, Ic(Y I , xm), is better at selecting true signal variables x4, x5, and
x6 than unconditional VIMP, I (Y I , xm). In subfigure (b), VIMP for x1 is very large
and would lead to incorrect selection compared with (c).
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Fig. 4 Variable importance from simulation (1)–(2) averaged over 100 independent replications

5 Analysis of Obesity Using Microbiome Data

Now we return to the microbiome obesity data described earlier (n = 142 and
p = 174). Outcomes were coded as before: Y I = 0 represents a lean individual,
Y I = 1 an obese individual, YF = 0 signifies an individual from a family with
all lean members, and YF = 1 indicates an individual from a family where at least
one member is obese. Table 1 of the Appendix provides convenient abbreviated
names for features. The features were originally coded using names of kingdom,
phylum, class, order, family, genus, and species separated with a dash line and
capital letter [9]. In order to make the name shorter for the figures, we use Table 1 to
shorten the name for some classification labels. However to avoid duplication, we
did not shorten all names. Therefore, some x-labels in Fig. 5 use full classification
names.

Figure 5 displays split statistics for 6 representative features, chosen to illustrate
how host and environmental factors affect the gut microbiome. Univariate split
statistics g(YF , xm, s) for the family outcome YF are shown using red lines,
and conditional split statistics gc(YF , Y I , xm, s) are displayed using orange lines.
Bivariate split statistics, gcu(Y

F , Y I , xm, s) and gcw(Y
F , Y I , xm, s), lie between

these two lines. Recall when optimal split points appear toward the edge of feature’s
range that this is a sign of a noisy feature (referred to as the ECP property [6]).

Subfigures (a), (b), (c) represent features informative for the environmental
outcome YF . In all three figures, g(YF , xm, s) takes large values across the range
of feature values. However, these three features are not informative for P{Y I =
1|YF = 1} as gc(Y

F , Y I , xm, s) is near zero in all instances. Thus, they do
not reflect how host adiposity influences the gut microbiome under environmental
exposure.
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Fig. 5 Split statistics for microbiome obesity data. Shown are 6 representative variables illustrat-
ing how taxonomic groups predict obesity risk at the family level (shown using the univariate Gini
split statistic on YF , g(YF , xm, c), plotted in red) and at the individual level (shown using the
univariate conditional Gini split statistic gc(YF , Y I , xm, c), plotted in orange). Variable names are
abbreviated according to Table 1
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Subfigures (d) and (e) represent features that are informative for both YF =
1 and P{Y I = 1|YF = 1} as both g(YF , xm, s) and gc(Y

F , Y I , xm, s) assume
relatively large values. These features identify influences from both environmental
exposure and host adiposity. For (d), the two maximum split statistics are nearly the
same, which suggests that effect of environmental exposure and host adiposity is
roughly the same for this feature. For (e), gc(YF , Y I , xm, s) attains a much larger
maximum statistic than g(YF , xm, s) at a higher feature value. This suggest the
effect of environmental exposure and host adiposity depends on the feature value,
for example, whether the feature value is larger than 500 or 1000.

Subfigure (f) is a feature that mainly reflects the influence from host adiposity,
rather than environmental exposure. This is because values of g(YF , xm, s) are
overall small and its optimal split point is close to the edge of its range, signaling
that it is likely a noisy variable for YF .

The values of G(YF , xm) and Gc(Y
F , Y I , xm) are given in Fig. 6. The sizes

of circles are scaled proportional to Gcw(Y
F , Y I , xm). Phylum groups are used to

color circles. It is interesting to note that features informative for YF = 1 and
P{Y I = 1|YF = 1} belong primarily to the Fusobacteria phylum. Generally, the
values of Gc(Y

F , Y I , xm) are smaller than G(YF , xm). However, when they are
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Fig. 6 Comparison betweenG(YF , xm) andGYF=1(Y
I , xm). The sizes of circles are proportional
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F , Y I , xm). The color of circles identifies the phylum
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weighted to obtain Gcw(Y
F , Y I , xm), we can see that there is a nice balancing of

values.
Finally, Fig. 7 displays unconditional VIMP, I (YF , xm), and conditional VIMP,

Ic(Y
I , xm), for all p variables. Many variables have small or negative values, thus

showing that VIMP can be used as an effective means to dimension. Note that due
to invariance of trees under monotonic transformations of features, split statistics
and VIMP are invariant to the magnitude of the feature values. For split statistics,
it is the quantile of the split that makes a difference. Thus, we did not normalize
independent variables, which were OTU count values [9].

Our results are consistent with previous studies. Turnbaugh et al. [15, 16] found
that obesity is associated with phylum-level changes in the microbiota. We found
the same as displayed in Fig. 6. Moreover, our findings (see Fig. 5) have shown that
changes occur differently at the family and individual levels. A similar finding was
observed in a study of high-fat diet-induced obesity and diabetes in mice [4]. This
study found a high-fat diet-altered proportion of Bacteroides-related bacteria and
reduced Bifidobacteria (Gram-positive, phylum Actinobacteria).

We carefully note that our analysis can only establish an association between
microbiome and obesity [14] and not causation. Casual inference is far more
demanding, and further studies would be needed to be able to move beyond
associative analyses [10].

6 Discussion

Fast nonparametric selection of features that accounts for correlation in paired data
is a valuable tool for microbiome data analysis. Variable selection procedures can
choose features that reflect influences from external effects (between pairs) and
internal effects (within pairs), but without taking into account the paired structure of
the data, they will be inefficient in separating the two types of effects. Our proposed
conditional Gini split statistic, when used alone or averaged with univariate Gini
split statistics, serves two purposes. First, the maximum value of the split statistic
can be used for variable ranking and variable selection. Conditional Gini is able
to select variables reflecting how the microbiome is affected by host adiposity
given the same environmental exposures. Second, how the value of the split statistic
varies within a feature provides useful insight into the magnitude of the external
and/or internal effects. The optimal split point for conditional Gini represents
the threshold that a feature can separate lean and obese individuals given the
same environmental exposure. We demonstrated these two aspects in a systematic
comparative simulation and through a real data application. We found that the paired
structure of the data played a very strong role in performance of our methods.
Without controlling for family level of obesity, features that only affect individual
level of obesity are often noticeably masked.
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There are other variable selection procedures designed for multivariate outcomes.
However, in big data settings, computational speed plays a key role. Practically
speaking, the best method is not always optimal for the researcher because com-
putational times can be too long. Our Gini split statistics can be rapidly computed
for a large number of features in big data settings, and because the calculations are
univariate, the procedure could be parallelized to further reduce runtimes. Users
can simulate a noise feature to determine the cutoff for screening noise variables.
Potentially, our Gini indices can be used as tree splitting rules so that all the features
can be taken into consideration together. Moreover, our approach could leverage
powerful machine learning methods such as random forests and boosting to provide
a direct approach to analyze paired data. Another potential improvement to our work
would be to use additional data to study the effect of number of individuals on YF . In
the analysis we used, all families have 2 or 3 individuals, which made it impossible
for us to study the effect of number of individuals.
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Appendix

See Table 1 and Fig. 7.

Table 1 Abbreviated feature names for microbiome obesity data

Abbrev. Full form Abbrev. Full form

kB k-Bacteria oBi ..o-Bifidobacteriales
pF ..p-Firmicutes oE ..o-Erysipelotrichales
pA ..p-Actinobacteria oL ..o-Lactobacillales
pB ..p-Bacteroidetes fB ..f-Bifidobacteriaceae
pC ..p-Cyanobacteria fBa ..f-Bacteroidaceae
pF ..p-Fusobacteria fC ..f-Coriobacteriaceae
pP ..p-Proteobacteria fL ..f-Lactobacillaceae
pS ..p-Synergistetes fLach ..f-Lachnospiraceae
cA ..c-Actinobacteria fM ..f-Micrococcaceae
cB ..c-Bacteroidia fP ..f-Porphyromonadaceae
cBci ..c-Bacilli fPe ..f-Peptostreptococcaceae
cC ..c-Clostridia fPr ..f-Prevotellaceae
cCor ..c-Coriobacteriia fR ..f-Ruminococcaceae
cE ..c-Erysipelotrichi fRi ..f-Rikenellaceae
oA ..o-Actinomycetales fS ..f-Streptococcaceae
oC ..o-Clostridiales fV ..f-Veillonellaceae
oCor ..o-Coriobacteriales gB ..g-Bifidobacterium
oB ..o-Bacteroidales gC ..g-Corynebacterium
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kBpFcCoC..f−Peptococcaceae..g ...
kBpFcCoC..f−Christensenellaceae..g ...
kBpBcBoB..f−.Barnesiellaceae. ...
kBpAcCoroCorfC..g−Collinsella..s ...
kBpFcCoC..f−Clostridiaceae..g ...
kBpFcCoCfV..g−Megasphaera ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoCfR
kBpFcCoCfLach..g−Lachnospira ...
kBpFcCoCfR..g−Faecalibacterium ...
kBpBcBoBfBa..g−Bacteroides..s ...
kBpP..c−Alphaproteobacteria..o ...
kBpFcCoCfLach..g−Clostridium..s ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpP..c−Deltaproteobacteria..o ...
kBpFcEcE..f−Erysipelotrichaceae ...
kBpFcCoCfLach..g−.Ruminococcus...s ...
kBpAcCoroCorfC
kBpBcBoBfBa..g−Bacteroides..s ...
kBpFcCoCfLach
kBpFcCoCfLach..g−Blautia..s ...
kBpP..c−Deltaproteobacteria..o ...
kBpBcBoBfP..g−Parabacteroides ...
kBpFcCoCfLach..g−.Ruminococcus...s ...
kBpFcCoCfLach..g−Dorea..s ...
kBpFcCoCfR..g−Ruminococcus ...
kBpP..c−Betaproteobacteria..o ...
kBpFcCoCfLach..g−Blautia..s ...
kBpFcCoC..f−Clostridiaceae..g ...
kBpFcBci
kBpFcCoCfLach..g−Blautia ...
kBpBcBoBfRi
kBpFcCoCfLach..g−Roseburia..s ...
kBpBcBoB
kBpBcBoBfBa..g−Bacteroides ...
kBpFcCoCfR..g−Ruminococcus..s ...
kBpBcBoBfP..g−Parabacteroides..s ...
kBpFcCoC..f−.Mogibacteriaceae. ...
kB..p−Verrucomicrobia..c ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoC..f−Dehalobacteriaceae..g ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kB..p−Verrucomicrobia..c ...
kBpFcCoCfV..g−Dialister ...
kBpFcCoCfPe
kB..p−TM7..c ...
kBpAcCoroCorfC..g−Adlercreutzia ...
kBpAcAoBifBgB..s−adolescentis ...
kBpFcCoCfR..g−Oscillospira ...
kBpBcBoBfP..g−Porphyromonas ...
kBpP..c−Betaproteobacteria..o ...
kBpAcCoroCorfC..g−Collinsella ...
kBpFcCoCfR..g−Anaerotruncus ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoCfLach..g−Coprococcus..s ...
kBpS..c−Synergistia..o ...
kBpS..c−Synergistia..o ...
kBpP..c−Gammaproteobacteria..o ...
kBpS..c−Synergistia..o ...
kBpP..c−Epsilonproteobacteria..o ...
kBpP..c−Deltaproteobacteria..o ...
kBpP..c−Gammaproteobacteria ...
kB..p−Lentisphaerae..c ...
kB..p−Lentisphaerae..c ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoCfV..g−Mitsuokella ...
kBpFcCoCfV..g−Mitsuokella..s ...
kBpFcCoCfR..g−Ruminococcus..s ...
kBpFcCoCfV..g−Megamonas ...
kBpF..c−Fusobacteriia..o ...
kBpFcCoC..f−Peptococcaceae..g ...
kBpFcCoCfLach..g−Oribacterium ...
kBpFcCoCfLach..g−Epulopiscium ...
kBpFcCoCfLach..g−Butyrivibrio ...
kBpF..c−Fusobacteriia..o ...
kBpFcBcioLfS..g−Streptococcus..s ...
kBpFcBcioLfS..g−Streptococcus..s ...
kBpFcBcioLfS
kBpFcBcioLfL..g−Lactobacillus..s ...
kBpFcBcioLfL..g−Lactobacillus..s ...
kBpFcBcioLfL..g−Lactobacillus..s ...
kBpFcBcioLfL..g−Lactobacillus..s ...
kBpFcBcioL..f−Leuconostocaceae ...
kBpFcBci..o−Gemellales..f ...
kBpFcBcioL..f−Carnobacteriaceae..g ...
kBpC..c−Chloroplast..o ...
kBpFcBcioL..f−Enterococcaceae..g ...
kBpFcBcioLfL..g−Lactobacillus ...
kBpBcBoB..f−RF16 ...
kBpAcAoA..f−CorynebacteriaceaegC..s ...
kBpAcAoA..f−CorynebacteriaceaegC ...
kBpAcAoA..f−Actinomycetaceae..g ...
kB ...
kBpAcAoA..f−CorynebacteriaceaegC..s ...
kBpAcAoAfM..g−Rothia..s ...
kBpFcCoCfV..g−Phascolarctobacterium ...
kBpAcAoBifBgB..s−longum ...
kBpAcAoBifBgB..s−bifidum ...
kBpFcCoCfV..g−Veillonella ...
kBpFcCoCfLach..g−Lachnobacterium ...
kBpFcCoCfLach..g−Coprococcus..s ...
kBpFcCoC..f−Christensenellaceae ...
kBpFcCoCfR..g−Clostridium..s ...
kBpAcAoBifBgB
kBpAcAoA..f−Propionibacteriaceae ...
kBpFcCoC..f−.Tissierellaceae...g ...
kBpFcCoCfPe..g−.Clostridium...s ...
kBpBcBoB..f−.Paraprevotellaceae...g ...
kBpFcCoCfR..g−Ruminococcus..s ...
kBpFcC
kBpFcBcioLfL..g−Lactobacillus..s ...
kBpBcBoBfBa..g−Bacteroides..s ...
kB..p−Tenericutes..c ...
kBpFcCoCfV..g−Succiniclasticum ...
kBpFcEcE..f−Erysipelotrichaceae..g ...
kBpFcCoCfR..g−Faecalibacterium..s ...
kBpP..c−Gammaproteobacteria..o ...
kBpAcAoA..f−Actinomycetaceae..g ...
kBpFcC..o−SHA.98 ...
kBpFcCoC..f−Clostridiaceae..g ...
kB..p−Tenericutes..c ...
kBpFcCoC..f−Clostridiaceae ...
kBpFcBcioLfS..g−Lactococcus ...
kBpBcBoBfRi..g−Alistipes..s ...
kBpAcCoroCorfC..g−Collinsella..s ...
kBpAcCoroCorfC..g−Slackia ...
kBpAcCoroCorfC..g−Eggerthella..s ...
kBpFcCoC..f−Eubacteriaceae..g ...
kBpBcBoB..f−.Paraprevotellaceae. ...
kBpP..c−Gammaproteobacteria..o ...
kBpBcBoBfPr..g−Prevotella..s ...
kBpFcBcioL..f−Leuconostocaceae..g ...
kBpFcCoCfPe..g−Peptostreptococcus..s ...
kBpBcBoBfBa..g−Bacteroides..s ...
kBpBcBoBfBa..g−Bacteroides..s ...
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Fig. 7 Variable ranking using VIMP for microbiome data of obesity. Variables with higher value
on the left reflect how the gut microbiome is influenced by environmental factors. Variables with
higher values in the right reflect how gut microbiome is affected by host adiposity given the
environmental exposures
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