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SUMMARY. The class of stick-breaking priors and their extensions are considered 

in classification and clustering problems in which the complexity, the number of possible 

models or clusters, can be either bounded or unbounded. A conjugacy property for the ex 

tended stick-breaking prior is established which allows for informative characterizations of 

the priors under i.i.d. sampling, and which further enables an informative characterization 

of the posterior in the classification model. Such characterizations show how to develop 

Monte Carlo algorithms for efficient posterior computing. One implication is that it is pos 

sible to estimate infinite complexity mixture models subject to arbitrary stick-breaking 

priors. 

1. Introduction 

A general classification problem can be described as follows. One ob 

serves i.i.d. observations X\,...,Xn drawn from a mixture model whose 

true density is of the form 

d 

/<,(*) = 
? WjflkjixlYw), (1) 

where kj(x\Y) are known kernel densities in x G X for each Y G y. Given 
the data X = 

{X\,... ,Xn), the problem is to classify each observation X{ 
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into one of the d possible models given that the weights 0 < Wj$ < 1 and 

atoms Yj$ G y for the mixture distribution are assumed unknown (note that 

_Cj=i Wjfi 
= 

1). We assume that d, the complexity of the true model, is finite 

and that it has some known bound N. The value of d may or may not be 

known to us. For example, applications in which N = oo correspond to an 

infinite collection of candidate kernels &i, &2, of which only d are from the 

true model, but we do not know which ones. Here the bound for d is crude, 
1 < d < N = oo. In other problems we may have more information so that 

our bound may be finite, 1 < d < N < oo. Finally, we might have a problem 
where d is known, so that our bound N is perfect, N = d. In a variation 

on the above problems, we will also consider the setting where all kernels 

are equal, kj 
? 

&o, in which case (1) corresponds to a finite mixture model. 

Here d plays the role of the dimension of the unknown mixing distribution 

and the focus shifts from classification, which is no longer meaningful with 

equal kernels, to the problem of clustering the data Xi (more discussion on 

this distinction will be forthcoming). Examples that have been considered 

from a Bayesian approach that fall into the above general framework include 

mixture models with bounded complexity (Ishwaran, James and Sun 2001), 

clustering and discrimination (Hartigan 1975, Binder 1978 and Lavine and 

West 1992) and change-point and switching regression problems (Chen and 

Liu 1996 and Friihwirth-Schnatter 2001). See also Brunner and Lo (1999) 
and Quintana and Iglesias (2003) for partition modelling approaches based 

on the Dirichlet process. 

As mentioned, an important special case of (1) is the finite mixture model 

which corresponds to 

fo(x) = / k0(x\y)dQo(y)1 

where Qo(-) 
= 

_Cj=i ̂ ',0^,0(') 
IS the underlying unknown mixture distri 

bution (Sy denotes a discrete measure concentrated at y). A nice feature of 

this model, which will form the basis of our general development, is that it 

has an equivalent representation as a missing data model. By introducing 
hidden variables 1?, such models can be written hierarchically as 

(XiW'^koiXilYi), (Yi\Qo)~Qo, i = l,...,n, (2) 

or equivalently, by writing F? as Ykuq, as 

d 

{Xi\YKu0) '^ HXilY^o), (tfilWo) 
~ 

_T Wkfi **( ), t = 1,... ,n, 
fe=i 

(3) 
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where W0 
= 

(Wi,o, , Wd,o) 

Exploiting such representations, Ishwaran and James (2001) (see also 

Ishwaran and Zarepour 2000) presented a general Bayesian approach for 

modeling semiparametric and nonparametric models, which can be applied 
to (3), using what they defined as the class of stick-breaking priors. Call a 

random measure V a stick-breaking prior if it has an expression of the form 

7>(.) = 
f>fc<M-), (4) 

k=l 

where Z^ are i.i.d. values with a non-atomic distribution H over (y,B), 
a measurable Polish space, and the Z^ are independent of Wk, which are 

random weights constructed to sum to one using what is often called a 

"stick-breaking construction" (Halmos 1944, Freedman 1963, Fabius 1964, 

Connor and Mosimann 1969, Patil and Taillie 1977). Specifically, 

Wi = Vlt Wk = 
(l-Vi)(l-V2)---(l-Vk-l)Vk, k>2, (5) 

where Vk are independent Beta(a?, 6?) random variables with shape param 

eters afc, bk > 0. Such constructions hold for both the case when N < oo (in 
this case Vn 

== 1 and the prior is referred to as a finite dimensional stick 

breaking prior) as well as the setting when N = oo (this involves constraints 

to dk,bk yielding priors referred to as infinite dimensional stick-breaking 

priors). More details and examples will be forthcoming in Section 2. 

To model (2) (and hence (3)), Ishwaran and James (2001) proposed the 
use of stick-breaking prior Pasa method for modelling Qq. They proposed 
the use of the Bayesian nonparametric model 

(Xi\Yi) ̂  ko(Xi\X), (F?|P)~P, P~P, ? = l,...,n, 

which by the identity Y{ 
= 

Zk{ was observed to be equivalent to 

{Xi\ZKi)'m? h{Xi\ZKi), (?TilW)^^* **(')' Z^H, W-TTw, 

(6) 
where W is the vector of random weights Wk (which can be either finite or 

infinite dimensional) whose prior 7Tw is defined by (5). 
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1.1. Classification using K\,..., Kn. Notice that the use of (6) in mod 

elling (3) implicitly relies on the conditional distribution of X_ being fully 
specified in terms of Y? 

= 
Zi?{. The same method can also be applied to the 

general classification problem (1) if we further use K{ to identify the ker 

nel corresponding to _Y_. This points to a novel extension for analysing this 

problem. Given that we have different kernels, we assume that Y? 
? 

_?#., 
where Z^ are independent (but not necessarily identically distributed) with 
non-atomic distributions Hk over (y, B). Thus we model Y? as having a 

random distribution P drawn from a measure as in (4), but generalized to 

allow for different laws for Z^ thus extending the notion of a stick-breaking 

prior. We call such measures extended stick-breaking priors. Now, allowing 
the conditioning on Xi to additionally include classification variables K\ as 

well as Zk?, the Bayesian model for (1) is 

N 

(Xi\zKi,Ki) *5? 53M^feK{^ 
= Jl 

?=1 

N 

(Ki\W) ~ 
5]^(.Ufc^d4W^w. (7) 
fc=i 

The role of Ki in (7) is quite different than in the finite mixture model (3), 
where Ki is often included as a means for facilitating computations rather 

than for inference. In fact, because all kernels are the same in (3), one could 

bypass the use of Ki all together, working instead with Y?, or at an even 

coarser level, the partition structure recording the clustering of Y_; that is 

a partition of the integers {l,...,n}. This latter approach was exploited 

by Brunner, Chan, James and Lo (2001) for analysis of mixture models 

subject to the Dirichlet process (see also Lo, Brunner and Chan 1996 and 

MacEachern, Clyde and Liu 1999), later being extended by Ishwaran and 

James (2003) to encompass mixture models for the class of all exchangeable 
urn distributions. One of the premises for basing such techniques on the par 

tition structure for Y\ is that such information represents a minimal sufficient 

statistic for reducing the nonparametric mixture model into a collection of 

parametric models. Furthermore, such "collapsing" of the parameter space 

leads to Rao-Blackwell improvements in terms of Monte Carlo errors for 

computational algorithms. However, such techniques do not directly apply 
to (7) as the information contained in the partition structure is too "coarse" 

to classify observations into their models {fci, &2, } In (7), the minimal 

amount of information necessary for classification is K\,..., Kn. Moreover, 
such partition based methods do not always readily apply to the mixture 



STICK-BREAKING PRIORS: CLUSTERING AND CLASSIFICATION 581 

model (6), as the methods rely on explicit formulae for the prediction rule 

of the hidden Y{ variables, which for the general stick-breaking prior may 
not always be in a simple enough form for computational purposes. Recog 

nizing this, Ishwaran and James (2001) and Ishwaran, James and Lo (2001) 
showed how to work with K{ to permit inference for (6) under the class of 

finite dimensional stick-breaking priors. Here, we will show how these meth 

ods can be extended to the general classification problem (7) under the class 

of extended stick-breaking priors, including both the finite as well as infinite 

dimensional cases. 

In brief, then, the contributions of this paper will be to develop new 

surrounding theory for the hierarchical model (7) and show how these may 
be used to develop computational algorithms for computing posterior quan 
tities. Our theoretical contributions include developing key properties for 

the class of extended stick-breaking measures, which includes establishing a 

conjugacy property of their random weights to i.i.d. sampling, and a charac 

terization of the posterior for the extended stick-breaking prior under i.i.d. 

sampling. See Section 3. These properties then lead us in Section 4 to a 

general characterization for the posterior of (7). In Section 5 we outline a 

collapsed Gibbs sampling algorithm and an i.i.d. SIS (sequential importance 

sampling) algorithm that can be used for inference in (7). One important 

implication is our ability to fit the posterior of (6) subject to infinite dimen 

sional stick-breaking measures. The paper begins with a brief discussion of 

stick-breaking priors in Section 2. 

2. Some Examples of Stick-breaking Priors 

Perhaps the best known example of an infinite dimensional stick-breaking 

prior is the Ferguson (1973,1974) Dirichlet process prior. Its stick-breaking 
construction was confirmed in Sethuraman (1994) with related work ap 

pearing in McCloskey (1965), Patil and Taillie (1977), Sethuraman and Ti 
wari (1982), Hoppe (1987), Donnelly and Joyce (1989), Perman, Pitman and 
Yor (1992) and Pitman (1996). This construction can also be viewed as a 

special case of the rich class of two-parameter Poisson-Dirichlet processes 

developed by Pitman and Yor (1997). Such measures can be expressed as 

infinite dimensional stick-breaking priors using Beta(l 
? 

a,b + ka) laws for 

Vfc where 0 < a < 1 and b > ?a. The Dirichlet process, written DP (aH), 

corresponds to the construction with a ? 0 and b 
? 

a. Another important 
class are the stable law processes with index 0 < a < 1, corresponding to 

a = a and b = 0. See Pitman and Yor (1997) and Pitman (1995, 1996) 
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for further details. As discussed in Ishwaran and James (2001) an infinite 
dimensional stick-breaking prior is well defined if and only if its random 

weights satisfy _Cfc_=i -E(log(l 
~" 

Vk)) 
~ 

~?? (a sufficient condition being 

5]^L1log(l + a-k/bk) 
= 

+00). Such conditions also apply to the class of 
extended stick-breaking priors. 

A flexible class of finite dimensional stick-breaking priors are the finite 
dimensional Dirichlet priors discussed in Ishwaran and Zarepour (2002a). 

These are priors with random weights W whose law is a Dirichlet distribu 

tion, Dirichlet(ai,... , aw). The case where ak = 
a/N, for a > 0, has the 

important feature that it approximates the Dirichlet process, DP(aH) (see 
Ishwaran and Zarepour 2002b for further details). We denote its prior by 

DPAr(ai_T). In general, Dirichlet random weights W can be constructed as 

in (5) using independent Beta(a^,6jt) random variables by setting ak = o^, 

h 
= 

EjLfc+i OLj for k = 
1,2,..., N-1, and by setting V_v 

= 1. The Dirichlet 

distribution is a special case of the generalized Dirichlet distribution (Con 
nor and Mosimann 1969), the law arising from a finite stick-breaking con 

struction (5) with Vjv 
= 1. The class of finite dimensional Dirichiet priors 

can be extended to what we refer to as infinite dimensional Dirichlet pri 
ors. These are infinite dimensional stick-breaking priors in which ak 

? 
ak 

and bk 
= 

]Cj?U+iaJbj 
f?r ak > 0 chosen so that Y,kLi ak < 00. We can 

verify directly that such a construction is well defined. Observe that since 

Q>k + h 
= 

&fc_i, 

EiwA = ak TT bj = ak = ak 
V k) 

ak + 
hf^?j 

+ bj ai+61 ??_!<**' 

and thus Eh=iE(Wk) 
= 1. From this it follows that Y%Li Wk = 1 al 

most surely. See Ishwaran and James (2001) for further discussion on stick 

breaking priors. 

3. Properties for Stick-breaking Priors and their Extensions 

In this section we establish that the law of a stick-breaking random 

weight W is conjugate to i.i.d. sampling. That is, if K\,..., Kn given W 

are i.i.d. values drawn from _CfcLi Wfc ^feO? then ^e posterior for W given 

K\,... ,ifn has a stick-breaking representation (5). This important charac 

terization will point to several key properties for the class of extended stick 

breaking priors and their posteriors in the Bayesian classification model (7). 
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The key to establishing the conjugacy property can be based on the fol 

lowing lemma stating the posterior for W given the cluster variable K\. In 

the setting where N < oo the result follows automatically from the con 

jugacy of the generalized Dirichlet distribution to multinomial sampling 

(Ishwaran and Zarepour 2000). However, it stands to reason that a simi 

lar result should also hold when N ? oo. This is stated as the following 

conjugacy result, which can be seen sis a generalization of Lemma 4.2 of 

Sethuraman (1994) for the DP(ai?) prior (JV = oo, a* = 1 and bk = a). 

LEMMA 1. Suppose that Kx given W has the law Pr{Ki e -|W} 
= 

Ylk=iWk?k{'), for W defined by the stick-breaking construction (5). Then, 
the law for W given K\ is also defined by (5), where now Vk are independent 

Beta(ak,bk) random variables with ak 
= ak + I{K\ 

= 
k} and bk 

= 
bk + 

E?=fc+ii{#i=?}. 

PROOF. As mentioned above the result holds automatically for finite 

N, so we prove the case for N = oo. We follow an argument similar to the 

proof of Lemma 4.2 of Sethuraman (1994) by noting that the posterior is 
identified by characterizing the joint distribution of K\ and V\,..., Vm for 

each positive integer m. 

Let A\, , Am be measurable sets over [0,1]. We have, 

Pr{VleAl,...,VmeAm,Kl=j} 

/m 
Y[l{VkeAk}Pr{K1=j\V1,V2,...}7r(dVl,...,dVm) 
fc=i 

/m 
]ll{VkeAk}(l-Vl)(l-V2)'--(l-Vj-l)VjTr(dVl,...,dVm), 
k=i 

where the last line uses Pv{Ki 
= 

j\V\, V2 ...} 
= 

Wj. Deduce that V\,... ,Vm 

given K\ are independent Beta(a?,&Jl) random variables for k = 
l...,ra. 

This holds for all m, thus characterizing the posterior for W. D 

By applying Lemma 1 repeatedly, using conjugacy, we have the following 

important corollary. 

COROLLARY 1. Suppose that K\,..., Kn given W are i.i.d. with law 

Ylk-i Wk?k{'). Then the law for W given K = 
{K\,... ,Kn) is defined 

by (5), where Vk are independent Beta{a*k,b*k) random variables with a*k 
= 

ak + ek and bk 
= 

bk + 
J2j=k+i eji where ej denotes the number of Ki equal 

ing j. 
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3.1. Implications of conjugacy. The conjugacy of W leads to a posterior 
characterization for the stick-breaking measure under i.i.d. sampling. This 

can be used to show that if Y = 
(Y\,..., Yn) is a sample from P with an 

extended stick-breaking law, then the posterior for P given Y and K has a 

representation expressible in terms of an extended stick-breaking measure. In 

what follows, let K\,..., Kn denote classification variables as in Corollary 1. 

Furthermore, set K* = 
{K{,... ,Km} to be the set of m ? 

n(K) unique 

values of K. 

THEOREM 1. Suppose Y = 
(Yi,...,Yn) is an i.i.d. sample from an 

extended stick-breaking prior V. That is, (Y?|_P) are i.i.d. P where P has the 

law V described by (4) where Zk are independent with laws Hk (equivalently, 
Yi 

= 
ZkJ. Then, the posterior of P given Y is characterized by 

7r(dP|Y)-^7r(dP|Y,K)Pr(K), 
K 

where the sum is over all K 

n n 

Pr(K) 
= 

Pr(J_i) IJPr (#<!_-_,..., J-i-i) 
= 

E[WKl) ]{E[WKi\Ku.. 
.,__, __] 

i=2 i=2 

is the prior for K (which can be determined from Corollary 1) and the law of 

(P\ Y, K) is a stick-breaking measure representable in terms of the random 

measure 

**( )= ? Wk6Y:{.)+ J2 Wk6Zk{-), (8) 
fceK* ke{K*)c 

where Y{,..., Ym are the unique values of Y\,... ,Yn, and Wk are the ran 

dom weights with law 7r(W|K) described in Corollary 1 and are independent 

ofZk. 

PROOF. The first two displayed equations follow by definition, which 
leaves us to prove (8). The law for P is determined by the law for W and 

Z, where Z is the vector of Zk variables. We have that 

?(W, Z|Y,K) 
= 

C(Z\W, Y, K) x ?(W|Y, K) 
- 

?(Z\Y, K) x ?(W|K). 

The law for the second term is defined by Corollary 1, while the first term 
is easily determined using YJ 

= 
Zkv Deduce that, 

?(P|Y,K) = 
?( ? Wk5Y-+ ? WkSZk), 

\k K* fe (K*)c / 
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for Wk defined by tt(W|K). D 

REMARK 1. Note that the representation (8) for P* involves components 
which are not independent. An alternate representation which may be useful 

in some settings is the following. Let i be the largest component of K, i.e. 

I = 
ma,x{K\,..., Kn}. Then, (8) can be rewritten as 

P*(-)= E WkSy.(.)+ ? WkSZh{-) + 
fcGK* keM-K* k=i 

Pli-), (9) 

where M = 
{1,... ,?] and P? is an independent stick-breaking prior defined 

by (assuming N = 
oo) 

pa-) = 
E 

wk 

oo 
= 

V?+16Zt+?(-)+Y, 

?zut-) 

fc=2 

k-1 

H(l-Vt+j)Vl+k *zl+fc(-) 

*=i 

(10) 

where Wx 
= 

Vt+l and Wfc 
= 

(1 
- 

Vi+i)(l 
- 

Vl+2)---{\ 
- 

Vl+k^)Vi+k. 
Observe by Corollary 1 that V?+j 

are independent Beta,(a?+j,bt+j) random 

variables. 

Remark 2. A nice simplification occurs in computing Pr(K) for the 

class of finite and infinite dimensional Dirichlet priors. From their property 
that ak + bk 

= 
bk-\ (and hence ak + bk 

= 
bk_x), it follows from Corollary 1 

that 

at + bt t=\ aJ+ h) E?U ?* + n 

Thus, deduce that 

Pr(K) 
OiKi 

n 

aKi + e\ 

EN 
11 v^iV , i ' 

*=1 Oik i=2 Ljb=l OLk+l-? 

where e\ equals the number of Kj for j 
= 

1,..., i ? 1 equal to K{. Thus, for 

example, for the DPn{olH) measure, 

v ' 
N LLna + t-l 

1=2 
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Remark 3. Although a simple closed form expression for Pr(K) can 

sometimes be useful, it is important to note that this is not necessary to 

fit the Bayesian classification model. As we will see in Section 5, it will be 

enough that we can compute the expression E [Wj\Ki,..., if?-i], which is 

of course readily available from Corollary 1. 

4. Posterior Characterization for the Classification Model 

The importance of K in the classification problem is now revealed by 
the following posterior characterization for (7), which builds on Theorem 1. 

The result is analogous to the posterior characterizations with respect to 

the partition structure appearing in Lo, Brunner and Chan (1996), Brun 

ner, Chan, James and Lo (2001) and Ishwaran and James (2003). See also 

Lo (1984). As before, let K* denote the uniqiie set of values of K. 

THEOREM 2. Let Y = 
(Yi,...,Yn) be an i.i.d. sample from an ex 

tended stick-breaking prior as in Theorem 1. Then the conditional distri 

bution of Y given K and X from (7) is such that the sequence Y_,..., Yn 

consists ofm 
= 

n(K) unique values Y*,..., Ym, where Y* = 
Zk* , such that 

each value Y* is conditionally independent, with conditional distribution de 

termined from 

n Hj(dZj) n WM) 777, 

n7T(?y/|K,x) 
= 

n *WIK,x) = 
-^-^^-. ?=i i K? n / HjidZj) n k?x?zj) 
j K? Jy 

{t: Ki=j] 

(H) 
Moreover, the posterior for K given X equals 

Pr(K) njeK. fyHjidZj) U{i:Ki=j} kj(Xi\Zj) 
7r(K|X) 

= - -? ? -- 

Ek Pr(K) nj K. ly HjidZj) n{i:Ki=j} kjWZj) 
' 

Furthermore, the posterior for V, the law of the extended stick-breaking prior 

for P, is characterized by 

tt(_P|X) = Y ? P(_P|Y,K,X)7r(_Y|K,X)7r(K|X) 
KJyn 

= 
_r/ p(dP|y1*,...,rr;,K)n^y/|K,x)7r(K|x), 

where V(dP\Y{, ...,Y?,K) is defined by (8). 
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Theorem 2 reveals the importance of K in the classification problem. 
The values K{ not only tell us the assignment of observations X{ to their 

models, but additionally how to update the selected models given the data. 

That is, given K and X, the updated value for F in a model kj*, where j* 
? 

Kj, 
is interpreted as the posterior distribution of Y given the observations 

{Xi : K{ = 
j*} where a priori (Xi\Y) are i.i.d. kj*(Xi\Y) and Y has prior 

Hj.. 

PROOF OF THEOREM 2. By Bayes rule and Theorem 1. 

7r(dP|X) = W V{dP\Y{,..., Y?, K) n(dY\K, X) tt(K|X) 
k Jyn 

where V(dP\Y{,..., Y?, K) is defined by (8). To work out 7r(cfY|K, X), note 
that the joint distribution for (Y,K,X) equals 

Pr(K)7r(<fY|K)/(X|K,Y) 

= Pr(K) x 7T(dZKl,.. .,dZKn\K) x 
( J] J] kj(Xi\Zj) 

= Pi(K) ft Hj(dZj) ?J kj(Xi\Zj), (12) 
j?K' {i:Ki=j} 

where we have used the fact that 1? = 
Zk{- Thus, 

rrfYIK X^ = n^gK' HjjdZj) U{i:Kj=j} kj(Xj\Zj) 
n ' ' J 

ni K-SyHj(dzJmii..Ki=j}kJ(xi\ziy 

from which the conditional independence for Y* also follows. Now to work 

out 7r(K|X), by Bayes rule we have 

?(KM- Pr<K"<xlK> 
SKPr(K)/(X|K)' 

where Pr(K)/(X|K) is determined by integrating (12) with respect to Y. D 
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5. Monte Carlo Algorithms 

We now outline two different Monte Carlo procedures for drawing pos 
terior values for K from the Bayesian classification model (7), these being: 

(i) a new collapsed Gibbs sampler and (ii) an SIS based technique. We begin 
in Section 5.1 with the proposed collapsed Gibbs sampler. The use of the 

term "collapsing" here refers to the fact that the technique involves Gibbs 

sampling classification variables K subject to an extended stick-breaking 

prior, and thus is a form of collapsing of the stick-breaking prior. Seen this 

way, the method can also be viewed as a collapsed version of the "blocked 

Gibbs sampler" of Ishwaran and James (2001). See MacEachern (1994) for 
a collapsed Gibbs sampler for Dirichlet process mixture models. As an al 

most immediate consequence of the Markov transitions used in our Gibbs 

algorithm we are able to readily identify an SIS procedure for drawing im 

portance values for K (see Remark 4 of Section 5.1). This procedure is an 

extension of the SIS algorithm presented in Ishwaran, James and Lo (2001) 
for mixture models subject to finite dimensional stick-breaking priors. For 

a general discussion of SIS techniques see Kong, Liu and Wong (1994). Sec 

tion 5.2 ends by outlining the use of our algorithms in infinite complexity 
mixture models. 

5.1. Algorithms. We begin by describing the collapsed Gibbs sampler. 
Let K_i denote the (i 

? 
1)-dimensional classification vector formed by re 

moving the i-th. coordinate Ki from K. The collapsed Gibbs sampler works 

by cycling through draws 7r(K|K_?,X) for i = 
l,...,n. Note that the i 

th conditional draw for K involves only updating the i-th coordinate Ki. 

Repeating this n-cycle draw many times produces a Markov chain with sta 

tionary distribution 7r(K|X) and our posterior draw for K. 

Theorem 2 can be used to work out the conditional draw for K from 

7t(K|K_?, X). Let Kl? denote the unique set of values for K__. To draw K we 

update the value for its i-th coordinate Ki as follows. Assuming (K!_JC ^ 0, 
we choose a new value Ki 

= 
jc 6 (K_L?)C with probability 

?ji___! 
x 
^kjJXiWHj.m, 

(13) 

or we select a value already used, Ki 
= 

j G K_L?, with probability 

E[Wj*"i] 
x i M^M^IK-^X), (14) 

Ml) Jy 
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where X(i) is the appropriate normalizing constant and 

1 " " } " 
/yHi(dZj)n{^:*|S5i}fei(X,|Zj) 

Remark 4. Observe that to implement the draws from (13) and (14) we 
need to compute J5[Wj|K_i] for j 

= 
1,... ,7V, but this follows straightfor 

wardly from Corollary 1. For example, consider the case i ? n without loss 

of generality (by exchangeability the values i5[Wj |K_?] have the same form 

for each i = 
1,..., n). Replacing n with n ? 1 in Corollary 1 now shows how 

to readily compute ??[Wj|K_n]. 

REMARK 5. The Markov transitions worked out in our collapsed Gibbs 

sampler can be used to extend the SIS algorithm of Ishwaran, James and 

Lo (2001) for finite mixture models to the setting here of unequal kernels 

and general stick-breaking priors. Briefly the method works as follows. To 

generate an importance draw for K we build up a sequence of classification 

vectors Ki, K2 ..., Kn, where the eventual draw for K is Kn. To start, assign 
label j to Ki with probability E(Wj). Next, we build up Kr+i sequentially 
for r = 

2,..., n ? 
1, where the generation of Kr+i 

= 
(Kr, j) is based on the 

current value Kr using a posterior update rule similar to (13) and (14). The 

simplest way to define the update rule is by considering the case r = n ? 1 

(with obvious modifications for general r). In this case, Kn 
= 

(Kn_i, j), 
where j G (Kln)c is selected with probability (13) or j G K!_n is selected 
with probability (14). 

5.2. Infinite complexity mixture models. Several simplifications occur in 

the finite mixture model (6) because kernels are equal (i.e. kj 
= 

ko) and 

the variables Zj used in our priors are identically distributed (i.e. Hj 
= 

H). 
This points the way to a novel estimation procedure for mixture models with 

infinite complexity N = 00. We describe this new method in the context of 

our collapsed Gibbs algorithm, but the method outlined can be modified in 

an obvious way for the SIS algorithm. 
First note that in the finite mixture setting, the normalizing constant 

equals 

? KV 

+ 

\(i) = 
[l- ? E\Wj\K-i]] f ko(Xi\Z)H(dZ) 

VJ E\Wj\K-i] f k*{Xi\Zj)n(dZ3\K-i,X), 
? KV 



590 HEM ANT ISHWARAN AND LANCELOT F. JAMES 

which can be computed even when N = oo since it involves a finite number of 

terms. Now all that remains is to draw (13) and (14). The draw from (14) is 

straightforward since it involves only a finite number of terms. The draw (13) 
is also possible since it essentially requires simulating a discrete variable from 

the countable discrete distribution 

Hi(-)= ? rVW, where r, =-MWM 
je(Kv)c l-E_eKvlM__-i] 

One method for drawing from Hi uses rejection sampling. Order the indices 

in (Kl2)c as ?i < ?2 < " * * and draw U from a Uniform [0,1] distribution. A 

draw J from n. is the value J = 
ij0 where jo is such that 

jo-l jo 

Observe that this requires only a finite number of computations. See Doss (1994, 

page 1768) for a similar technique in survival analysis problems subject to 

Dirichlet process priors. 

Remark 6. The draws for K can be used to estimate the hidden variables 

Yi and the unknown mixing distribution Qo of (2). For example, to estimate 

the posterior mean of a function t(Y) note that by the double-expectation 
rule 

E[t(Y)\X] = E{E[t(Y)\K,X}}. 

So to estimate _5[i(Y)|X], draw K from the Gibbs sampler, followed by 
a draw for the unique values Ff,...,!^ from (11) in Theorem 2, where 

m = 
n(K). This gives us a draw for Y from 7r(Y|K,X). Given B such 

draws, say, K^1),... ,K(B\ and corresponding values Y'1),..., Y^B), esti 

mate E[t(Y)\X] by ?6B=i*(Y(6))/5. 
To estimate Qo we draw from the law of V(dP\Y{^..., Y^, K) described 

in Theorem 1. For a given value for K and Y*,..., Y^, this can be computed 

conveniently by the random measure _P* defined in (9). Thus, to approximate 
the law for a functional t(Q0) 

= 
Jg(Y)Q0(dY), use ?f=11{t(P*?) ? -}/B, 

where for a given K and Yj*,..., F^, 

i 

t(P*)= J2 Wk9{Yk*)+ ? Wkg(Zk) + 
[l-Y,Wk]Pi(g), 

keK* keM-K* fc=l 
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where Wk are the random weights with law 7r(W|K), and P? is the indepen 
dent random measure defined by (10) where I is the largest component of 

K. In practice, Pi will need to be approximated, but this can be done easily 

enough using a truncation argument. 
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