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We consider the problem of estimating the number of components d and the unknown mixing distribution in a � nite mixture model, in
which d is bounded by some � xed � nite number N . Our approach relies on the use of a prior over the space of mixing distributions with
at most N components . By decomposing the resulting marginal density under this prior, we discover a weighted Bayes factor method for
consistently estimating d that can be implemented by an iid generalized weighted Chinese restaurant (GWCR) Monte Carlo algorithm.
We also discuss a Gibbs sampling method (the blocked Gibbs sampler) for estimating d and also the mixing distribution. We show that
our resulting posterior is consistent and achieves the frequentist optimal Op4nƒ1=45 rate of estimation. We compare the performance of the
new GWCR model selection procedure with that of the Akaike information criterion and the Bayes information criterion implemented
through an EM algorithm. Applications of our methods to � ve real datasets and simulations are considered.

KEY WORDS: Blocked Gibbs sampler; Dirichlet prior; Generalized weighted Chinese restaurant; Identi� cation; Partition; Uniformly
exponentially consistent test; Weighted Bayes factor.

1. INTRODUCTION

Consider the � nite mixture problem where we wish to esti-
mate Q0, an unknown � nite mixing distribution with d atoms.
We assume that d < ˆ is unknown but that a � nite upper
bound N is known for it: 1 µ d µ N < ˆ. Our inference for
Q0 and its dimension d is to be based on n iid observations
X D 4X11 : : : 1 Xn5 from the true distribution P0 with density

f04x5 D
Z

¹
f4x—y5dQ04y5 D

dX
kD1

Wk10 f4x—Yk1 051 x 2 ¸ 21

with respect to a ‘ -� nite measure ‹, where the unknown Q0

is written as

Q04¢5 D
dX

kD1

Wk10 „Yk10
4¢51

where 0 < Wk10 < 1 are weights summing to 1 4
Pd

kD1 Wk1 0 D
151 „4¢5 is the standard indicator function, and Yk10 2 ¹ are the
distinct atoms of Q0, where ¹ 2.

How tight the bound N is for d often depends very much
on the context of the problem. For example, Roeder (1994)
analyzed the sodium-lithium countertransport (SLC) measure-
ments from n D 190 individuals using a � nite normal mix-
ture model with an upper bound of N D 3. There it was
argued that the upper bound of three components was a
natural choice because of the genetics underlying the prob-
lem. However, one cannot always expect such a tight bound
for d in all problems. For example, Izenman and Sommer
(1988), in reanalyzing Wilson’s (1983) data of the thick-
ness of the 1872–1874 Hidalgo postage stamps of Mexico,
found evidence of seven modes using Silverman’s (1981)
critical bandwidth test. Although Silverman’s test can be
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viewed as a nonparametric approach, Izenman and Som-
mer (1988) presented compelling evidence showing that the
data could be derived from a � nite normal mixture model
with at least d D 7 components. Such a conclusion was also
partially shared by Minnotte and Scott (1993), who, using
a mode tree analysis, found the original seven modes of
Izenman and Sommer (1988) in addition to three new modes.
Efron and Tibshirani (1993, chap. 6) looked at the same data
using a bootstrap approach and concluded that there was any
where from two to seven modes. Thus the foregoing analy-
ses, combined with Izenman and Sommer’s (1988) detailed
arguments, suggest that the Hidalgo stamp data can be safely
analyzed using a � nite normal mixture model. However, it
is not clear how this information can be used to arrive at a
sharp upper bound for d. To be safe, we could, for example,
choose a value for N that is clearly larger than any value of d
estimated from the previous analyses (to be conservative, say
N D 15), but it may not be so easy to improve on this strategy.
(See, however, Basford, McLachlan, and York 1997 for like-
lihood ratio methods for bounding N .)

The foregoing discussion makes it clear that one can
encounter both tight and conservative bounds for d, and thus
it is important to have an approach that will work well over
a broad range of values of N . As we show, one of the nice
features of our Bayesian approach that we present is that it
not only works well for small values of N , but also works
well with very large N , and in fact has a natural nonparamet-
ric limit as N ! ˆ. This important feature is a direct conse-
quence of our choice of prior.

1.1 De’ ning the Parameter Space

There are essentially two basic approaches to modeling
the parameter space for the � nite mixture model. The � rst
approach is more along the lines of a parametric method and
considers the parameter space as

¹N � 4W11 : : : 1WN 5 2 0 µ Wk µ 11
NX

kD1

Wk D 1 1
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corresponding to the atoms and weights for the mixing dis-
tribution. This is perhaps the more common approach used
in Bayesian analyses (see, e.g., Aitkin and Rubin 1985;
Chib 1995; Diebolt and Robert 1994; Raftery 1996; Richard-
son and Green 1997; Roeder and Wasserman 1997). McLach-
lan and Peel (2000, chap. 4) have provided more discussion
and other related references. The second method, which we
adopt here, considers the parameter space to be a space of
mixing distributions. Thus if ±j denotes the space of � nite
mixtures Q over ¹ with exactly j atoms, then the parameter
space for Q0 is

±4N 5 D
N[

jD1

±j1

the space of � nite mixtures with at most N atoms. This
approach is more in line with those used in non-Bayesian set-
tings (see, e.g., Chen 1995; Jewell 1982; Lambert and Tier-
ney 1984; Leroux 1992; Lindsay 1983; Pfanzagl 1988; Simar
1976; Teicher 1960; van de Geer 1996; Zhang 1990).

There are both computational and theoretical advantages
to working with ±4N 5 as our parameter space. From a con-
ceptual/theoretical perspective, it puts us more on par with
non-Bayesian methods, thus allowing us to exploit some key
concepts used in these approaches to derive analogous results
for our Bayesian procedure. For example, exploiting the con-
cept of strong identi� cation used by Chen (1995), we are able
to show that our posterior estimates Q0 at a Op4nƒ1=45 rate
(see Theorem 2). As shown by Chen (1995), this is the opti-
mal (frequentist) rate of estimation for Q0.

The form of identi� cation assumed in the � nite mixture
model is intimately tied to the asymptotic behavior of the pos-
terior. Under a different type of identi� cation, which we call
¦ -identi� cation, we show how to use a weighted Bayes factor
(BF) to consistently estimate d (see Theorem 1). This method
again relies on considering the mixing distribution Q as our
parameter and is of bene� t computationally. The weighted BF
approach is suggested by our decomposition of the marginal
density for the data, mN 4X5, as

mN 4X5 D
NX

kD1

mk1N 4X51

where each piece mk1N 4X5 corresponds roughly to the contri-
bution from a prior over ±k. This suggests the use of the ratio,
a weighted BF,

ã4k1k05 D
mk1 N 4X5

mk01N 4X5
1 (1)

for selecting the dimension d. (A more precise argument is
given in Sec. 2.) Moreover, this approach allows us to apply an
iid Monte Carlo procedure, the generalized weighted Chinese
restaurant (GWCR) algorithm ( Ishwaran and James 2000a; see
also Brunner, Chan, James, and Lo 2001; Lo, Brunner, and
Chan 1996) in computing (1). This connection arises from the
identity

mk1N 4X5 D
X

8p2 n4p5Dk9

å4p5q4p51

where the sum is over all partitions p of the set of integers
811 : : : 1 n9, where n4p5 equals the number of sets in p, q4p5

is the GWCR density and å4p5 is a known function of p
(see Secs. 3.1 and 3.2 for further details and a speci� c exam-
ple). Thus, by drawing iid values from q4p5, we can approx-
imate (1). In addition to the GWCR algorithm, we also use
a Gibbs sampling procedure called the blocked Gibbs sam-
pler ( Ishwaran and James 2001; Ishwaran and Zarepour 2000a)
for inference. The blocked Gibbs sampler also relies on the
use of ±4N 5 as our parameter space and gives us a method
for drawing values directly from the posterior of the mixing
distribution Q, and hence a method for estimating Q0 as well
as d.

1.2 Random Measures

Our approach to the problem relies on the alternate repre-
sentation of the mixture model as a hierarchical model involv-
ing hidden variables Yi:

4Xi—Yi5
ind

f4Xi—Yi51 i D 11 : : : 1 n

4Yi—Q05
iid

Q00

(2)

To estimate Q0, we place a prior on Q using a random mea-
sure. Thus, in analogy to (2), we base inference for Q0 on the
posterior for the following hierarchical model:

4Xi—Yi5
ind

f4Xi—Yi51 i D 11 : : : 1 n

4Yi—Q5
iid

Q (3)

Q °N 4¢5 D
NX

kD1

Wk „Zk
4¢51

where

W D 4W11 : : : 1WN 5 DirichletN 4�=N 1 : : : 1 �=N 5 (4)

is independent of Zk, which are iid H , where we assume that
H is nonatomic [e.g., if ¹ D 2, then H is usually taken as a
� at N401A5 distribution with large variance A; see Sec. 3.2
for illustration] and � is some positive value. Thus, analogous
to (2), we assume that Yi are iid Q, but where Q is now a
random mixing distribution drawn from °N , a distribution over
±4N 5.

The selection of shape parameters �=N in the Dirichlet dis-
tribution for W is critical to the performance of °N . As shown
by Ishwaran and Zarepour (2000b), this choice of parameters
implies the weak convergence result

°N

d
) DP4�H51 as N ! ˆ1

where DP(�H ) is the Ferguson Dirichlet process with � nite
measure parameter �H (Ferguson 1973, 1974). Thus °N has
an appropriate nonparametric limit, which is the reason for its
good performance for large N . However, we demonstrate that
it also has good properties for small values of N .

1.3 Organization

The article is organized as follows. Section 2 presents the
decomposition of the marginal density for the data. This sug-
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gests a method for consistently estimating d using a weighted
BF (Sec. 2.2). The small N and large N properties for °N are
investigated in Section 2.3, while the asymptotic consistency
of the BF approach is given in Theorem 1 in Section 2.4.

The proofs for Theorem 1 and the optimal rate result of
Theorem 2 (appearing later in Sec. 5) both rely on the notion
of a uniformly exponentially consistent (UEC) test and its
implication for posterior consistency under various metrics.
The proofs build on work of Schwartz (1965), Barron (1988,
1989), and Clarke and Barron (1990). For ease of presenta-
tion, we have placed these proofs in the Appendix.

The iid GWCR algorithm is discussed in Section 3, and the
blocked Gibbs sampling algorithm is covered in Section 4.
The performance of these algorithms when applied to a range
of well-known datasets as well as simulated data is studied
in Section 6. In some cases we compare these results to the
EM algorithm. It is well known that the performance of the
EM algorithm depends very much on the initial values used.
We � nd that our new model selection procedures are relatively
insensitive to the initial values, and thus they avoid the some-
times laborious work needed for the EM algorithm to � nd
good initial values with each candidate d model. More details
are given in Section 6.

2. MODEL SELECTION BY MARGINAL
DENSITY DECOMPOSITIONS

The marginal density is a key ingredient in computation of
the BF, a widely used method for model selection (see, e.g.,
Bernardo and Smith 1993, chap. 6). In the context of the � nite
mixture model, suppose that ç1 and ç2 are priors for Q and
let PQ be the distribution for the mixed density

fQ4x5 D
Z

¹
f 4x—y5 dQ4y50

Then the BF for comparing the model induced under ç1 to
that induced under ç2 is the ratio of posterior odds to prior
odds or, equivalently, the ratio of marginal densities,

BF D
R Qn

iD1 fQ4Xi5 ç14dQ5R Qn
iD1 fQ4Xi5 ç24dQ5

0

A large value of BF is evidence for favoring model 1 over
model 2.

Such an approach typically requires speci� cation of a prior
ç that distributes mass over the space of distributions ±4N 5
for Q. A standard approach is to use a mixture such as

ç4¢5 D
NX

kD1

pkçk4¢51

where p1 C ¢ ¢ ¢CpN D 1 and çk is a prior over ±k, the space of
distributions with exactly k atoms. The prior ç, although con-
ceptually appealing, has several hidden dif� culties with its use.
First, there are no well-known default choices for the weights
pk, and arbitrary selection of these values could lead to unde-
sirable properties. A good lesson of what can go wrong when
choosing a prior for mixture models occurs with the use of a
uniform prior in place of °N in the model (3). Although a uni-
form prior may seem an intuitive choice, we show that it can

have poor properties even when N is fairly small and becomes
inconsistent as N ! ˆ. Computations with ç are another con-
cern. Fitting a model based on ç requires an algorithm that
must traverse over parameter spaces of different dimensions,
which can create dif� culties for Monte Carlo procedures such
as Gibbs sampling. One solution to this problem was presented
by Richardson and Green (1997), who discussed a reversible
jump Markov chain method for � tting mixture models.

2.1 The Density for X

Our approach is different. Rather than working with a prior
like ç, we see by careful decomposition of the marginal den-
sity that the prior °N naturally decomposes the mixture prob-
lem into models based on mixing distributions of different
dimension, thus effectively taking the problem and carving it
out into smaller ones as a natural byproduct . This decomposi-
tion naturally suggests a method for selecting models using an
approximate BF and thus avoids the problems associated with
priors such as ç. (For some more rationale and intuition for
marginal decompositions, see Lo 1984, who looked at kernel
density decompositions under the Dirichlet process prior.)

Let p D 8Cj 2 j D 11 : : : 1 n4p59 be a partition of the set
811 : : : 1 n9, where Cj is the jth cell of the partition, ej is the
number of elements in a cell Cj , and n4p5 is the number of
cells in the partition. From (3), the density for X must be

mN 4X5 D
Z nY

iD1

fQ4Xi5 °N 4dQ5

D
Z Z nY

iD1

f4Xi—Yi5 Q4dYi5 °N 4dQ5

D
Z Z Z nY

iD1

f4Xi—Yi5
nY

iD1

NX
kD1

Wk „Zk
4dYi5

� d�W4W5 dH N 4Z5

D
X

p

� N 4p5
n4p5Y

jD1

Z Y
i2Cj

f4Xi—y5H4dy5

D
X

p

� N 4p5f 4X—p51 (5)

where the sum is over all partitions p, �W is the symmetric
Dirichlet distribution (4) for W1Z D 4Z11 : : : 1 ZN 5 and

�N 4p5 D °N 8P D p9

D
X

8i1 6D¢¢¢ 6Dik9

E W
e1
i1

¢ ¢ ¢W ek

ik

D
4�=N 5kN W

� 4n54N ƒ k5W

kY
jD1

1 C
�

N

4ej ƒ15

1 k D n4p51

where a4j5 D a4aC15 ¢ ¢ ¢ 4aCj ƒ15 for each a > 0 and positive
integer j ¶ 1. (Note that a405 D 1.)

The expression � 4p5 is the exchangeable partition proba-
bility function (EPPF), which characterizes the prediction rule
(conditional distribution) for °N (Pitman 1995, 1996). (For
more on its derivation, see Ishwaran and Zarepour 2000b;
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Pitman 1995; Watterson 1976.) It is interesting to note that

�N 4p5 !
�k

�4n5

kY

jD1

4ej ƒ 15W as N ! ˆ1

where the right side is the EPPF for a DP4�H5 measure.
This provides some intuition for why °N converges to a
Dirichlet process (see Ishwaran and Zarepour 2000b, c for fur-
ther details).

2.2 Decomposing the Marginal Density

We can rewrite the marginal density as mN 4X5 D PN
kD1

mk1N 4X5, where

mk1N 4X5 D
X

8p2 n4p5Dk9

� N 4p5f 4X—p50

Each of the terms mk1 N 4X5 represents a measure of the rela-
tive posterior mass for a k-component mixture. This follows
because the posterior probability that Q has k components can
be measured by

ð 8n4p5 D k—X9 D
P

p I8n4p5 D k9�N 4p5f 4X—p5
P

p �N 4p5f4X—p5

D
mk1N 4X5

mN 4X5
0

This suggests a natural method for selecting models based
on mk1N . Thus models can be selected based on ã4k1k05 D
mk1N =mk01 N , the posterior odds of a partition of size k versus
one of size k0.

As alluded to in Section 1, the use of the ratio ã4k1k05 for
model selection can also be motivated by recognizing that it
is an approximate weighted BF and thus should inherit some
of the asymptotic properties typically enjoyed by BFs (see
Theorem 1 for details). This connection to the BF is revealed
by showing that the mk1N are near marginal densities. A lit-
tle bit of work shows that mk1N approximates the marginal
density (up to a proportionality constant) for a mixture model
based on a prior over ±k. Thus, effectively, mN has a nat-
ural decomposition into the N terms mk1N , with each term
essentially representing the contribution to the posterior from
a mixture model based on k components.

By considering the decomposition (5), notice that

mk1N 4X5 D rk1N

Z Z

¹k

nY
iD1

f 4Xi—Yi5 Q4dYi5 °k4dQ51

k D 11 : : : 1N 1

where ¹k D 8Y 2 ¹n 2 n4Y5 D k9 consist of those Y in ¹n with
exactly k distinct coordinate values,

rk1N D
N

k

4k�=N 54n5

�4n5

and

°k4¢5 D
kX

jD1

Wj1k „Zj
4¢5

is a random probability measure with random weights

4W11 k1 : : : 1Wk1k5 Dirichletk4�=N1 : : : 1 �=N 50

Under °k, the Yi values are effectively the constraining set
¹k involved in the function mk1N . From this observation, it
becomes clear that mk1 N (except for a constant) approximates
the marginal density

mk4X5 D
Z Z nY

iD1

f 4Xi—Yi5 Q4dYi5 °k4dQ5

derived from °k, a prior over the space of k-component mix-
tures, ±k. The following lemma shows that this approximation
is exponentially accurate.

Lemma 1. Let r ü
k1 N D rk1N °k4¹k5. De� ne the density

m ü
k1N D mk1N =r ü

k1N . Then

Z

¸ n

—m ü
k1N 4X5 ƒ mk4X5— d‹n4X5 µ 2k41 ƒ 1=k5n

2k exp4ƒn=k50

Proof. By using a decomposition similar to (5), we have
that

Z

¸ n

—m ü
k1N 4X5ƒmk4X5—d‹n4X5

µ
X

8p2 n4p5Dk9

1
°k4¹k5

ƒ1 °k4p5C
X

8p2n4p5<k9

°k4p5

D 241ƒ°k4¹k550

But °k4¹
c
k 5 D °k8Yi 6D Zj some j9, which is bounded by

k41 ƒ 1=k5n.

2.3 Weighted Bayes Factors

Lemma 1 reveals that mk1N is approximated to a high degree
of accuracy by mk � r ü

k1N , and thus can be seen to be made up
of two pieces: the marginal density mk and the prior weight for
a model of dimension k, r ü

k1 N . Thus, another way to motivate
the ratio ã4k1 k05 is that it corresponds approximately (in n)
to the weighted BF,

mk4X5

mk 0 4X5
�

r ü
k1N

r ü
k01 N

mk4X5

mk0 4X5
�

rk1N

rk01 N

0 (6)

The expression on the right side of (6) reveals that the
effect of the � nite-dimensional Dirichlet prior (3) on ã4k1k05
is essentially captured by the value of rk1N , and thus a care-
ful study of its value should indicate how well the prior will
work in our model selection procedure. For example, as indi-
cated earlier, the choice of shape parameters �=N in our °N

prior ensures that it has a limiting Dirichlet process distribu-
tion, thus hinting that °N should work well in mixture models,
at least for the case when N is large. But how exactly does
this prior stack up against other choices for different values of
N , as measured by rk1N ?

As a competitor, consider the prior with parameters �=N D
1 (i.e., � D N 5 corresponding to weights

W D 4W11 : : : 1 WN 5 DirichletN 411 : : : 1 150

This represents a “uniform prior,” and intuitively we might
expect it to act like a noninformative prior. This is in fact
exactly the opposite of what happens, at least when N is large.
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Figure 1. Plots of log( rk, N=rk+ 1, N ) for Various Choices of k, N and n. (a) The °N prior with � D 1. (b) The uniform prior (� D N). Left-side plots
show values for different sample size values n with N D 15. Right-side plots use different values of N with n D 100. The horizontal line at 0 is the
break-even point where rk, N D rk+ 1, N , at which point the prior starts to favor smaller models as k increases.

Asymptotically the prior has the almost-sure limit H , the law
of our Zk random variables, and thus is completely informa-
tive. This is exactly the wrong prior to use in nonparametric
mixture problems, where it has been shown to be inconsistent
( Ishwaran and Zarepour 2000c).

Although this tells us that the uniform prior behaves poorly
for very large N , how does it behave for � nite N , and how
does its performance compare to the approximate Dirichlet
process? To answer these questions, we plotted the log of the
ratios rk1 N =rkC11 N under each prior for various values for n

and N . The results appear in Figure 1. The top row of the
� gure reveals the behavior for the approximate Dirichlet pro-
cess prior with parameter � D 1. The news seems quite good
here. The left-side plot shows that the ratio is almost inde-
pendent of the sample size n, while the right-side plot shows
that the prior neither overpenalizes smaller models nor overly

encourages larger models, even as N increases. (Note that
a value of 0 corresponds to the break-even k value where
rk1 N D rkC11 N at which point the prior starts to favor smaller
models as k increases.) This is much different than the bot-
tom row plots for the uniform prior. The left-side plots show
a clear dependence on sample size, while the right-side plots
reveal that the prior heavily penalizes smaller models as most
of the values for the log-ratio value are below 0. This last
property is what causes this prior to be inconsistent in non-
parametric problems. Clearly, the approximate Dirichlet pro-
cess is the more appropriate choice for both small and large
values of N , almost independently of the sample size.

2.4 Asymptotic Behavior for ã(k1k 0)

The connection between ã4k1k05 and the weighted BF (6)
suggests that ã4k1k05 should inherit some of the asymptotic
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properties for marginal densities that BFs typically bene� t by.
Indeed, Theorem 1 establishes fairly mild assumptions under
which ã4k1 k05 has good asymptotic behavior. A key require-
ment is a form of model identi� cation that is slightly stronger
than the usual notion of identi� cation. Recall that a mixture
model is said to be identi� ed over ±4N 5 if for Q11 Q2 2 ±4N 5
we have fQ1

4x5 D fQ2
4x5 for almost all x6‹7; then Q1 D Q2.

For example, mixtures of Poisson distributions, binomial dis-
tributions (under various constraints), and scale and location
mixtures of gamma distributions and normal distributions are
known to be identi� ed (Teicher 1963). We require a stronger
form of identi� cation, which we call ¦ -identi� cation:

¦ - Identi� cation. We say that the mixture model is
¦ -identi� ed over ±4N 5 if there exists a countable measurable
partition ¦ for ¸ with the property that if PQ1

4A5 D PQ2
4A5

for each A 2 ¦ , where Q11Q2 2 ±4N 5, then Q1 D Q2.
By selecting ¦ D ¸ , we can see immediately that identi� ed

mixtures with discrete sample spaces are ¦ -identi� ed. Thus,
for example, mixtures of Poisson distributions are ¦ -identi� ed
by choosing ¦ D 801 11 21 : : : 9. It also follows that continuous
mixtures based on exponential family densities of the form

f4x—y5 D exp4ys4x5C t4x5C b4y55 (7)

are ¦ -identi� ed under fairly simple conditions. Consider the
following proposition (see the Appendix for a proof).

Proposition 1. Suppose that f 4x—y5 is a density of the
form (7) with respect to Lebesgue measure. If there exists
an x0 either in ¸ or its closure so that s4x5 ! Cˆ or
s4x5 ! ƒˆ as x ! x0, then the corresponding mixture model
is ¦ -identi� ed over ±4N 5.

Proposition 1 implies ¦ -identi� cation for several important
mixtures. For example, with x0 D Cˆ and s4x5 D x, it fol-
lows that location mixtures of normals are ¦ -identi� ed. As
another example, consider scale mixtures of gamma distribu-
tions, which are ¦ -identi� ed using x0 D Cˆ and s4x5 D ƒx.

Another key condition needed in our theorem is the
notion of information denseness for the prior, a concept
related to relative entropy. Recall that the relative entropy
(Kullback–Leibler distance) for two probability measures ð
and ñ is de� ned as

D4ð ——ñ5 D ð log
dð

dñ
D

Z
log

dð

dñ
dð 0

The prior °d is said to be information dense at Q0 if for each
… > 0,

°d8Q 2 D4P0——PQ5 < …9 > 00

In words, °d concentrates on each Kullback–Leibler neigh-
borhood of the true model.

Information denseness can be shown to hold under vari-
ous smoothness conditions for the underlying density f 4x—y5,
where smoothness is in terms of y. However, we prefer to keep
the conditions of our theorem straightforward, leaving these
to be checked on a case-by-case basis. For example, it is easy
to show that information denseness holds for scale and loca-
tion mixtures of normals, as well as for mixtures of Poisson
distributions.

Theorem 1. If °d is information dense at Q0 and the mix-
ture model is ¦ -identi� ed over ±4d5, then there exists an
… > 0 such that

ã4d1k5 D
md1 N 4X5

mk1 N 4X5
¶ exp4n…5 almost surely °ˆ

0 1

for each k D 11 : : : 1 d ƒ 1.

Thus, under mild assumptions, ã4d1k5 is asymptotically
exponentially large whenever k < d. Therefore, it discrimates
well against (incorrect) smaller models. Although the case of
d < k µ N is not addressed here, Theorem 2 (in Sec. 5) estab-
lishes a more general result showing that the posterior achieves
the optimal Op4nƒ1=45 rate of estimation for Q0. (This requires
more stringent assumptions, however.) This should help alle-
viate any concerns about Theorem 1 and the performance of
ã4k1k05. Proof of Theorem 1 is given in the Appendix.

Remark 1. There are several parallel results to Theorem 1
for the case where the dimension d is unknown. That is,
when Q0 is a � nite mixture distribution with d components
but d is completely unknown, 1 µ d < ˆ. Such a problem
was considered by Leroux (1992), who showed that the use
of a maximum penalized likelihood method was consistent for
the dimension in that it was not underestimated, although the
result did not say whether penalization would overestimate d.
Recently, Keribin (2000) resolved this issue, showing that a
maximum penalized likelihood method was almost surely con-
sistent for the complexity d.

3. GENERALIZED WEIGHTED CHINESE
RESTAURANT ALGORITHMS

The approach based on the weighted BF ã4k1k05
lends itself nicely to computations using the iid GWCR
algorithm ( Ishwaran and James 2000a; see also Brunner et al.
2001; Lo et al. 1996). The GWCR algorithm is a sequen-
tial importance sampling technique that draws values from a
density q4p5 over the space of partitions, where q4p5 (the
GWCR density) acts as an importance function for approxi-
mating �N 4p5f 4X—p5. That is,

� N 4p5f 4X—p5 D å4p5q4p51

where å4p5 are the importance weights. In particular, observe
that this implies

mk1N 4X5 D
X

8p2 n4p5Dk9

�N 4p5f4X—p5 D
X

8p2 n4p5Dk9

å4p5q4p50

Thus, by drawing values from q4p5 we can devise an effective
iid method for approximating ã4k1k05. To decide between two
models k and k0, draw B iid partitions p11 : : : 1 pB from q and
use the approximation

ã4k1k05

PB
jD1 I8n4pj5 D k9å4pj5

PB
jD1 I 8n4pj 5 D k09å4pj5

0

The validity of this approximation is guaranteed by the strong
law of large numbers. Note that the same technique can also
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be used for the Monte Carlo estimate

ð 8n4p5 D k—X9

PB
jD1 I8n4pj5 D k9å4pj5

PB
jD1 å4pj5

0

3.1 The Generalized Weighted Chinese Restaurant
Algorithm for Finite Mixtures

The GWCR algorithm works by building up a sequence of
nested partitions p11 p21 : : : 1pn by assigning labels 811 : : : 1 n9
into sets using a posterior partition rule. The nth partition,
pn, is our eventual draw for p from q. To run the algorithm,
we � rst assign p1 to be the set containing label 1, after which
partitions are created sequentially so that at the r th stage, pr

contains n4pr 5 sets derived from the labels 811 : : : 1 r9. The
partition rule for producing pr depends on the con� guration
for the previous partition prƒ1. Thus, if C11rƒ11 : : : 1Cm1rƒ1 are
the m D n4prƒ15 sets in prƒ1 (derived from 811 : : : 1 r ƒ 19),
then pr is formed by assigning label r to one of the previous
sets Cj1rƒ1 with probability

�r 4j5 D
ej1rƒ1 C �=N

‹4r5

�
R

¹
f 4Xr —y5

Q
i2Cj 1 rƒ1

f 4Xi—y5H4dy5
R

¹

Q
i2Cj1 rƒ1

f 4Xi—y5H4dy5
1 (8)

where ej1 rƒ1 are the number of labels in Cj1 rƒ1, or by assigning
label r to a new set with probability

�r D
�41 ƒ m=N5

‹4r5
�

Z

¹
f4Xr —y5H4dy51 (9)

where ‹4r5 is the normalizing constant ensuring that �r CPm
jD1 �r 4j5 D 1.
Thus, producing a draw p from the GWCR density involves

the following steps:

1. Set p1 D 819. Generate partitions p21 : : : 1pn sequentially
using the partition rule de� ned by (8) and (9).

2. Set p D pn. This is our draw from q with importance
weight

å4p5 D ‹415 � ¢ ¢ ¢� ‹4n51

where ‹415 D
R

¹
f 4X1—y5H4dy5.

Remark 2. Note that the draws for p depend on the order
of the data X. For small sample sizes this sometimes can be
important, and thus we always apply a shuf� e step at each
iteration by randomizing the order of the data. We applied this
technique in all of our examples of Section 6.

3.2 Location Mixtures of Normals

Working out the assignment probabilities (8) and (9) is
straightforward in conjugate models. We give the computa-
tions here for the case of � nite location mixtures of normals.
Later in Section 6 we study the performance of our algorithms
applied to this model. In the case of nonconjugacy, however,
it generally is not possible to work out the required integrals
in closed form. In this case, one can apply an approximate
GWCR algorithm (the N -GWCR algorithm), which avoids the

need to compute such integrals (see Ishwaran and James 2000a
for details.)

We consider � nite normal mixture densities of the form

fQ4x5 D
Z

²

1

‘
”

x ƒ y

‘
dQ4y51 (10)

where ” is the standard normal density, ‘ is a common stan-
dard deviation, and Q is a � nite mixture distribution over
¹ D 2. For the moment, we assume that ‘ is a � xed known
value. In the following section we consider the case where ‘
is unknown.

To take advantage of conjugacy, we take H to be a N401 A5
distribution in which A is taken to be a large number relative
to the scale of the data to ensure noninformativeness (in our
computations in Section 6 we use A D 1000). Elementary cal-
culations show that

�r 4j5 D
ej1 rƒ1 C �=N

‹4r5
�

s
‘ 2 C Aej1 rƒ1

2�‘ 2 ‘ 2 C A4ej1 rƒ1 C 15

� exp

"
ƒ

1

2‘ 2

³
X2

r ƒ
A

P
i2Cj1 rƒ1

Xi C Xr

2

‘ 2 C A4ej1 rƒ1 C 15

C
Ae2

j1 rƒ1
SX2

j1 rƒ1

‘ 2 C Aej1 rƒ1

#́

and that

�r D
�41 ƒ mrƒ1=N5

‹4r5
�

1p
2� 4‘ 2 C A5

exp ƒ
X2

r

24‘ 2 C A5
1

where SXj1 rƒ1 is the average of the data 8Xi2 i 2 Cj1 rƒ19.

3.3 Location Mixtures of Normals With
Unknown Variance

Often the value for ‘ will be unknown in (10). This is
the case considered in Section 6, and thus we outline a sim-
ple modi� cation to the foregoing algorithm to handle this
scenario. This idea was discussed by Ishwaran, James, and
Lo (2001) as a general method for updating � nite-dimensional
parameters within the GWCR algorithm for semiparametric
models.

The general principle underlying the modi� cation is that
once we are given the partition structure p, we are told how
the data Xi are clustered by means, and thus our problem
reduces to a collection of parametric normal models. Thus,
given p, it should be clear how to estimate ‘ using standard
parametric arguments. This idea is used sequentially within
the GWCR, with the value for ‘ updated after the generation
of each partition pr . As worked out by Ishwaran et al. (2001),
step 1 of the GWCR algorithm is thus modi� ed so that a
partition pr is now generated using the partition rules de� ned
by (8) and (9), but with ‘ replaced by its current estimate
‘ rƒ1. After generating pr , replace ‘ 2 by the estimate

‘ 2
r D

1

r

n4pr 5X
jD1

X
i2Cj1 r

4Xi ƒ SXj1 r 5
20

Observe that ‘ 2
r is the maximum likelihood estimator.
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Remark 3. To avoid numerical problems in the early
stages of the algorithm, we use a sampled value for ‘ . ( In
our example we generated ‘ 2

0 , the starting value for ‘ 2, from
a uniform 601 37 distribution.) After a � xed number of itera-
tions (we used 10), we then begin updating ‘ using the above
method.

Remark 4. The GWCR can also be applied straightfor-
wardly in location-scale mixtures of normals. Although here
we have focused only on the case where ¹ 2, the GWCR
algorithm in fact applies to much more general spaces
(Brunner et al. 2001; Ishwaran and James 2000a). Letting y D
4u1 s5, we could also apply our GWCR model selection pro-
cedure to location-scale mixtures of normals of the form

fQ4x5 D
Z

2� 2C

1

s
”

x ƒ u

s
dQ4u1 s50 (11)

In this case the use of a conjugate normal-inverse gamma dis-
tribution for H leads to a simple closed-form expression for
the partition update rule. Note that with in this approach, one
does not need to estimate ‘ as in location mixtures of normals.

4. BLOCKED GIBBS SAMPLING

Another method for estimating the mixture dimension d
as well as the mixing distribution Q0 can be based on the
blocked Gibbs sampler ( Ishwaran and James 2001). In this
approach, one uses a Gibbs sampler to draw values from the
distribution of 4K1 Z1 W—X5, where K D 4K11 : : : 1 Kn5 and Ki

are classi� cation variables with the property that Yi D ZKi
[thus

4Y11 : : : 1 Yn5 is equivalent to 4K1Z5] and chosen so that Ki

are iid multinomial4N 1W5. That is,

4Ki—W5
iid

NX

kD1

Wk „k4¢50

The blocked Gibbs sampler works by iteratively drawing val-
ues from the conditional distributions

4K—Z1W1 X51

4Z—K1X51

and
4W—K50

Each iteration generates a value 4K ü 1Z ü 1W ü 5, which produces
a draw,

° ü
N 4¢5 D

NX

kD1

W ü
k „Z ü

k
4¢51

from the posterior of °N in (3) and thus can be used to directly
estimate Q0. (See Ishwaran and James 2001 and Ishwaran and
Zarepour 2000a for more details.)

Remark 5. Each of the foregoing conditional distributions
can be drawn exactly, including the draw from Z if H is a
conjugate prior. In particular,

4W—K5 DirichletN 4�=N C n11 : : : 1 �=N C nN 51

where nk is the number of Ki’s that equal k.

Remark 6. The method can also be extended to include
further parameters. For example, in the location mixture model
with unknown variance (10), we can include ‘ as a parameter.
Its conditional distribution 4‘ —K1Z1X5 is then updated in the
blocked Gibbs sampler. A convenient prior for ‘ is

‘ ƒ2 gamma4s11 s250

This is the method used in Section 6. Note that by conjugacy,
the required draw from 4‘ —K1 Z1 X5 is straightforward.

4.1 Penalized Stochastic Maximum
Likelihood Estimation

A nice feature of the blocked Gibbs sampler is that the
draws ° ü

N obtained from the sampler can be used to produce
an estimate for the dimension of the model as well as a point
estimate for Q0 using a penalized approach. This gives us
a Bayesian penalized maximum likelihood estimation proce-
dure for mixture models somewhat analogous to non-Bayesian
penalization methods (see, e.g., Leroux 1992).

In this approach, we � rst replace ° ü
N with a random measure

b° ü
N that more correctly re� ects its effective dimension. Many

of the probability weights W ü
k in ° ü

N can be near 0, and thus
we propose replacing ° ü

N with

b° ü
N 4¢5 D

NX

kD1

I8n ü
k > 09W ü

kPN
kD1 I8n ü

k > 09W ü
k

„Z ü
k
4¢51

where (as before) n ü
k D #8i2 K ü

i D k9. Thus we propose using a
measure that retains only those weights that are nonnegligible,
that is, only those weights whose values correspond to an atom
Z ü

k that has been selected by some Yi . This replaces ° ü
N with

its N components, with b° ü
N having n4K ü 5 components and an

effective number of parameters of 2n4K ü 5 ƒ 1, where n4K ü 5
is the number of distinct values of K ü (i.e., the number of
distinct clusters in Y ü

1 1 : : : 1 Y ü
n ).

The optimal b° ü
N is that draw (over a large number of draws)

with the largest value,

ln4b° ü
N 5 ƒ an4 b° ü

N 51 (12)

where ln4Q5 D Pn
iD1 log fQ4Xi5 is the log-likelihood evaluated

at a mixing distribution Q and an4b° ü
N 5 is the penalty term for

b° ü
N . Many penalty terms can be considered. One that we look

at is Schwartz’s Bayes information criterion (B IC) (Schwartz
1978), which corresponds to the penalty

an4b° ü
N 5 D

1
2

log n� dim4b° ü
N 5 D log n � n4K ü 5 ƒ

1
2

0

Another penalty term that we consider is the Akaike informa-
tion criterion (A IC) (Akaike 1973), which corresponds to

an4b° ü
N 5 D dim4b° ü

N 5 D 2n4K ü 5 ƒ 10

We also consider a minimum distance penalty term proposed
by Chen and Kalb� eisch (1996) corresponding to

an4b° ü
N 5 D ƒ

NX
kD1

I8n ü
k > 09 log4W ü

k 50
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This penalizes small weights W ü
k and thus indirectly discour-

ages large dimensions (see Chen and Kalb� eisch 1996 for
more discussion.)

The optimal b° ü
N that maximizes (12), produces our esti-

mate for Q0 as well as our estimate Od D n4K ü 5 for the model
dimension d. In Section 6 we study the performance of this
procedure in detail.

5. RATES OF ESTIMATION

The optimal rate of estimation for Q0 when d is unknown
but bounded by a � nite N is Op4nƒ1=45. This result is from
Chen (1995), who established nƒ1=4 as the lower rate of esti-
mation in this setting and then showed how the rate could
be achieved using a minimum distance estimator. Although
this result was derived from a purely frequentist perspective,
it stands to reason that the same rate should continue to hold
for any well-designed Bayesian method. Theorem 2 shows
this to be the case for the posterior of (3), which achieves
the Op4nƒ1=45 rate for Q0 under conditions analogous to those
used by Chen (1995). Key among these conditions is the
notion of strong identi� cation for the mixture model. Let

F 4x—y5 D
Z x

ƒˆ
f4u—y5 d‹4u5

denote the distribution function for f4¢—y5 and let FQ4x5 DR
F 4x—y5dQ4y5 denote the distribution function for the mixed

density fQ .

Strong Identi� cation (Chen 1995). We say that the mixture
model is strongly identi� ed if F 4¢—y5 is twice differentiable in
y and for any m distinct values y11 : : : 1 ym in ¹ , the equality

sup
x

mX
jD1

6�jF 4x—yj5 C ‚jF
04x—yj5 C ƒjF

004x—yj57 D 0

implies that �j D ‚j D ƒj D 0.
As noted by Chen (1995), strong identi� cation implies that

the mixture model is identi� ed over ±4N 5. Strong identi� ca-
tion is known to hold for several important models. For exam-
ple, both location and scale mixtures of normal distributions
are strongly identi� ed, as are mixtures of Poisson distributions
(see Chen 1995 for details).

In addition to the assumption of strong identi� cation,
we also need a Lipschitz-type condition on f 04¢—y5. This
and an assumption of compactness allow us to appeal to
lemma 2 of Chen (1995), which makes it possible to bound
the ¬1-squared distance between two mixing distributions by
the Kolmogorov–Smirnov distance between the correspond-
ing mixed distribution functions. Recall that the Kolmogorov-
Smirnov distance between two distribution functions FQ1

and
FQ2

is de� ned by

DK4FQ1
1FQ2

5 D sup
x

—FQ1
4x5ƒ FQ2

4x5—0

This square-root distance relationship implied by Chen’s
lemma is what converts an nƒ1=2 rate for estimating FQ0

into
the optimal nƒ1=4 rate for estimating Q0.

Smoothness Condition. We say that the mixture model sat-
is� es a smoothness condition if the following conditions hold:

(a) Each atom Yk1 0 of Q0 is an interior point of ¹.
(b) For each x 2 ¸ , the � rst and second derivatives of

log4f 4x—y55 exist for y. Moreover, for each interior
point y 2 ¹ , the derivatives are continuous in some open
neighborhood of y and can be bounded in absolute value
by a square integrable function of ¬24P05.

(c) For each x 2 ¸ , there exists a � xed constant C > 0 and
a value ‡ > 0 such that

—f 04x—y15 ƒ f 04x—y25— µ C—y1 ƒ y2—‡

for all y11 y2 2 ¹ .

Condition (c) represents our Lipschitz condition, whereas
(a) and (b) are the key conditions needed for establishing the
nƒ1=2 rate for FQ0

. (These are usually straightforward to check
for exponential families and hold for the examples mentioned
earlier). Let

v4Q11Q25 D sup
B2¢

—Q14B5ƒ Q24B5— (13)

equal the total variation distance between two distributions,
Q1 and Q2, over 4¹1¢5.

Theorem 2. Suppose that the mixture model satis� es the
smoothness conditions (a) and (b). Assume also that H has
a density that is positive and continuous over ¹ . Let Kn be
any positive increasing sequence such that Kn ! ˆ. Then, if
Q0 2 ±4N 5,

çn8DK 4FQ1 FQ0
5 ¶ nƒ1=2Kn9 ! 0 in Pˆ

0 probability1 (14)

where çn4¢5 D ð 8¢—X11 : : : 1Xn9 is the posterior for (3). In
addition, if the mixture model is strongly identi� ed and satis-
� es the smoothness condition (c), and if ¹ is compact, then

çn8v4Q1Q05 ¶ nƒ1=4Kn9 ! 0 in Pˆ
0 probability0 (15)

Note that (15) implies the optimal Op4nƒ1=45 rate for Q0.

Remark 7. One might wonder what rates of estimation
are possible in the � nite mixture model in which the dimen-
sion d is unbounded: 1 µ d < ˆ. Rates for Q0 appear to be
an open question in this setting, although recent results for
density estimation in normal mixture models (Genovese and
Wasserman 2000) hint at rates for the mixed density fQ0

that
are slower than the rate implied by (14). Consider, for exam-
ple, � nite location normal mixture models with Q0 2 ±4N 5.
From (14), the posterior concentrates on nƒ1=2 neighborhoods
of the distribution function FQ0

in the Kolmogorov distance,
which in turn implies that the posterior is Op4nƒ1=25 consis-
tent for the density fQ0

in an ¬1 sense. This follows from the
bound between the Kolmogorov distance and the ¬1 distance
for � nite normal mixtures (Cao and Devroye 1996),

Z

2
—fQ4x5ƒ fQ0

4x5—dx µ CN � DK4FQ1FQ0
51

where CN is a � nite constant depending only on N . We sus-
pect that the foregoing

p
n-parametric rate for the density is
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faster than ¬1 rates for � nite normal mixtures with unbounded
complexity. For example, Genovese and Wasserman (2000),
using a sieve of dimension of order O4

p
n= log n5, showed

that the density of compact mixtures of location-scale nor-
mals (11) could be estimated at an ¬1 rate of Op4nƒ1=4 log n5.
Although this result was derived by considering the more gen-
eral class of mixing distributions with compact support (which
covers the unbounded d case), and hence the much slower
rate of estimation, we believe that such results lend strength
to the conjecture that rates should naturally be slower when d
is unbounded.

6. EXAMPLES

We begin by investigating the performance of the GWCR
algorithm and the blocked Gibbs sampler of Sections 3 and 4
applied to a collection of well-known datasets. Each of these
� ve examples were analyzed using a � nite location mixture
model (10) with unknown standard deviation as discussed in
Sections 3.2 and 3.3. We used A D 1000 for the variance in
the N401A5 prior for H in both the GWCR algorithm and
blocked Gibbs sampler and s1 D s2 D 001 for the shape and
scale parameters used in the inverse gamma prior for ‘ 2 in the
blocked Gibbs sampler. For convenience, a simple description
as well as further references to these data are given next. Most
of these datasets can be retrieved from Geoff McLachlan’s
web page (www.maths.uq.edu.au/ gjm).

Galaxy Data. This dataset, from Roeder (1990), com-
prises 82 observations of relative velocities in thousands of
kilometers per second of galaxies from six well-separated
conic sections of space. The original data have been divided
by 1000 here (thus velocity is recorded as kilometers per sec-
ond). As discussed by Roeder (1990), there is strong evidence
to believe that modes in the data correspond to clumped galax-
ies and that observed velocities are values derived from a � nite
location mixture of normals.

Table 1. GWCR Algorithm Based on 150,000 iid Values Under the Dirichlet Prior With � D 1 and N D 15.
Values Reported Are Means Plus or Minus Standard Deviations Over 20 Blocks of Values Each of Size 7,500

for the Weighted Bayes Factors ã( k, k*) , Where mk* , N is the Largest mk, N Value Within a Block
(thus ã(k , k*) µ 1 within each block).

k Galaxy slc Stamp Acidity Enzyme

1 0 0 0 0 0
2 0 408ƒ1 2ƒ1 0 909ƒ1 2ƒ1 0
3 208ƒ1 1ƒ1 909ƒ1 7ƒ2 0 401ƒ1 2ƒ1 0
4 404ƒ1 1ƒ1 205ƒ1 1ƒ1 0 901ƒ2 6ƒ2 0
5 305ƒ1 2ƒ1 203ƒ2 4ƒ2 0 201ƒ2 2ƒ3 0
6 909ƒ1 6ƒ2 0 0 0 905ƒ2 1ƒ1

7 403ƒ1 2ƒ1 0 503ƒ2 2ƒ1 0 401ƒ1 3ƒ1

8 802ƒ2 1ƒ1 0 702ƒ1 4ƒ1 0 707ƒ1 3ƒ1

9 502ƒ3 1ƒ2 0 309ƒ1 5ƒ1 0 408ƒ1 4ƒ1

10 0 0 108ƒ2 6ƒ2 0 203ƒ1 3ƒ1

11 0 0 0 0 102ƒ2 2ƒ2

12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0

n 82 190 485 155 245
bd 6 3 8 2 8

NOTE: Superscripts are used to indicate values raised to the power 10 (thus aƒb D a � 10ƒb ). Entries have been set to zero for mean values less
than 10ƒ4 . The value bd is the estimate for d and represents the largest mean value for ã(k1k ü )

Sodium-lithium countertransport (SLC) data. These data
consist of red blood cell SLC activity measured on 190 indi-
viduals. As argued by Roeder (1994), it is believed that the
SLC measurements are derived from one of two competing
genetic models, corresponding to either a two-point or three-
point normal mixture model. The original data have been mul-
tiplied by 10 here.

Hidalgo Stamp Data. This dataset comprises 485 observa-
tions of the stamp thickness (in millimeters) of the 1872–1874
Hidalgo postage stamps of Mexico. A detailed analysis by
Izenman and Sommer (1988) argues that the data are derived
from a � nite mixture of normals, thus providing evidence that
the stamps were issued on several different types of paper. The
original data have been multiplied by 100 here.

Acidity Data. This dataset is an acidity index measured
on 155 lakes in north-central Wisconsin (see Richardson and
Green 1997). Data are measured on the log scale.

Enzyme Data. This dataset comprises measurements of
enzymatic blood activity in 245 individuals. The focus here
is in identifying subgroups of slow or fast metabolizers as a
marker of genetic polymorphism via a � nite normal mixture
model (see Richardson and Green 1997). The original data
have been multiplied by 10 here.

The results from the GWCR algorithm are presented in
Table 1 and results from the blocked Gibbs sampler appear
in Tables 2, 3, and 4 under B IC, minimum distance (MD),
and A IC penalty (see Sec. 4). Estimates Od for the dimension
d from the GWCR agree with the blocked Gibbs sampler for
three of the datasets under B IC and four of the datasets under
A IC and MD. However, we note that the various point esti-
mates for Q0 tend to agree closely. The discrepancy in the esti-
mates of Od under the different penalties is generally due to the
appearance of atoms with small probabilities. Nevertheless,

http://www.maths.uq.edu.au/%7Egjm
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Table 2. Results From the Blocked Gibbs Sampler using a 2,000 Iteration Burn-in Followed by 25,000
Sampled Iterations. Prior Based on Dirichlet Parameters With � D 1 and N D 15. Each Column Displayed

Contains the Probabilities and Atoms for the Top Model bQ Subject to a BIC Penalty

Galaxy slc Stamp Acidity Enzyme

pr atoms pr atoms pr atoms pr atoms pr atoms

0044 19087 0087 2036 0037 7092 0063 4038 0061 1098
0036 22096 0013 4046 0026 7019 0037 6033 0016 9048
0009 9078 — — 0013 10001 — — 0013 13007
0005 26020 — — 0010 10092 — — 0007 17046
0004 33011 — — 0008 9006 — — 0003 23068
0002 16014 — — 0004 11097 — — 00003 29031

— — — — 0002 12092 — — — —
— — — — 00004 6022 — — — —

the conclusion here seems to be that GWCR tends to agree
somewhat more closely with A IC and MD than with B IC. In
the following section we further assess the accuracy of GWCR
through the use of simulations.

Remark 8. One could also � t the foregoing data using a
location-scale mixture model (11). As mentioned earlier, the
use of a conjugate normal-inverse gamma prior in this model
would lead to a simple update rule for the GWCR algorithm,
although now several hyperparameters would need to be care-
fully chosen. For example, in selecting the hypervariance for
the mean we would use a large value to encourage noninfor-
mativeness. Just as in selecting A here, this value should be
chosen so that it is large relative to the scale of the data. The
blocked Gibbs sampler can also be applied to location-scale
mixture models (11) with appropriate modi� cations. Ishwaran
and James (2000b) have given computational details as well
as a discussion on selecting priors and hyperparameters.

6.1 Simulations

To further assess our procedures, we ran 10 different sim-
ulations in which simulated data were drawn from a � nite
location normal mixture with unknown variance (10). Experi-
ments 1–6 used a sample size of n D 100, while Experiments
7–10 were based on n D 400. Each simulation experiment was
repeated 500 times, with each sample drawn independently
from a location mixture of normal densities of the form

f 4x—� 1Œ1‘ 5 D
dX

kD1

� k

‘
”

x ƒ Œk

‘
1

Table 3. Similar Analysis as in Table 2 Using the Blocked Gibbs Sampler but with Models Chosen Subject to a
Minimum Distance Penalty (note that analysis is based on a new set of Gibbs sampled values)

Galaxy slc Stamp Acidity Enzyme

pr atoms pr atoms pr atoms pr atoms pr atoms

0044 19086 0075 2023 0036 7092 0057 4032 0061 1088
0030 22078 0022 3076 0026 7019 0026 6053 0013 9079
0009 9075 0003 5066 0012 10003 0017 5072 0012 12095
0009 25044 — — 0010 10098 — — 0005 18056
0005 32099 — — 0009 9009 — — 0003 16004
0003 16028 — — 0004 11098 — — 0003 23088

— — — — 0002 12092 — — 0003 6086
— — — — 0001 6036 — — 00004 28063

where � D 4� 11 : : : 1 �d5 is a positive weight vector summing
to one, ‘ is chosen to be one, and Œ D 4Œ11 : : : 1Œd5 are pre-
speci� ed means. Figure 2 gives the exact speci� cations. Note
that two components in a mixture model appear graphically
as separate modes (see Fig. 2) if and only if their mean dif-
ference is larger than 2‘ D 2.

The samples were carefully simulated so that the change
from one simulation experiment to the next re� ects only the
change of parameters � and Œ and not the random � uctuation
from changing random seeds. Each experiment was analyzed
by the EM algorithm under A IC and B IC penalties. Tables 5
and 6 present these results, as well as results from the GWCR
algorithm. Note that in constructing the tables, the estimate Od
for the dimension d corresponded to the largest A IC and B IC
values for EM, and for the GWCR procedure it was the value k

with the largest estimated posterior probability ð 8n4p5 D k—X9.
It is worth noting that good initial values for the EM algo-

rithm are important. For producing initial values, in each
experiment we randomly selected one of our 500 samples,
then plotted three histograms of these data under three dif-
ferent bandwidth values. Based on these histograms, for each
candidate dimension k D 11 : : : 1 15, we guessed reasonable
initial values of � 1Œ1 and ‘ . Because of the laborious nature
of this work, we used these same initial values for each of the
500 samples in an experiment. We found that the � nal esti-
mate Od based on either A IC or BIC was less sensitive to the
initial value of ‘ than to that of Œ or � . Thus we simply
used ‘ D 1 as the initial value. To make this a fair compari-
son, we also started the GWCR algorithm with an initial value
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Table 4. Similar Analysis as in Table 2 Using the Blocked Gibbs Sampler but with Models Chosen Subject to
an AIC Penalty (analysis is based on sampled values different than Table 2 and Table 3)

Galaxy slc Stamp Acidity Enzyme

pr atoms pr atoms pr atoms pr atoms pr atoms

0044 19091 0076 2022 0038 7094 0052 4026 0063 2000
0036 23005 0021 3073 0026 7020 0020 6067 0013 9059
0010 9081 0003 5067 0013 9099 0016 5098 0012 12085
0004 33007 — — 0009 10096 0012 5008 0005 15081
0004 26023 — — 0008 9005 00005 3004 0003 18077
0002 15090 — — 0003 12002 — — 0002 23085

— — — — 0002 12090 — — 0002 6064
— — — — 0001 6034 — — 00003 28065

of ‘ D 1. Updates for ‘ within the GWCR were then carried
out as in our examples in the previous section, as discussed in
Section 3.3.

From these two tables, it is clear that the GWCR proce-
dure was the winner in experiments 1 and 2; in all other
experiments, GWCR and EM-A IC generally performed bet-
ter than EM-BIC. Speci� cally, in experiment 3, consisting of
only one apparent mode, all procedures tended to favor a
one-component model, although the EM-A IC procedure did
uncover the true two-component model 26.4% of the time. In
experiment 4, with four close modes, EM-A IC was the win-
ner and GWCR did reasonably well. In experiment 5, both
GWCR and EM-A IC usually recognized that the � at mode
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Figure 2. True Mixture Densities used in Simulation Experiments 1-10. In experiment 1, � D ( 1=3,2=3) while in all other experi-
ments � is a uniform weight vector. In experiments 1 - 3, d D 2 and Œ D (0,3) , (0,3) , ( 0, 1.8) , respectively. In experiments 4 - 6, d D 4
and Œ D (0,3, 6, 9) , (0,1.5, 3,4.5) , ( 0,1.5,3, 6) , respectively. In experiments 7 - 10, d D 7 and Œ D (0,3, 6, 9,12,15,18) , ( 0, 1.5,3, 4,5,6,7.5, 9) ,
(0,1.5,3,4.5, 6, 9.5,12.5) , ( 0, 1.5,3, 4.5,9,10.5,12) respectively.

must be a mixture of distributions although GWCR picked
this up more frequently. In experiment 6, with two appar-
ent modes, all procedures favored a two-component model.
In experiment 7, EM-A IC was the winner and GWCR did
better than the EM-B IC procedure. In experiments 8, 9, and
10, all procedures tried to defragment � at mode(s) into mix-
tures; EM-A IC and GWCR did a better job than EM-B IC.
Thus overall, GWCR and EM-A IC outperformed each other
in some circumstances, and both procedures were better than
EM-BIC in general. However, we emphasize once more that
the GWCR is a more automatic procedure than the EM-A IC in
the sense that GWCR is less sensitive to initial values, which
are crucial in EM-based procedures.
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Table 5. Simulations 1–6: Entries in the Last Three Columns are Percentages of Times Out of the 500 Samples
for Which Od (estimate for d ) Equals a Candidate Dimension Value k . Entries for AIC and BIC are Derived From
the EM Algorithm, While Last Column is Via the GWCR Algorithm and is Based on 2500 iid Values with � D 1

and N D 15. Percentages Highlighted by Boxes Indicate Highest Value and Thus Represent the Best Model for
a Speci’ c Procedure

Simulation n d #Modes k AIC BIC GWCR

1 00018 00150 00018
2 0.896 0.838 0.920

1 100 2 2 3 00062 00012 00058
4 00024 00000 00004
5 00000 00000 00000

1 00022 00212 00030
2 0.900 0.780 0.916

2 100 2 2 3 00050 00006 00054
4 00028 00002 00000
5 00000 00000 00000

1 0.702 0.968 0.868
2 00264 00030 00130

3 100 2 1 3 00024 00002 00002
4 00010 00000 00000
5 00000 00000 00000

1 00000 00110 00000
2 00178 0.596 00102

4 100 4 4 3 00110 00110 0.554

4 0.674 00182 00306
5 00038 00002 00038

1 00244 0.748 00144

2 0.556 00246 0.818
5 100 4 1 3 00142 00004 00032

4 00044 00002 00006
5 00014 00000 00000

1 00016 00188 00000
2 0.474 0.698 0.612
3 00392 00106 00368

6 100 4 2 4 00102 00008 00020
5 00014 00000 00000
6 00000 00000 00000
7 00002 00000 00000

APPENDIX: PROOFS

Proof of Proposition 1

It is clear that we can construct ¦ so it contains the singleton sets
8xm9 where xm 2 ¸ are chosen so that xm ! x0 as m ! ˆ. Now
assume that PQ1

and PQ2
agree over ¦ . Then fQ1

4xm5 D fQ2
4xm5 for

each m. That is, for each m,

kX

iD1

pif 4xm—yi5 D
k0X

jD1

p0
jf 4xm—y0

j 5 (A.1)

for some probability weights 0 < pi1p0
j < 1, where

P
i pi D

P
j p0

j D 1
and yi and y0

j are atoms in ¹ .
We can assume without loss of generality that s4x5 ! Cˆ as

x ! x0 and that yi and y0
j are ordered so that y1 > y2 > ¢ ¢ ¢ > yk and

y0
1 > y0

2 > ¢ ¢ ¢ > y0
k0 . Furthermore, we can also assume that y0

1 µ y1.
First, consider the case where y0

1 is strictly smaller than y1. If we
divide the left and right sides of (A.1) by f 4xm —y15 and let m ! ˆ,
then the left side converges to p1 and the right side converges to 0.
Thus it must be that y1 D y0

1 . Letting m converge to in� nity again
now shows that p1 D p0

1 . Thus y1 D y0
1 and p1 D p0

1, which allows us
to cancel the terms corresponding to i D 1 on the left side and j D 1

on the right side of (A.1). Repeat the foregoing argument a � nite
number of times to deduce that Q1 D Q2 .

Proof of Theorem 1

By bounding mk1N above by mk � rk1N , we have

md1 N 4X5

mk1 N 4X5
¶

m ü
d1 N 4X5

mk4X5
�

r ü
d1 N

rk1N

D
md4X5=f n

0 4X5

mk4X5=f n
0 4X5

C
4m ü

d1 N ƒmd54X5=f n
0 4X5

mk4X5=f n
0 4X5

�
r ü

d1N

rk1N

0 (A.2)

Because k < d, deduce that

r ü
d1N

rk1N

D °d4¹d5
N

d

N

k

ƒ1 4d�=N54n5

4k�=N54n5
¶ °d4¹d5

N

d

N

k

ƒ1

1

which is strictly bounded away from 0. Thus we need only consider
the two terms in square brackets in (A.2).

We start with the � rst term. For each … > 0 let ®… D
8Q2 D4P0——PQ5 < …9. By restricting the range of integration in md to
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Table 6. Simulations 7–10: Format and Methods Used are Similar to that Described in Table 5

Simulation n d #Modes k AIC BIC GWCR

1 00004 0.816 00000
2 00000 00000 00000
3 00000 00000 00010
4 00302 00168 00188

7 400 7 7 5 00212 00016 0.424
6 00098 00000 00178
7 0.326 00000 00114
8 00036 00000 00056
9 00022 00000 00030

1 00030 0.538 00000

2 0.684 00462 00078

3 00000 00000 0.590
8 400 7 1 ‘ at region 4 00248 00000 00272

5 00000 00000 00048
6 00012 00000 00008
7 00024 00000 00004
8 00002 00000 00000

1 00002 0.458 00000
2 00000 00000 00002
3 00144 00398 00120

9 400 7 2C 1 ‘ at region 4 0.460 00138 0.408
5 00308 00006 00312
6 00048 00000 00128
7 00016 00000 00024
8 00022 00000 00006

1 00000 00000 00000
2 0.496 0.992 00020
3 00000 00000 00370

10 400 7 1C 1 ‘ at region 4 00302 00006 0.466
5 00118 00002 00128
6 00064 00000 00010
7 00016 00000 00006
8 00004 00000 00000

the set ®…=2, we have

md4X5=f n
0 4X5

mk4X5=f n
0 4X5

¶

R
®…=2

exp ƒnDn4Pn
0 ——Pn

Q5 °d4dQ5

mk4X5=f n
0 4X5

1 (A.3)

where

Dn4Pn
0 ——Pn

Q5 D
1

n

nX

iD1

log
f04Xi5

fQ4Xi5
0

We deal with the numerator and denominator of (A.3) separately. For
the numerator, we use the following argument from Barron (1988)
(see also Verdinelli and Wasserman 1998, p. 1232). By the strong
law of large numbers, Dn4Pn

0 ——Pn
Q5 converges almost surely to

D4P0——PQ5 < …=2 for each Q in ®…=2 . Therefore, a combination of
Fubini’s theorem and Fatou’s lemma implies that

lim inf
n!ˆ

exp4n…5
Z

®…=2

exp ƒnDn4Pn
0 ——Pn

Q5 °d4dQ5

¶
Z

®…=2

lim inf
n!ˆ

exp n … ƒDn4Pn
0 ——Pn

Q5 °d4dQ5

D Cˆ1 almost surely0

Note that we have used the assumption of information denseness:
°d4®…=25 > 0. Thus the numerator in (A.3) is bounded below by
exp4ƒn…5 almost surely.

For the denominator in (A.3), use Markov’s inequality to get

Pn
0

mk

f n
0

> exp4ƒ2n…5 µ exp4n…5Pn
0

r
mk

f n
0

µ exp4n…5 1 ƒv4Pn
0 1Mk52 1=2

1 (A.4)

where Mk is the distribution for mk and our last bound is a well-
known inequality relating the Hellinger distance to the total variation
distance (13).

Now we use the assumption of ¦ -identi� cation. By lemma 2 of
Barron (1989), for each „ > 0 there exists a set An and an r > 0 so
that

Pn
0 4An5 ¶ 1 ƒ exp4ƒnr5

and
Pn

Q4An5 µ exp4ƒnr51 for each Q 2 U c
„ 1

where U„ D 8Q2 d¦ 4PQ1 P05 < „9 and

d¦ 4PQ1 P05 D
X

A2¦

—PQ4A5ƒ P04A5—0

A set such as An is often called a UEC test because it discriminates
uniformly and exponentially well between a simple hypothesis
(here Q0) and a class of alternative hypotheses (our set U c

„
).

Schwartz (1965) has provided background on UEC tests.
By ¦ -identi� cation we can choose a small enough „ > 0 so that

±4k5 U c
„

(recall that ±4k5 D
Sk

lD1 ±l). If this were not the case,
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then we could � nd a sequence Qj 2 ±4k5 with limit Q ü , a distribution
with at most k < d atoms, such that d¦ 4PQj

1 P05 ! d¦ 4PQ ü 1P05 D 0.
However, this would contradict the assumption of ¦ -identi� cation
over ±4d5. Therefore, ±4k5 U c

„ for a small enough „ > 0, and hence

v4Pn
0 1 Mk5 ¶ Pn

0 4An5 ƒMk4An5

¶ 1 ƒ exp4ƒnr5ƒ
Z

±4k5
Pn

Q4An5°k4dQ5

¶ 1 ƒ 2 exp4ƒnr50

Therefore, if … is small enough, then the right side of (A.4) is
exponentially small. Thus by the Borel–Cantelli lemma, mk=f n

0 µ
exp4ƒ2n…5 almost surely for all large enough n. Therefore, deduce
that (A.3) is almost surely bounded below by exp4n…5 for a small
enough … > 0.

Now we need to consider the second term in (A.2)

4mü
d1 N ƒmd5=f n

0

mk=f n
0

0 (A.5)

By Markov’s inequality,

Pn
0

—m ü
d1N ƒ md —

f n
0

> exp4ƒ4n…5 µ exp44n…5
Z

¸n
—m ü

d1 N 4X5

ƒmd4X5—d‹n4X5

2d exp ƒn41=dƒ 4…5 0

The last inequality is due to our Lemma 1. Thus, by the
Borel–Cantelli lemma, the numerator in (A.5) is almost surely
bounded in absolute value by exp4ƒ4n…5 for a small enough … > 0
for all large enough n. To handle the denominator in (A.5), notice
that the inequality (A.2) and our arguments dealing with the � rst term
in the square brackets of (A.2) hold if we replace mk=f n

0 with the
upper bound

I8mk=f n
0 > exp4ƒ3n…59mk=f n

0 C exp4ƒ3n…5I8mk=f n
0 µ exp4ƒ3n…590

Thus, without loss of generality, we can assume that exp4ƒ3n…5 µ
mk=f n

0 µ exp4ƒ2n…5. Deduce that (A.5) is almost surely 0. This takes
care of all of the terms in (A.2).

Proof of Theorem 2

If (14) holds, then the optimal rate (15) follows automatically
as a consequence of lemma 2 of Chen (1995). More precisely, the
assumption of the Lipschitz condition combined with compactness of
¹ and strong identi� cation implies the existence of a universal con-
stant 0 < C0 < ˆ such that

C0v4Q1Q05
2 µ DK4FQ1 FQ0

5 < nƒ1=2Kn

holds eventually for all Q 2 ±4N5. (We are assuming with no loss of
generality that nƒ1=2Kn ! 00)

Thus we only need to prove (14). To do so, we modify the
approach given by Clarke and Barron (1990) for establishing consis-
tency in Bayesian parametric models (see also Barron 1988). Let An

denote the posterior probability in (14). We show that Pn
0 4An5 ! 0.

By Dvoretzky, Kiefer, and Wolfowitz (1956) (see also Massart
1990),

Pn
Q DK 4bFn1 FQ5 ¶ nƒ1=2Kn µ exp4ƒrK2

n51

where r > 0 is a universal constant independent of PQ and bFn is the
empirical distribution function based on PQ . From this, it follows that
there exists a UEC test 0 µ �n µ 1 such that

Pn
0 �n µ exp4ƒrK2

n5

and

Pn
Q41 ƒ�n5 µ exp4ƒrK2

n5 for each Q 2 ® c
n 1

where ®n D 8Q2 DK4FQ1 FQ0
5 < nƒ1=2Kn9 (see, e.g., Clarke and

Barron 1990, p. 468).
From the foregoing we have Pn

0 4An�n5 µ exp4ƒrK2
n5, and thus

Pn
0 4An5 D Pn

0 4An�n5C Pn
0 4An41 ƒ �n55

µ exp4ƒrK2
n5 CPn

0 4An41 ƒ�n550 (A.6)

Moreover,

Pn
0 4An41 ƒ�n55 D Pn

0 4AnBn41 ƒ�n55CPn
0 4AnBc

n41ƒ �n55

µ Pn
0 4Bn5 CPn

0 4AnBc
n41 ƒ �n551

where

Bn D
Œn4X5

f n
0 4X5

< exp4ƒr 0K2
n5

for some r 0 > 0 and

Œn4X5 D
Z

Un

nY

iD1

fQ4Xi5°N 4dQ51

where Un D 8Q2 D4P0——PQ5 µ …n9 and …n is a positive sequence such
that …n ! 0.

Notice that

Pn
0 4Bn5 µ Pn

0 log
f n

0

Œ ü
n

¶ r 0K2
n C log4°N 4Un55 1 (A.7)

where Œ ü
n D Œn=°N 4Un5 (observe that this is a density). Smoothness

conditions (a) and (b) coupled with the assumption on H implies a
type of continuity in D4P0——PQ5 for mixtures Q 2 ±d whose atoms
and weights are near those of Q0. In fact, the proof of lemma 4
of Ishwaran (1998) implies that D4P0——PQ5 has order equal to the
squared Euclidean distance between the atoms and weights for Q0

and a nearby Q. Our choice of prior °N puts positive mass on dis-
tributions Q that are arbitrarily close to the set ±d . Thus elementary
calculations, coupled with lemma 4 of Ishwaran (1998), show that

log4°N 4Un55 ¶ C log4…n5

for some C > 0. Thus we can replace r 0K2
n C log4°N 4Un55 in (A.7)

with r 0K2
n=2 if we choose …n so that log4…n5=K2

n ! 0.
Let ­ ü

n denote the distribution for Œ ü
n. Using Markov’s inequality,

bound (A.7) by

2

r 0K2
n

Pn
0 log

f n
0

Œü
n

µ
2

r 0K2
n

6D4Pn
0 ——­ ü

n 5 C 2=e7

µ
2

r 0K2
n

n

°N 4Un5

Z

Un

D4P0——PQ5°N 4dQ5C 2=e

D O4n…n=K2
n5 CO41=K2

n5 D o4151

where the � rst inequality on the right is due to bounding the negative
part of the integrand using u log4u5 ¶ ƒ1=e, the second inequality
follows by Jensen’s inequality (see Clarke and Barron 1990, p. 469),
and the � nal inequality holds by our choice for the set Un and by
selecting …n appropriately small.
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To complete the bound for (A.6), we have

Pn
0 4AnBc

n41 ƒ�n55 µ exp4r 0K2
n5Pn

0 çn4® c
n 541 ƒ�n5

R
f n

Q4¢5°N 4dQ5

f n
0

D exp4r 0K2
n5

Z

¸n

Z

® c
n

41ƒ �n4X55f n
Q4X5

� °N 4dQ5d‹n4X5

D exp4r 0K2
n5

Z

® c
n

Pn
Q41 ƒ�n5°N 4dQ51

which is bounded by exp4ƒ4r ƒ r 05K2
n5 because of our UEC test.

Thus, substituting the various bounds into (A.6), deduce that

Pn
0 4An5 µ exp4ƒrK2

n5C o415C exp4ƒ4r ƒ r 05K2
n5 D o415

by choosing r > r 0 > 0.

[Received February 2001. Revised April 2001.]
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