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Abstract. The objective of this study was to distinguish within a population of patients with known or sus-
pected coronary artery disease groups at high and at low mortality rates. The study was based on Cleveland
Clinic Foundation’s dataset of 9454 patients, of whom 312 died during an observation period of 9 years.
The Logical Analysis of Data method was adapted to handle the disproportioned size of the two groups of
patients, and the inseparable character of this dataset – characteristic to many medical problems. As a result
of the study, we have identified a high-risk group of patients representing 1/5 of the population, with a mor-
tality rate 4 times higher than the average, and including 3/4 of the patients who died. The low-risk group
identified in the study, representing approximately 4/5 of the population, had a mortality rate 3 times lower
than the average. A Prognostic Index derived from the LAD model is shown to have a 83.95% correlation
with the mortality rate of patients. The classification given by the Prognostic Index was also shown to agree
in 3 out of 4 cases with that of the Cox Score, widely used by cardiologists, and to outperform it slightly,
but consistently. An example of a highly reliable risk stratification system using both indicators is provided.
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1. Introduction

The dataset of the Cleveland Clinic Foundation (CCF) concerning patients referred for
symptoms-exercise electrocardiography between September 1990 and March 1998 was
analyzed using a new mathematical method. This method, called Logical Analysis of
Data (LAD), is based on combinatorics, optimization and the theory of Boolean func-
tions, and was adapted to handle the type of “inseparable” data which are typical for
medical applications. LAD was introduced in 1986 [9], the first paper on the topic ap-
peared in 1988 [6], and since then numerous papers (e.g., [1,2,7,8]) have been devoted
to various mathematical, computational and applied aspects of this method.

∗ A preliminary version of this paper was presented at the Annual Scientific Session of the American College
of Cardiology – March 18–21, 2001, Orlando, FL; see also [12].
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The objective of this study was the construction of a model for distinguishing
groups of patients at high and at low mortality risk. Risk stratification is a process
common in medical practice by which patients are systematically assessed for the like-
lihood of developing a poor outcome [3]. For example, in cardiovascular medicine,
patients with known or suspected coronary artery disease may undergo exercise testing
with or without concurrent imaging in order to determine the risk of subsequent death
or myocardial infarction [4,13–16,19]. The purpose of risk stratification is to identify
high-risk patients who are most likely to benefit from aggressive therapy and low-risk
patients who are best served by conservative care [3,19].

In the cardiovascular literature, risk stratification schemes are typically based on
standard statistical models, such as logistic regression [10] or Cox proportional haz-
ards [5]. A common problem with these approaches is that, although high-risk patients
can be easily identified, they usually only account for a minority of subsequent clinical
events [17]. Conversely, other risk markers may identify the majority of patients at high
risk, but they also include in the same group sizeable numbers of other patients [11].
The ideal risk stratification scheme would identify a small subset of patients who will in
fact account for the vast majority of deaths.

It will be shown that an appropriately modified version of LAD produced a model
which classifies about 15% of the patients in a category having a mortality rate more
than 4 times higher than the average, and about 70% of the patients in a category having
a mortality rate of less than 1/5 of the average. Moreover, 2/3 of those patients who
died during the observation period belong to the high-risk category defined by LAD.

A Prognostic Index, derived from the LAD model, is shown to have a 83.95%
correlation with the mortality rate of patients. Using the Prognostic Index, the number
of patients classified into the high-risk (20%) or low-risk (77%) categories was increased
from a total of 85% to more than 97% of the population. Finally, it is shown that the
classification given by the Prognostic Index agrees in 3 out of 4 cases with that of the Cox
Score, widely used by cardiologists, and to outperform it slightly, but consistently. An
example of a highly reliable risk stratification system using both indicators is described
in section 10.

2. The problem and the data

The dataset consisted of observations about 9454 patients, 312 of whom died during
the observation period. For each of the patients, 21 variables were recorded, including
general data (age, gender), health history (chest pain, hypertension, diabetes, coronary
artery disease), medication (beta blockers, verapamil, lipid lowering drugs, aspirin) and
specific measurements (resting abnormal ECG, resting heart rate, change in heart rate,
chronotropic index, duke treadmill score). Following [4,13,16], table 1 presents the com-
plete list of the recorded variables. The analysis took into account all the variables, with
the exception of #17 (“TTODEAD”), which was only used for cross validation. Vari-
able 12 (“DEAD”), indicating whether the patient died during the observation period,
was taken as the dependent variable.
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Table 1
Attributes recorded for each patient.

Attribute Description

1 RESTST resting abnormal ECG (0 = no, l = yes)
2 PT_AGE age in years
3 RBBB right bundle branch block on ECG (0 = no, l = yes)
4 BETABLOK use of beta blockers (0 = no, l = yes)
5 DILVER use of diltiazem or verapamil (0 = no, l = yes)
6 LIPIDRX lipid lowering drugs (0 = no, l = yes)
7 COPD chronic lung disease (0 = no, l = yes)
8 PVD peripheral vascular disease (0 = no, l = yes)
9 GENDER gender (0 = male, l = female)

10 RESTHR resting heart rate in beats per minute
11 ASPIRIN use of aspirin (0 = no, l = yes)
12 DEAD died during followup (0 = no, l = yes)
13 CHESTP history of chest pain (0 = no, l = yes)
14 SMKNOW current smoker (0 = no, l = yes)
15 HTN hypertension (0 = no, l = yes)
16 DIABETES diabetes (0 = no, l = yes)
17 TTODEAD length of follow-up in years
18 DHRREC change in heart rate during the first minute of recovery in beats per minute
19 CRI chronotropic index, a measure of heart rate rise during exercise
20 PRIORCAD history of known coronary artery disease (0 = no, l = yes)
21 DUKE duke treadmill score with typical values between −20 and +15

Table 2
Sample of observations.
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2 0 68 0 0 0 0 0 0 1 77 0 0 0 0 0 8.1 13 1.04 0 9.5 0
3 0 63 0 0 0 0 0 0 0 60 0 0 0 0 0 8.4 29 1.01 0 11.5 0
4 1 70 0 0 1 0 0 0 0 83 1 0 0 0 1 6.7 8 1.15 1 8.5 0
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6 0 60 0 0 1 0 0 0 1 89 1 0 0 0 0 8 24 0.75 1 9.5 0
7 0 74 0 0 0 0 0 0 0 85 1 0 0 1 0 7.5 21 1.38 1 9.5 0
8 0 79 0 1 1 0 0 0 1 69 0 0 0 1 0 7.5 6 0.47 1 3 0
9 1 73 0 0 1 1 0 0 1 89 1 0 0 1 0 8.5 15 0.78 1 −2 0

10 0 60 0 0 0 0 0 0 0 61 0 1 0 1 0 2.9 19 0.68 0 8.5 0

11 0 66 0 0 0 0 0 0 1 68 0 0 0 1 0 5.3 31 0.86 0 4.5 1
12 0 85 0 1 0 0 0 0 1 86 1 0 0 0 0 2.4 13 0.45 1 3 1
13 0 75 0 0 1 0 0 0 0 88 0 0 0 0 0 6.2 13 0.96 1 6.5 1
14 1 88 0 0 0 0 0 0 0 65 1 0 0 0 1 4.3 7 1.09 1 5.5 1
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Figure 1. Example of separable dataset.

For illustration, we present in table 2 the data for ten of the surviving patients, and
four of the patients who died during the observation period.

Table 2 points to a common situation in data analysis. It can be seen from the
sample of these 14 observations that none of the variables can by itself make a distinc-
tion between those patients who died, and those who did not. Indeed, there is no binary
variable taking one of the binary values for all the patients who died, and taking the op-
posite binary value for all those who survived. Similarly, there is no numerical variable
taking only “small” values for one of the two groups of patients, and only “large” values
for the other group. On the other hand, it will be seen that there are powerful, robust
ways of distinguishing the two groups of data, and that the identification and use of such
“classifiers” is the essential feature of LAD.

Let us introduce some terminology. In the discussion below we shall frequently
identify a patient with an observation, and also with the point in R20, whose components
are the corresponding values of the 20 variables (or attributes). Such a point will have
a positive or a negative label, depending on the value of the outcome attribute “DEAD”;
the observation will be labeled as positive if the patient died, and negative if he/she
survived the observation period.

In previous applications of LAD and other data mining techniques, the Rn repre-
sentation of the analyzed datasets generally admitted a more or less “crisp” separation
into homogeneous zones, containing only positive or only negative points. An example
of such a “separable” dataset is shown in figure 1, while figure 2 provides an example for
an “inseparable” dataset. An obvious characteristic feature of the inseparable datasets
consists in the fact that for many of the given data points are not contained in any “rea-
sonably sized” homogeneous interval of Rn (i.e., interval containing only positive or
only negative points); in the example of table 2 this property holds for the vast majority
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Figure 2. Example of inseparable dataset.

of the positive points. The inseparability of the positive and negative data is characteris-
tic to many datasets occurring in medicine, finance and several other important areas of
application.

In order to be able to handle inseparable data we have developed a modified version
of the general LAD method, which will be described below and illustrated on the CCF
dataset.

3. Patterns

Let us consider a dataset � consisting of a finite set of observations, represented as
vectors in Rn. We shall denote by �+ and �−, respectively, the subsets of positive and
negative observations in �.

A subset of points in Rn identified by upper and/or lower bounds placed on some
of their components will be called a pattern. More precisely, a pattern P is described
with the help of two subsets of indices, I and J , and of a set of real numbers αi (i ∈ I )

and βj (j ∈ J ), called “cutpoints”, and is defined as

P = {
x ∈ Rn | xi � αi (i ∈ I ), xj � βj (j ∈ J ), I, J ⊆ {1, 2, . . . , n}}. (1)

A pattern P will be called positive if P ∩ �+ �= ∅ and P ∩ �− = ∅. Similarly, a
pattern P will be called negative if P ∩ �− �= ∅ and P ∩ �+ = ∅. Clearly, a positive
pattern is an interval of Rn which contains some positive observations and no negative
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ones. For example, the set of male patients aged 77 or older, having their resting heart
rate of at least 97 beats/minute, i.e., those satisfying the conditions


PT_AGE � 77,
GENDER = 0,
RETSTHR � 97,

(2)

includes 5 positive observations from the CCF dataset and no negative observations, thus
representing a positive pattern.

Positive and negative patterns, introduced in [6], represent in fact one of the funda-
mental tools used in LAD, and were seen in [2] to give a strong insight into the structure
of numerous practical problems of data analysis.

Positive and negative patterns, in their original “pure” form, represent homoge-
neous intervals in Rn, containing only positive or only negative points. In analyzing
the CCF dataset it can be seen that the concepts of positive and negative patterns will
have to be extended. One reason for this is the fact that this dataset is quite unbalanced,
containing 3.3% positive points (representing patients who died during the observation
period), and 96.7% negative points (representing surviving patients). Moreover, the rel-
atively small set of points in R20 representing positive observations is dispersed among
the much larger set of points representing negative observations. The presence of insep-
arable data is strongly related to the non-deterministic nature of the relation between
the dependent variable and the values of the independent variables. While it is obvious
that the fulfillment of various conditions can substantially increase or decrease the risk
of death, it is equally obvious that the fulfillment of these conditions cannot guarantee
the occurrence or the absence of this event during the observation period.

As a consequence of the inseparable character of the data, the only positive and
negative patterns are of a small size, i.e., contain few data points. For example, the
“richest” positive pattern detected in the CCF dataset contains only 11 positive data
points, and most of the remaining positive patterns contain not more than 4 or 5 points.
Clearly, no conclusions based on such “small” positive patterns can carry much weight.
In order to handle this problem, we shall generalize the concept of patterns, allowing
beside “pure” positive and negative patterns, also those for which the proportion be-
tween the positive and negative observations contained in them satisfy some conditions.
The requirements to be imposed on these “generalized” patterns (which, for the sake of
simplicity, will be simply called “patterns”) will be described in the next section.

4. Characteristics of patterns

The number of patterns which can be detected in a dataset is extremely large. For exam-
ple, the number of those patterns which can be described using at most three variables in
the CCF dataset exceeds 29 · 106. It is therefore important to restrict the attention to rea-
sonably sized subsets of patterns having high information value. In order to extract such
subsets, we shall associate to every pattern several parameters, and will limit our search
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only to those patterns whose associated parameters are below or above some threshold
values.

The basic criteria for the experimental selection of parameter-bounds are the fol-
lowing. First, the bounds have to be such that the resulting patterns should be able to
provide a powerful distinction between the classes of positive and negative observations.
Second, the collection of patterns satisfying the requirements should “cover” the dataset,
i.e., each (or at least most of the) observation point(s) should satisfy at least some of the
patterns in the collection. Third, the patterns in the collection should be “rich”, i.e., the
average number of observations satisfying a pattern in the collection should not be too
small. Fourth, whenever possible, the resulting patterns should be easily “understand-
able”, i.e., the average number of variables appearing in their expressions (|I | + |J | in
the notations of (1)) should be small.

While the parameters can be defined in a rigorous way, and the criteria for imposing
limitations on them can also be clearly formulated, the “fine-tuning” of the parameter-
bounds is carried out through experimentation.

The three basic parameters to be used in this paper are the concepts of risk, degree
and prevalence associated to a somewhat generalized concept of patterns. These con-
cepts along with the associated thresholds used in this analysis will be presented below.

4.1. Risk

In order to analyze problems with inseparable data we shall first of all define the concept
of risk ρP of a pattern P as the proportion of positive points in the pattern

ρP = |P ∩ �+|
|P ∩ �| ; (3)

here |X| represents the cardinality of the set X. We shall also introduce some real num-
bers t+ and t−, called the high-risk and the low-risk thresholds, respectively, and shall
say that a pattern is of high risk (or of low risk) if its risk is at least t+ (respectively, at
most t−).

Consider for example, the patterns P1 and P2 defined by

P1 =



RESTST = 0,
PT_AGE � 58,
RESTHR � 94

(4)

and

P2 =



RESTST = 1,
PT_AGE � 64,
GENDER = 0.

(5)

The defining conditions of pattern P1 are satisfied by 168 observations, 33 of which are
positive. Similarly, the defining conditions of pattern P2 are satisfied by 347 observa-
tions, 54 of which are positive. Clearly, ρP1 = 19.64%, and ρP2 = 15.56%. If, for
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example, we decide to choose 16.5% as the value of t+, then P1 will be viewed as a
high-risk pattern, while P2 will not.

In the case of the CCF dataset, we have identified all patterns for which the mortal-
ity rate of the patients satisfying it is at least 5 times larger than the mortality rate of the
entire observed population (i.e., it is at least 5 · 3.3%); therefore we took t+ = 16.5%.
Similarly, we have identified all patterns for which the mortality rate of the patients sat-
isfying it is at most 1/5 of the mortality rate of the entire observed population (i.e., it is
at most 1/5 · 3.3%); therefore we took t− = 0.66%.

For further illustration, the pattern

P3 =



PT_AGE � 68,
CHESTP = 0,
DUKE � 5.5

(6)

contains 348 patients, of which 59 died during the observation period, i.e., ρP3 =
16.95%, and is therefore a high-risk pattern. Similarly, the pattern

P4 =
{

50 � PT_AGE � 52,
CRI � 1.05

(7)

contains 955 patients, of which 5 died during the observation period, i.e., ρP4 = 0.55%,
and is therefore a low-risk pattern.

4.2. Degree

The degree of a pattern is the number of inequalities appearing in its definition (1). For
example, both the high-risk pattern P3 and the low-risk pattern P4 contain 3 inequalities
in their definition. Consequently, each of them is of degree 3.

Usually, we shall concentrate on patterns of low degree, due to two reasons: first
their meaning can be easily understood by field experts, and second they can be produced
without major computational difficulties.

The analysis of the CCF dataset was based on the use of the high-risk and low-risk
patterns of degree at most 3. It should be remarked however, that some high-degree
patterns might have a particularly strong information content. For example, the pattern

P5 =




PT_AGE � 59,
RESTHR � 126,
DHRREC � 12,
DUKE � −3.5

(8)

of degree 4 contains the remarkable number of 5915 negative points (64.70% of all
negative points in the dataset), and contains only 46 positive points, implying that the
death rate of patients whose data satisfy this pattern is of only 0.77%, i.e., less then a
quarter of the 3.3% mortality rate of the entire population.

Our experiments with the CCF dataset have shown that in spite of the existence
of some higher-degree patterns of remarkably powerful characteristics, confining the
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analysis to patterns of degree at most 3 leads to results comparable to the analysis of all
patterns of degree 4, or even 5. The analysis of all patterns of degree 6 or higher in our
dataset is computationally expensive, and not likely to lead to a substantial improvement
of the results.

4.3. Prevalence

The number of observations contained in a pattern is called its absolute prevalence. The
absolute positive or negative prevalence of a pattern is the number of positive or negative
observations contained in it.

In a similar way, the ratio between the absolute prevalence of a pattern and |�|
is called the relative prevalence of the pattern, while the ratio between the absolute
positive (negative) prevalence and |�+| (respectively |�−|) is called the relative positive
(respectively negative) prevalence of the pattern; clearly the absolute negative (positive)
prevalence of a positive (respectively negative) pattern is zero.

For illustration, the relative prevalence of the pattern P4, defined by (7) is
955/9454, i.e., 10.1%; its relative negative prevalence is 950/9142, i.e., 10.4%, while
its relative positive prevalence is 5/312, i.e., 1.6%.

The information content of a pattern with a low relative positive and negative preva-
lence is minimal. Therefore, a significant analysis must be restricted only to patterns
having a sufficiently high relative positive or negative prevalence. In this study we shall
restrict our attention only to patterns whose relative positive or negative prevalences are
of at least 10%.

To summarize, in this study we shall restrict our attention to those high-risk and
low-risk patterns, which satisfy the following 3 conditions:

(i) have degree at most 3,

(ii) are defined by high- and low-risk thresholds of 16.5% and 0.66%, respectively,

(iii) have relative positive or negative prevalences of at least 10%.

5. Cutpoints

It has been seen before that patterns are defined by a system of simple inequalities of the
form (1). The values of αi and βj appearing on the right hand sides of the inequalities (1)
are called cutpoints.

Originally [6], LAD was developed for the analysis of binary data. When the
method was extended to the analysis of numerical data, cutpoints were introduced [1] in
order to replace each numerical variable x by several binary variables xk, which were
defined as taking the value 1 if the value of x exceeded some value sk, and taking the
value 0 otherwise. The cutpoints sk were determined in such a way as to separate as well
as possible the positive observations from the negative ones. Although, binary variables
do not need cutpoints, for the sake of uniformity we can consider 0.5 to be their only
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cutpoint. The minimization of the total number of cutpoints to be used was formulated
in [1] as a set-covering problem, and it was shown there that most of the natural questions
concerning this parameter turn out to be NP-hard, even in the case of only 2 numerical
variables.

The determination of cutpoints in the logical analysis of numerical data was based
on the assumption that the patterns defined by them will either be positive or negative. In
the case of the CCF dataset, as well as in many of the medical, financial, etc datasets, the
inseparability of the data renders any attempt to cover the data space with positive and
negative patterns of sufficiently large prevalence, futile. Therefore, the logical analysis
of this type of datasets has to be based on the use of high-risk and low-risk patterns,
rather than positive and negative ones.

A most natural way to identify the cutpoints to be used in the definition of high-
risk and low-risk patterns is to use an “equipartitioning” system, which can be built in
the following way. Let us assume that for a given dataset the values taken by one of
the variables, say x, belong to a set V = {v1, v2, . . . , vm}, where each of the values vi
actually occurs in the dataset, and where v1 < v2 < · · · < vm. Let further si be the
midpoint of the interval [vi, vi+1]. The only inequalities x � s or x � s which will be
used in the definition of patterns are those corresponding to the values s1, s2, . . . , sm−1

defined above. The validity of restricting our attention only to these values has been
noticed in [1], where additional simplifications were also introduced for the elimination
from consideration of some of these values si .

In order to restrict further the number of cutpoints in the system s1, s2, . . . , sm−1,
we extract from it a subsystem of values si1 , si2 , . . . , sip in such a way that the number of
those observations whose component x takes values in anyone of the intervals [sq, sq+1]
should be approximately the same for all q = 1, 2, . . . , p.

In the case of the CCF dataset, after comparing the results for p = 10, 20, 30, 40,
we found the quality of the results to be highest for p = 30, and used therefore the
corresponding equipartitioning system for the definition of all patterns considered in
this study. For illustration we list in table 3 the cutpoints for the five numerical variables
of the CCF dataset.

6. The pandect

The proposed method requires the selection of a set of cutpoints and the generation of
all patterns having prescribed bounds on their degrees, their relative prevalences, and
their risk. As mentioned in section 4, in the case of the CCF dataset, these “parameters”
were chosen in the following way: the degrees were required not to exceed 3, both the
positive and negative relative prevalences were 10%, or higher, and the high- and the
low-risk thresholds were taken respectively as 16.5% (i.e., five times the mortality rate
of the entire population), and 0.66% (i.e., one fifth of the mortality rate of the entire
population).

It should be remarked that the collections of intervals defined by other choices of
the parameters could be quite different. The actual identification of informative values of
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Table 3
Cutpoints for the 5 numerical variables.

Numerical variables

Cutpoint PT_AGE RESTHR DHRREC CRI DUKE

1 44.0 58.0 5.0 0.541 −1.5
2 47.0 61.5 8.0 0.614 0.5
3 48.0 63.0 9.0 0.637 1.3
4 49.0 64.5 10.0 0.666 2.3
5 50.0 65.5 10.5 0.704 3.3
6 51.0 67.0 11.5 0.729 3.8
7 52.5 68.5 12.0 0.751 4.0
8 53.5 69.5 13.0 0.771 4.3
9 54.0 70.5 13.5 0.797 4.8

10 55.0 71.0 14.0 0.812 5.0
11 55.5 72.0 14.5 0.826 5.5
12 56.0 73.0 15.0 0.839 5.8
13 57.0 74.0 15.5 0.850 6.0
14 58.0 74.5 16.0 0.863 6.3
15 58.5 75.5 16.5 0.876 6.5
16 59.0 76.4 17.0 0.885 6.5
17 60.0 76.5 17.5 0.898 7.0
18 61.0 78.0 18.0 0.911 7.0
19 61.5 79.0 18.5 0.932 7.5
20 62.0 79.5 19.0 0.940 7.5
21 62.5 80.5 19.5 0.956 7.8
22 63.5 81.5 20.0 0.968 8.0
23 64.5 82.5 21.0 0.984 8.3
24 65.0 84.0 21.5 1.002 8.5
25 66.5 85.5 22.5 1.020 8.8
26 67.5 86.5 23.0 1.039 9.0
27 68.5 88.0 23.5 1.061 9.5
28 70.0 90.5 25.0 1.081 10.0
29 71.5 92.5 26.0 1.104 10.5
30 74.0 98.0 28.0 1.152 11.0

the parameters is an experimental process consisting in the creation of various collections
of such patterns defined by various parameter values, and the selection of those with the
most satisfactory properties.

Taking into account the above definition of the parameters, and using the cutpoint
system described in section 5, we have generated all the (approximately 29·106) patterns
of degree at most 3, and selected from them all those patterns which satisfy our condi-
tions concerning their prevalences and risks. The computer time needed to perform this
operation using an Intel III/1 GHz processor was of approximately 450 seconds.

Let us denote by � the set of all high-risk and low-risk patterns satisfying the
prescribed conditions. � will be called the pandect defined by the chosen system of
cutpoints and parameter values. Let further � = �+ ∪ �−, where �+ and �− are the
subsets of high-risk and low-risk patterns, respectively.
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The pandect � constructed for the CCF dataset using the parameter values de-
scribed before (30 equipartitioning cutpoints/numerical variable, pattern degrees �3,
t+ = 16.5%, t− = 0.66%, relative positive and negative prevalences of at least 10%)
consisted of 783 high-risk and 3940 low-risk patterns.

In order to introduce a quality measure of the pandect, or of any subset S of pat-
terns, with S = S+ ∪ S−, where S+ ⊆ �+ and S− ⊆ �−, let us define the explained
dataset ES as being the set consisting of those elements of � which satisfy at least one
of the patterns in S. Similarly, let us define the unexplained dataset US as being �−ES .
One of the quality measures of a system S of patterns is the proportion uS = |US |/|�|;
if the system “explains” the whole set � then uS is zero.

A second important quality measure of S is the overlap εS , defined as

εS = 1

|�|
∣∣∣∣
( ⋃

σ∈S+
σ

)
∩

( ⋃
τ∈S−

τ

)∣∣∣∣. (9)

Clearly, the overlap of S indicates the proportion of those points of � which satisfy some
of the high-risk, as well as some of the low-risk patterns; for an ideal system εS should
be zero.

7. Theories and models

Clearly, the pandect �, containing 4723 high- and low-risk patterns is much too large
for practical applications. Moreover, some of the positive and negative observations
may be contained in high- or low-risk patterns in �, indicating a large redundancy of
the pandect. It is natural therefore to investigate nonredundant subsystems of patterns.
Obviously, the explained dataset E�′ of such a subsystem cannot be larger than the
explained dataset E� of the complete set �.

We shall call a subset T+ of high-risk patterns of �+ a positive theory if ET+ =
E�+ , i.e.,

x ∈ �+ ∩
( ⋃

σ∈�+
σ

)
⇒ x ∈

⋃
σ∈T+

σ ; (10)

clearly, every observation contained in some high-risk pattern of the pandect is also
contained in a high-risk pattern of any positive theory.

Similarly, we shall call a subset T− of low-risk patterns of �− a negative theory if
ET− = E�− , i.e.,

x ∈ �− ∩
( ⋃

σ∈�−
σ

)
⇒ x ∈

⋃
σ∈T−

σ ; (11)

clearly, every observation contained in some low-risk pattern of the pandect is also con-
tained in a low-risk pattern of any negative theory.

A pair consisting of a positive and a negative theory will be called a model.
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It is clear that the minimum sizes of the positive and of the negative theories can
be determined by solving separately two naturally associated set-covering problems.

In the case of the CCF dataset we have determined a model T consisting of 42
high-risk and 77 low-risk patterns. The model is presented in tables 4 and 5, where
the prevalences and the risks of each pattern are specified, along with the inequalities
defining the pattern in terms of the original variables.

The quality of the model can be measured by the size of its unexplained dataset
UT, which consists of 247 points (i.e., uT = 2.61%), and of its overlap εT = 12.26%.

In order to get a more detailed understanding of the classification power of the
model, we shall introduce now the concept of a classification matrix. The classification
matrix of a model T consists of 4 rows (corresponding respectively to positive data (P ),
negative data (N), Risk, and prevalence (Prev)), and 4 columns:

1. HRT – percentage of observations satisfying high-risk patterns of T only,

2. LRT – percentage of observations satisfying low-risk patterns of T only,

3. HLT – percentage of observations satisfying both high and low-risk patterns of T,

4. UT – percentage of observations not satisfying any of the high or low-risk patterns
of T.

In an ideal case, the only nonzero element in the row P would be the entry 100%
appearing in column HRT, and similarly the only nonzero entry in the row N would be
100% appearing in the column LRT. In the same case the first two entries in the row
Risk would be 100% and 0%, respectively, and the only two nonzero entries in the row
Prev would appear in the first two entries and would add up to 100%.

For the CCF dataset the model T produces the classification matrix presented in
table 4. As an example we show how the risk for the column HRT in table 4 was
calculated. This column includes 63.78% of the 312 positive observations representing
patients who died during the observation period (i.e., 199 patients), and 13.17% of the
9142 negative observations (i.e., 1204 patients). Therefore, the risk in the high-risk
subset of observations reported in this column is 199/(199 + 1204), i.e., 14.18%.

In conclusion, the model:

• identifies a set of high-risk observations with a mortality rate of 14.18%, and a set of
low-risk observations with a mortality rate of 0.65%,

Table 4
Classification matrix for model.

HRT LRT HLT UT

P 63.78% 13.78% 20.83% 1.60%
N 13.17% 72.22% 11.97% 2.65%

Risk 14.18% 0.65%
Prev 14.84% 70.28% 12.26% 2.61%
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Table 5
Positive theory consisting of 42 high-risk patterns.

Prevalence Pattern parameters Pattern description
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P1 38 178 3 12.18% 17.59% 1 >65
P2 50 242 3 16.03% 17.12% 1 >60.5 <0.823
P3 39 191 3 12.50% 16.96% 1 >62 <4
P4 35 171 3 11.22% 16.99% 0 <0.719 1
P5 40 198 3 12.82% 16.81% >65 0 <1.5
P6 49 241 3 15.71% 16.90% >58 0 >88
P7 85 422 3 27.24% 16.77% >56.5 0 <0.762
P8 46 224 2 14.74% 17.04% >65 >86
P9 39 181 3 12.50% 17.73% >58 >88 1
P10 45 227 3 14.42% 16.54% >42.5 >93.5 <11
P11 72 361 3 23.08% 16.63% >55.5 >72 <9
P12 61 301 3 19.55% 16.85% >55.5 >83 <11
P13 79 394 3 25.32% 16.70% >58 >61.5 <9
P14 58 280 3 18.59% 17.16% >60.5 >83 <13.5
P15 58 287 3 18.59% 16.81% >65 >76.5 <14.5
P16 45 222 3 14.42% 16.85% >60.5 >88 <1.119
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P30 59 296 3 18.91% 16.62% >67.5 <26.5 <3
P31 63 317 3 20.19% 16.58% >55.5 <0.762 1
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P38 59 296 3 18.91% 16.62% 0 <0.796 <4.5
P39 32 161 3 10.26% 16.58% 0 1 <4.5
P40 87 416 3 27.88% 17.30% 0 <9 <7.5
P41 37 180 3 11.86% 17.05% <16.5 <0.944 <1.5
P42 35 174 2 11.22% 16.75% <0.762 <1.5
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• classifies correctly and unambiguously 63.78% of the positive observations as being
at high-risk and 72.22% of the negative ones as being at low-risk,

• classifies erroneously 13.78% of the positive observations and 13.17% of the negative
ones,

• does not provide any classification for 2.61% of the observations.

8. Prognostic Index

The classification provided by a model assigns a risk category for those patients who
satisfy only high-risk or low-risk patterns.

We shall introduce in the this section a classification tool, which refines the classifi-
cation provided by a model, by assigning a Prognostic Index to each patient, thus making
it possible to assign a risk category also to those patients who satisfy both high-risk and
low-risk patterns.

Let τ+ be the number of high-risk patterns in the model T, and τ+(x) be the num-
ber of those high-risk patterns which are satisfied by a particular observation x; the
indices τ− and τ−(x) are defined in a similar way.

The Prognostic Index π(x) of patient x is defined as

π(x) = τ+(x)
τ+ − τ−(x)

τ− . (12)

Clearly, π(x) will have a positive value for observations satisfying only high-risk
patterns, and a negative value for those satisfying only low-risk patterns. By classifying
now an observation x as being at high-risk or at low-risk according to the positive or
negative sign of π(x), we shall refine the classification provided in section 7 (since the
classification defined in that section will never be contradicted).

The classification matrix for the Prognostic Index is defined very similarly to that
in section 7, noticing simply that only 3 columns (HRI, LRI and UI) are needed this
time, since the set HLI of patients having both positive and negative indices is obviously
empty. For the CCF dataset the Prognostic Index π produces the classification matrix
presented in table 7.

Clearly, the high-risk set defined by the Prognostic Index contains 1920 patients,
i.e., 20.31% of the entire population, and has a mortality rate of 12.14%. The low-risk

Table 7
Classification matrix for Prognostic Index.

HRI LRI UI

P 74.68% 23.72% 1.60%
N 18.45% 78.89% 2.66%

Risk 12.14% 1.02%
Prev 20.31% 77.07% 2.63%
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Figure 3. Dynamics of survival rates for low-risk, unclassified and high-risk patterns.

set contains 7286 patients, i.e., 77.07% of the entire population, and has a mortality rate
of 1.02%.

In order to establish a clear relationship between the Prognostic Index values with
mortality rates, we have re-indexed the patients in the decreasing order of their Prog-
nostic Indices, and calculated, the average Prognostic Index APIi and the mortality rate
MRi of the groups of patients ranked 1–200, 201–400, 401–600, . . . . The high corre-
lation, 83.95%, between these two sequences shows clearly that the Prognostic Index is
an highly indicative estimator of the risk of death.

The graphs in figure 3 present the actual changes in survival rates of the three
index-defined categories of patients (low-risk, unclassified and high-risk) along the nine
years of observation, clearly confirming the above conclusions, and illustrating the sharp
differences between categories.

It can be seen that the average year-by-year survival rate among patients classified
as low-risk is of 99.9%, while that among patients classified as high-risk is 98.6%.

9. Model validation

In order to evaluate the accuracy of the model we have applied to it the standard 5-folding
validation method, i.e., we have considered a random partition of the original dataset into
5 segments, each of them containing about one fifth of the positive and one fifth of the
negative observations. Using this partition we have defined 5 LAD problems. In each
of them one of the 5 segments of the original dataset was chosen to be used as “testing
set” for validating the high-risk and low-risk patterns, as well as the positive and neg-
ative models obtained by applying LAD to the “training set”, i.e., to the set consisting
of the remaining 4 segments of the entire dataset �. For each of the 5 problems, using
the chosen parameter values (30 cutpoints for each numerical variable, pattern degree
at most 3, high-risk threshold 16.5%, low-risk threshold 0.66%, and positive and nega-
tive prevalences of at least 10% each) we have first calculated the risk and the relative
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Table 8
Risk validation of pandect by 5-folding.

Risk

High-risk Low-risk

Validation problem Training Testing Training Testing

1 16.82% 13.04% 0.41% 0.45%
2 16.88% 15.71% 0.41% 0.76%
3 16.86% 15.10% 0.40% 0.51%
4 16.82% 15.86% 0.39% 0.64%
5 16.84% 15.75% 0.40% 0.60%

Average 16.84% 15.09% 0.40% 0.59%

Table 9
Relative prevalence validation of pandect by 5-folding.

Relative prevalence

Positive Negative

Validation problem Training Testing Training Testing

1 19.54% 17.56% 11.19% 10.76%
2 19.97% 17.06% 11.34% 11.51%
3 18.91% 17.45% 11.09% 11.16%
4 19.30% 17.95% 11.19% 10.81%
5 17.83% 16.07% 11.25% 11.62%

Average 19.11% 17.22% 11.21% 11.17%

prevalences of the pandects of high-risk and low-risk patterns of the 5 training sets, and
recalculated them on the 5 corresponding testing sets.

The results of these calculations are reported in tables 8 and 9. It can be seen
that the average risk among all the observations satisfying at least one of the high-risk
patterns remains above 15% in the testing set, and that the average risk among all those
observations which satisfy at least one of the low-risk patterns remains below 0.6%.
Also, it can be seen that an average high-risk pattern is satisfied by more than 17% of
the positive observations in the testing set, and the average low-risk pattern is satisfied
by more than 11% of the negative observations.

Table 10 presents the results of applying the 5-folding validation method to the
classification matrices corresponding to the prognostic index. It can be seen that the
high-risk sets defined by this index have an average mortality rate of 10.75%, while the
low-risk sets have an average mortality rate of only 1.3%.

10. Prognostic Index and Cox Score

The evaluations given by the Prognostic Index were compared to those given by the
“Cox Scores” – a risk indicator widely used by cardiologists. It should be noted that
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Table 10
Prognostic Index validation by 5-folding – classification matrices.

Validation Training Testing

problem HRI LRI UI HRI LRI UI

1 P 78.00% 20.40% 1.60% 72.58% 24.19% 3.23%
N 19.44% 78.78% 1.78% 20.35% 78.01% 1.64%

Risk 12.06% 0.88% 10.79% 1.04%
Prev 21.37% 76.85% 1.77% 22.07% 76.23% 1.69%

2 P 77.20% 21.60% 1.20% 61.29% 38.71% 0.00%
N 18.61% 79.63% 1.76% 17.18% 80.96% 1.86%

Risk 12.42% 0.92% 10.80% 1.60%
Prev 20.54% 77.71% 1.75% 18.63% 79.57% 1.80%

3 P 78.40% 19.60% 2.00% 75.81% 22.58% 1.61%
N 19.36% 78.70% 1.94% 20.51% 77.13% 2.35%

Risk 12.16% 0.84% 11.14% 0.98%
Prev 21.31% 76.75% 1.94% 22.34% 75.33% 2.33%

4 P 79.60% 20.00% 0.40% 59.68% 35.48% 4.84%
N 18.55% 79.82% 1.63% 18.93% 79.43% 1.64%

Risk 12.79% 0.85% 9.66% 1.49%
Prev 20.57% 77.85% 1.59% 20.27% 77.98% 1.75%

5 P 75.00% 24.19% 0.81% 64.06% 32.81% 3.13%
N 17.82% 80.88% 1.30% 17.49% 80.93% 1.58%

Risk 12.49% 1.00% 11.36% 1.40%
Prev 19.71% 79.01% 1.28% 19.02% 79.34% 1.64%

Average Average

HRI LRI UI HRI LRI UI

P 77.64% 21.16% 1.20% 66.68% 30.75% 2.56%
N 18.76% 79.56% 1.68% 18.89% 79.29% 1.81%

Risk 12.38% 0.90% 10.75% 1.30%
Prev 20.70% 77.63% 1.67% 20.47% 77.69% 1.84%

in contrast with the Cox model which requires constant proportional hazards over time,
LAD does not required the confirmation of any assumptions about the distribution of
data or times to death events.

First of all, the Pearson correlation between the Prognostic Indices and the Cox
Scores of the 9454 patients is 0.85, showing a high resemblance between the two indi-
cators. In order to clarify whether a patient considered to be at high risk according to
one of the indicators is also considered to be at high risk according to the other, we have
considered the following measure of “agreement” between two indicators.

Let h be a number between 1 and 9454, and let Uh and Vh denote the sets of
the h highest ranked patients according to the Prognostic Index and to the Cox Score,
respectively. For every h we shall call the observations Uh and Vh to be at high h-risk,
according to the Prognostic Index and Cox Score, respectively. Let us now define, for
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Table 11
Agreement between Prognostic Index and Cox Score.

h αh h αh h αh h αh

200 28.39% 2600 70.82% 5000 74.33% 7400 81.57%
400 40.99% 2800 72.19% 5200 74.40% 7600 82.58%
600 48.45% 3000 74.82% 5400 75.12% 7800 84.13%
800 50.61% 3200 74.57% 5600 75.16% 8000 85.08%

1000 55.12% 3400 75.07% 5800 75.09% 8200 86.57%
1200 56.43% 3600 75.13% 6000 75.77% 8400 88.13%
1400 60.07% 3800 75.27% 6200 76.58% 8600 89.66%
1600 61.68% 4000 74.10% 6400 77.45% 8800 91.47%
1800 64.29% 4200 74.09% 6600 78.11% 9000 93.55%
2000 65.96% 4400 73.91% 6800 78.64% 9200 95.81%
2200 67.16% 4600 74.20% 7000 79.39% 9400 99.07%
2400 70.38% 4800 73.97% 7200 80.72% 9454 100.00%

Figure 4. Agreement between Prognostic Index and Cox Score.

every h, the agreement αh between Uh and Vh as

αh = |Uh ∩ Vh|
|Uh ∪ Vh| . (13)

The values of αh, calculated for h = 200, 400, 600, . . . are presented in table 11 and
figure 4. The average value of αh is 74%, giving further evidence to the high degree of
agreement between the two indicators.

The comparison of the proportions of the 312 death events µLAD
h and µCOX

h included
in the classes Uh and Vh, is presented in table 12 and figure 5.

It can be seen from these results that the number of deaths among the top-ranked
h patients is consistently higher if the ranking follows the Prognostic Index. Moreover,
a 2-sided t-test shows that the probability for the proportion of deaths occurring in the
group of h patients with highest Cox Scores to be equal to that in the group of h pa-
tients with highest Prognostic Indices is of 2.3 · 10−6, and the probability to exceed it is
1.1 · 10−6.

Further, repeating the same experiment for the groups of lowest ranked l patients
according to the two indicators, we find the values given in table 13 and shown in
figure 6.
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Table 12
Proportion of deaths (out of 312) among h highest-ranked patients.

h Prognostic Index Cox Score

200 19.55% 16.35%
400 32.37% 29.81%
600 40.38% 38.14%
800 48.72% 44.55%

1000 56.09% 50.32%
1200 57.37% 57.05%
1400 61.86% 60.58%
1600 71.79% 63.14%
1800 74.04% 67.96%
2000 78.21% 71.15%
2200 78.21% 74.04%
2400 82.37% 75.96%
2600 82.37% 77.56%
2800 86.26% 80.13%
3000 88.14% 81.73%

Figure 5. Proportion of deaths (out of 312) among h highest-ranked patients.

In agreement with the results in the previous experiment, these results show that
the number of death events among the l lowest ranked patients is consistently lower
when the ranking follows the Prognostic Index. Moreover, a 2-sided t-test shows that
the probability for the proportion of deaths occurring in the group of l patients with
lowest Cox Scores to be equal to that in the group of l patients with lowest Prognostic
Indices is of 1.8 · 10−3, and the probability to be smaller is of 3.6 · 10−3.

Finally, let us examine the mortality rate within the groups of patients Uh −Vh and
Vh − Uh, i.e., the mortality rates in the groups of patients at high h-risk according to
one of the indicators and at low h-risk according to the other. These rates are reported
in table 14. In order to allow an immediate comparison with the mortality rate µ =
312/9454 of the entire population, figure 7 expresses the results in table 14, as multiples
of µ.

An obvious application of the above idea is to stratify the entire population taking
into account both the Cox Score and the Prognostic Index. In order to simplify the
stratification process, we divide the patients into quintiles in the decreasing order of
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Table 13
Proportion of deaths (out of 312) among l lowest-ranked patients.

I Prognostic Index Cox Score

200 0.00% 0.26%
400 0.00% 0.38%
600 0.26% 0.51%
800 0.51% 0.64%

1000 0.77% 1.03%
1200 1.03% 1.28%
1400 1.03% 1.54%
1600 1.54% 1.92%
1800 2.44% 2.69%
2000 2.56% 3.08%
2200 3.33% 4.23%
2400 3.85% 5.64%
2600 4.74% 7.44%
2800 7.05% 9.49%
3000 8.72% 12.05%

Figure 6. Proportion of deaths (out of 312) among l lowest-ranked patients.

their Cox Scores, and separately according to their Prognostic Indices. We shall say that
a case has a level PIL = k, respectively CSL = k, if it is included in the kth quintile
according to its Prognostic Index, respectively to its Cox Score.

In conclusion,

(i) the predictive value of the Prognostic Index resembles closely that of the Cox
Score, with a small but consistent advantage to the former; moreover, whenever
the high/low h-risk classifications provided by the two indicators differ, that one
corresponding to the Prognostic Index is more informative;

(ii) in view of the striking difference in the underlying principles defining the two in-
dicators, their close resemblance provides a strong validation for both of them;

(iii) the combined utilization of the two indicators provides a highly reliable risk strati-
fication system.
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Table 14

h Uh − Vh Vh − Uh h Uh − Vh Vh − Uh

200 28.83% 19.82% 5000 1.36% 0.68%
400 17.96% 13.17% 5200 1.18% 0.66%
600 15.87% 12.50% 5400 0.91% 0.52%
800 13.36% 8.78% 5600 0.88% 0.50%

1000 12.11% 5.88% 5800 0.61% 0.61%
1200 7.19% 6.89% 6000 0.85% 0.36%
1400 7.45% 6.30% 6200 0.85% 0.36%
1600 10.29% 3.43% 6400 0.62% 0.37%
1800 8.70% 3.84% 6600 0.62% 0.49%
2000 7.80% 2.68% 6800 0.74% 0.49%
2200 5.56% 2.78% 7000 0.75% 0.50%
2400 6.24% 1.68% 7200 0.65% 0.39%
2600 5.18% 2.03% 7400 0.53% 0.40%
2800 4.65% 1.33% 7600 0.55% 0.28%
3000 5.56% 1.16% 7800 0.74% 0.30%
3200 4.29% 1.72% 8000 0.62% 0.31%
3400 4.55% 1.45% 8200 0.68% 0.17%
3600 3.72% 1.76% 8400 0.57% 0.19%
3800 3.36% 1.31% 8600 0.43% 0.00%
4000 2.69% 1.68% 8800 0.51% 0.00%
4200 1.92% 1.12% 9000 0.33% 0.00%
4400 1.82% 1.06% 9200 0.51% 0.00%
4600 1.62% 1.03% 9400 0.00% 0.00%
4800 1.25% 0.97%

Figure 7.

11. Conclusions

Using Logical Analysis of Data on a population of patients under exercise stress testing,
we have shown that it is possible to reliably identify a small subset of patients who are
at relatively high risk of death, while simultaneously identifying a large population of
patients who are at very low risk.

A characteristic feature of this dataset consists in the large disproportion between
the number of the “positive” and of “negative” observations. This disproportion is due to
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Table 15

Risk class Cases contained Class size % of 312 deaths included Risk

Very high PIL = CSL = 1 1,483 63.78% 13.42%
High PIL, CSL ∈ {1, 2} 3,222 85.58% 8.29%
Low PIL ∈ {3, 4, 5} or CSL ∈ {3, 4, 5} 6,232 14.10% 0.71%
Very low PIL, CSL ∈ {4, 5} 2,957 2.56% 0.27%

the nature of the two classes of observations, which represent respectively the groups of
patients who died or who survived during the observation period. While this dispropor-
tion is entirely reasonable in many medical (and some other) datasets, the methodologi-
cal implications of it have not been previously examined in any other real-life application
of LAD. From a purely methodological point of view this study led to an extension of
the scope of LAD to the case of non-separable datasets.

A remarkable feature of the classification provided by LAD consists in the fact
that the 20% segment of the population identified as being at high-risk included 3/4
of all those who died during the observation period; the mortality rate of this segment
was 4 times higher than the mortality rate in the entire population. In contrast the 77%
segment of segment of the population identified as being at low-risk had a mortality rate
of less than 1/3 of the mortality rate in the entire population. Finally, the size of the
unclassified segment of the population was of only 2.63%.

On the basis of the LAD model developed in this study, a Prognostic Index was
defined for all patients, and its value was shown to be closely correlated with the patients’
risk of death. A risk-of-death indicator widely used by cardiologist is the Cox Score.
Comparing the Prognostic Index with the Cox Score, we have shown that their risk
predictions coincide on the average in 3 out of 4 cases, and that the predictive value of
the former outperforms slightly, but consistently, that one of the latter. The combined use
of both indicators can make possible the construction of highly reliable risk stratification
systems.

Most medical literature on risk stratification has focused on specific predictors of
risk, with relatively less emphasis on interactions of risk factors, that is, on ways in
which predictor variables affect each other’s impacts on risk of an adverse outcome.
While careful multivariable modeling makes it possible to examine two-way interac-
tions, LAD, by its very nature, makes it possible to examine automatically tens of thou-
sands of possible interactions with high degrees of complexity, retaining only the most
significant ones. It can be expected that the interactions revealed through LAD may
stimulate research for a better understanding of the related cause-effect relationships.

Among the useful features of LAD, we mention the possibilities it offers for ex-
plaining or justifying – on the basis of the patterns triggered by the values of the variables
corresponding to a particular patient – the decision to classify the patient into a high-risk
or a low-risk class, as well as decisions concerning the choice of particular alternatives
for his or her treatment.
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