ABSTRACT

Rates of Convergence in Semiparametric Mixture Models

Hemant Ishwaran
Yale University
1993

The semiparametric mixture model has density

f(16.Q) = / £ | 6.m) dQ(n),

where 6 is a real vector, sometimes referred to as the structural parameter, and Q is
an unknown distribution commonly referred to as the mixing distribution. The thesis

considers the problem of estimation for § with ) playing the role of a nuisance parameter.

The problem of estimation for # in the semiparametric mixture model has generally
focused on the question of efficiency. Van der Vaart (1988) and Pfanzagl (1990) show that
when the type of mixing behavior is constrained it is possible to state efficiency results
as local asymptotic minimax (LAM) theorems and convolution theorems. These results

implicitly presuppose the existence of a O, (n~1/2) estimator for 6.

However, it is not always clear that the structural parameter is estimable at a O,, (n‘l/ 2)
rate. Carroll and Hall (1988) and Zhang (1990) show that when 6 is known, the mixing
distribution in a location mixture model is typically estimable only at very slow rates.
It is possible, therefore, for the difficulty in estimating the mixing distribution to create

problems, as well, in the estimation for 6.

Rates of convergence for estimators of 8 are defined in a locally uniform sense to incor-
porate a minimax approach to estimation. Le Cam (1973) and Donoho and Liu (1987)
describe a general approach for determining lower bounds for uniform rates of convergence

which is adapted to the mixture setting.

The thesis presents a general class of mixture models for which the structural parameter
can only be estimated at rates slower than O, (n_l/ 2). A new Fourier technique is used to
determine explicit lower bounds for rates of convergence in location-mixture models, where
estimation is for an unknown scale parameter. The theory is illustrated by application to
two well known models: the mixture model formed by constrained mixing over the mean
of a normal density with unknown variance, and the Weibull mixture model as studied by
Heckman and Singer (1984).
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Notation

The linear functional notation for expectation is usually employed. For example, the
expected value of a function g with respect to a probability measure P is written as Pg
rather than the usual convention of [ g(z)dP(z). One exception is that we write [ g(z) dx

for the integral of g with respect to Lebesgue measure.

The function f(z | 6,7n) is used to describe a real valued density in z, indexed by two real
parameters 6 and 7. The parameter set for 8 is denoted by O, and may be k-dimensional,
while the parameter set for 7 is always one-dimensional and denoted by . We assume

that f(z | ,n) is measurable as a function of (z,n), so that the mixture

f(16.Q) = / £ | 6.m) dQ()

formed by the mixing distribution, @, is well defined (we adopt the conventional form for
expectation when describing mixtures). Denote the corresponding probability measure by

Py.q, which is sometimes referred to as the mixed distribution.

Symbols which are assignable to letters (followed by the convention with which they

are usually employed):

B(IR) Borel o-algebra of the real line
(D, d) metric space D with metric d
On sequence converging to zero
7 nuisance parameter
fo true mixed density
fr perturbed mixed density
flxz]6,n) real valued density with real parameters (6,7)
f(z]6,Q) mixed density with real parameter § and mixing distribution @
F(O,N) parametric family of densities
r gamma function
H(Py, Py) Hellinger distance between probability measures P; and P
i V-1
k(P) functional mapping a probability measure P onto a metric
space (D, d)
LY (P) equivalence class of of p-integrable functions with zero

expectation with respect to probability measure P
LF(P) class of essentially bounded functions that have zero P-expectation

o Lebesgue measure
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N(0,1) standard normal distribution
N parameter set for 7
N(0) natural parameter space at 6
P probability measure
p” n-fold product measure for P
Py true probability measure
P, perturbed probability measure
U topology on P induced by the total variation distance
U(Po, o) O () shrinking neighborhood of a probability measure Py
Py o mixed distribution with real parameter 6 and mixing
distribution @
P class of probability measures
P(©,9) class of mixed distributions
q mixing density
g™ m*" derivative for the mixing density ¢
Qo true mixing density
q(-,7) perturbed mixing density
Q mixing distribution
Qo true mixing distribution
Q- perturbed mixing distribution
Q class of mixing distributions
R" k-dimensional real space
T small real number
0 structural parameter
0o true structural parameter

parameter space for 6

v o-finite measure dominated by Lebesgue measure
v(Py, P2) total variation distance between two probability measures
P, and P,
(X, A) measurable space with set X' and o-algebra A

Symbols not assignable to letters (followed by the convention with which they are

usually employed):

* g * h denotes the convolution of two Lebesgue integrable
functions g and h

< measure R dominates measure P: P < R



m

)

N N >

element of

g denotes the Fourier transform for Lebesgue integrable g
a A'b = minumum (a,b)

proper subset

subset

vi



Chapter 1

Introduction

1. Semiparametric Mixture Models The semiparametric mixture model has density

1> F@]6,Q) = /f(:c 16,7) dQ(n),

where 6 is a real vector, sometimes referred to as the structural parameter, and @ is an

unknown distribution commonly referred to as the mixing distribution.

When 6 is known, the model <1.1> is completely nonparametric and interest focuses

on estimation for the unknown mixing distribution, Q.

Carroll and Hall (1988) address the problem of determining rates of convergence in
deconvolving densities. Their results, therefore, pertain to the problem of estimating the
mixing density in location mixture models. What they find is that the smoother the known
location density, the slower the optimal rate of pointwise estimation for the unknown
mixing density. For example, in the normal mean-mixture model they find optimal rates
which are logarithmic, while in the double-exponential mixture model they find geometric

optimal rates.

Zhang (1990) also considers the problem of estimation for the mixing density (and
distribution) in the location mixture model. He gives lower bounds for rates of convergence
for the mixing density in the form of pointwise results and integrated mean square error
and shows that the rates are related to the tails of the characteristic function of the known
location density, with slower rates being found for more rapidly decreasing tails. By
considering mixing densities whose Fourier transforms decrease on the order of O (1 / t2),

he finds a mean square error lower bound in the normal mean-mixture model of (logn)~1/2,

while in the double exponential mixture model the bound is n~1/6.

Therefore, estimating the mixing distribution can sometimes be difficult.

The question that we will pursue in this thesis is whether the difficulty in estimation
for the mixing distribution creates problems for estimation of the structural parameter.
Therefore, we will consider the problem of estimation for the structural parameter, with
the mixing distribution acting as nuisance. The problem is motivated by the following

examples.

<1.2> Example (normal mean-mixture model): The semiparametric normal mean-
mixture model can be written in the form <1.1> by integrating over the mean of a normal

density with unknown standard deviation. The model can also be more conveniently

-1 —



Chapter 1.1: Semiparametric Mixture Models 2

expressed as the convolution 87 + Y, where Z has a standard N(0,1) distribution, 6 is
the unknown standard deviation, and Y has unknown distribution ) independent of Z.
Determining # in this model corresponds to estimating the common standard deviation

amongst various normal populations which are heterogeneous in their means.

Roeder (1990) uses such a model to investigate a clustering hypothesis in astronomy.
The data consist of velocities at which galaxies in the Corona Borealis region are receding
from us. According to the Big Bang theory of cosmology, the further the galaxy is from us,
the faster it is receding. If galaxies are clustered, the data should be multimodal generated
with modes corresponding to clusters of galaxies and could be be modeled as realizations
from a normal mean-mixture. Under this hypothesis, the unknown standard deviation

corresponds to the tightness of the clustering in the galaxies and is of cosmological interest.

O

<1.3> Example (Weibull mixture model): Heckman and Singer (1984) study eco-
nomic theories concerning continuous durations of occupancy of states. To test such
theories and to estimate structural parameters, they propose the use of a semiparametric
mixture model to account for population heterogeneity in unobserved variables. They

assume a Weibull functional form for the hazard function
Wz | 2,0,0,1m) = exp (za) 02"~ "1,

where x is the observed positive duration time, z is a vector of time invariant observed
covariates independent of the positive heterogeneity component 7, and (6,a) is a vector
of real parameters to be estimated. The authors model the unobserved n as a random

variable with unknown distribution, @), and propose the Weibull mixture model

<1.4> flz|z,0,a,Q) = /9:097177 exp (za — nz? exp (za)) dQ(n)
as a device for modeling duration data. The hazard function for the mixture <1.4> takes
the form
Wz | 2,0,0,Q) = exp (za) 0" (2.2 |, 0,0, Q),
where

x|z _ J nexp (=2’ exp (za)) dQ(n)
V200D =T e e exp () dQ)

Notice that the hazard function is not a proportional hazard as discussed in Cox (1972),

so that the usual conditioning argument employed to estimate a will not work here.

The authors use a nonparametric maximum likelihood estimator (NPMLE) as a means
for estimating (6, e, Q) and verify conditions that Kiefer and Wolfowitz (1956) prove to be

sufficient for establishing the consistency of the maximum likelihood estimator in general



Chapter 1.2: Estimation for the Structural Parameter 3

semiparametric mixture models (cf. Wald, 1949). Heckman and Singer also state results
from simulations indicating the difficulty in estimation for the unknown distribution, Q.

They remark:

“A limited set of Monte Carlo experiments was conducted to evaluate the
performance of the estimator. The NPMLE estimated the parameters of the
structural duration model very well for samples as small as 500. Estimation

of the distribution of the unobservables was less successful.”

They note that the same phenomena is observed for both finite and continuous mixing
distributions. []

2. Estimation for the Structural Parameter Let us first consider the parametric
problem created when the mixing distribution is known and interest is in estimation for
the unknown structural parameter. Let Py, equal the true distribution with structural
parameter 6y and known mixing distribution (y. Under standard regularity conditions
we should expect the maximum likelihood estimator for 6y to be y/n-consistent. Typically
it should be asymptotically normal with expectation 6y and with variance equal to the
reciprocal of the Fisher information for 6y, where the Fisher information is defined as

9 2
<L5> 1(00, Qo) = Py, (% log f(z | 907@0)) :

By the Cramér-Rao inequality, this implies that the asymptotic variance of the maxi-
mum likelihood estimator equals the smallest variance possible amongst unbiased estima-
tors for . One might naively be led to believe that I(6y, Q) "' provides a lower bound
for the asymptotic variance for all O,(n~'/2) estimators for fy. The assertion, as is well

known, is false and disproved by superefficient estimators.

To eliminate the superefficiency problem and to rescue the concept of efficiency, the
modern fix is to recast the definition in a minimax framework. A treatment of efficiency
can be found in Le Cam (1972), H4jek (1972) and Millar (1981, Chapter 7). We describe a
more recent treatment of the problem by Le Cam and Yang (1990, Chapter 5.6, Theorem
1) and apply it to the parametric mixture setting. Let

O(6y,C,n) = {0: |0 — 6| < Cn~1/?}

be a O (n_l/ 2) shrinking neighborhood of 6. Let Pj' be the n-fold product distribution
for Py and assume that {Fy’ , Jun i tE IR} is locally asymptotically normal (Le Cam and

~

Yang, 1990, Chapter 5.7). Then if 6,, is an estimator for 6,

~ 2
<1.6> lim lim liminf sup By [B A (n1/2(9n - 9)) } > 1(0o, Qo).

B—oco C—o0 n 966(9070771)
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The minimax statement <1.6> asserts a lower bound for the risk of an estimator over
n~'/2 shrinking neighborhoods of the true parameter, §y. The statement implicitly as-
sumes the existence of a O, (n~!/2) estimator for § which performs uniformly well under a
whole class of models, for if such an estimator were not to exist the left-hand side of <1.6>
would be infinite for each §n and the minimax expression trivial. However, under fairly
mild regularity conditions, it is possible to prove the existence of theoretical minimum
distance estimators which attain the n='/2 rate (Millar, 1981, Chapter 10). In fact it is
possible to use these preliminary O, (n_l/ 2) estimators to construct new estimators which
have asymptotic minimax risk equal to the asserted lower bound (Le Cam and Yang, 1990,
Chapter 5.3; Millar, 1981, Chapter 10). Such estimators are said to be efficient.

When the mixing distribution @) is unknown and the model semiparametric, the problem
of estimation for 6 has generally focused on the question of efficiency. The approach taken
to this problem follows a line of argument described by Stein (1956). He argues that a

nonparametric problem is at least as difficult as any parametric sub-problem and states:

“it frequently happens that ... there is, through each state of nature, a one-
dimensional problem which is, for large samples, at least as difficult (to a
first approximation) as any other finite-dimensional problem at that point.
If a procedure does essentially as well, for large samples, as one could do
for each such one-dimensional problem, one is justified in considering the

procedure efficient for large samples.”

Koshevnik and Levit (1976) and more recently Begun, Hall, Huang, and Wellner (1983)
expand upon this idea in the semiparametric setting. The general approach is to find the
smooth path (indexed by a one-dimensional real parameter) through a space of probability
models which makes estimation for a finite dimensional parameter as difficult as possible.
This worst one-dimensional problem, for large sample sizes, determines the minimax effi-

ciency for estimators of the finite dimensional parameter.

Begun et al. consider paths which are smooth in a Hellinger differentiable sense. Their
argument specialized to the semiparametric mixture model is as follows. They work with
a specified class of mixing densities Q taken with respect to a o-finite measure A. The
semiparametric mixture densities are taken with respect to a o-finite measure v. Let || -||a
and || - ||, denote the L?()\) and L?(v) norms respectively. Thus if f is a semiparametric
mixture density and ¢ a mixing density, /f € L?*(v) and /g € L?(\).

The semiparametric density f(x | ,q) is Hellinger differentiable at a fixed structural

parameter, 6y, and mixing density, qq, if

<17> /f(@ [ 6,9) = V/f(x | 60,0) + (0 = 60)p(B0. a0) + A(60: 0) (vVa — /a0 ) + (.6, q)
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with
(2,0, )llv = 0 (10 = bol + Va = Vo llx)
and A(fy,qo) : L*(\) — L?(v) is a bounded linear operator.
They assume that <1.7> holds for 6 sequences
<1.8> Oy + Kn~'/2,

for real K, and sequences ¢, € Q such that

<1.9> Vn = \/q—0+n71/2A+ R,

where A € L2()) and ||R,[[x = o (n"'/?). By doing so, they assume a sufficient condition
for local asymptotic normality (cf. Le Cam and Yang, 1990, Chapter 5.7). Let 7 equal the
set of all tangent scores, A, obtained from sequences <1.9>. By assuming that A(6y, go)7
is a closed space, the authors prove a minimax theorem similar to <1.6> over sequences
in § and q of the form <1.8> and <1.9>. They show that semiparametric minimax risk
equals the reciprocal of

<L.10> 4 Hp(907QO) — I p(bo, Qo)} i7

where II is the L2-projection of p(6p, Qo) onto A(y,qo)7. Thus for example, when the
mixing distribution is known, the minimax risk equals the reciprocal of the Fisher infor-
mation <1.5> from the parametric problem (the factor of four results from the use of
square roots). However, when the mixing distribution is unknown, the information for 6,

is smaller and consequently the minimax risk increases.

The information <1.10> can also be calculated as

4 proa Qo) — A(bo, qo)A”

for a unique A* € 7. In the context of Stein’s paper, the path of mixing densities
Vf(x | 0o+ 7,q-) with \/G; = \/qo — TA* represents, as T converges to zero, the worst
possible one-dimensional approach through +/f(z | 6y, qo) for the problem of estimating
o.

2

)
v

Pfanzagl (1990) and van der Vaart (1988) show that in certain semiparametric mixture
models, the information <1.10> can be calculated explicitly and used to state efficiency

results.

Pfanzagl considers exponential mixture models

F( | 00, Qo) = / exp(—nS(z, 60) + b(n)) dQo(n),

which belong to the class considered by Lindsay (1983). The models which are studied have

the interesting property that no loss in information for 6y results due to the presence of the
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nuisance mixing. The information in these models equals the ordinary Fisher information
for fp and can be computed as the squared L?(Pp)-norm of

9 [ mexp(—nS(z,600) + b(n)) dQo(n)

<111> = 96° ) T (S 60) + b(n)) dQo ()

where Py equals the true model.

Pfanzagl describes a procedure (Chapter 5, Theorem 5.6) for constructing an efficient
estimator for 6y which is based on a preliminary O,, (nil/ %) estimator for 6y and a consis-
tent estimator for the Py-expectation of <1.11>. The procedure is implemented in several
examples and simulation results indicate that even when Q¢ is crudely estimated, the
variance for the new estimator for 6y is substantially smaller than the variance for the

preliminary estimator and close to the theoretical asymptotic lower bound.

Van der Vaart assumes that the information <1.10> is positive and states under certain
regularity conditions a local asymptotic minimax theorem and a convolution theorem.

1/2

These results also implicitly presuppose the existence of an n™/“ estimator for 6,. He

describes a method for constructing such estimators.

In certain cases, it is easy to see why the structural parameter can be estimated at
the classical n=1/2 rate. Pfanzagl (1990, Example 1, page 67) and van der Vaart (1988,

Example 5.2) both consider the paired exponential mixture model with density

f(1,22]0,Q) = /nexp(—nw1)9n exp(—6nz2) dQ(n),

with respect to Lebesgue measure for x1, x5 positive. This model corresponds to observing
the random variables X; = Y ~1Z; and Xy = (Y)~!'Z5, where Z; and Z, are independent
standard exponentials, independent of the random variable Y with unknown distribution
Q). The model becomes parametric when the data is transformed by taking the ratio
X1/X>. Consequently, the question of whether the structural parameter can be estimated
at classical rates is not an issue. The only problem that remains is the determination of
lower bounds for efficiency and the construction of O, (n=1/2) efficient estimators for the
structural parameter 6.

—1/2 {5 the correct

3. Objective and Layout of Thesis It is not always clear whether n
rate of convergence for uniform estimators of the structural parameter. Nor is it clear how
rates of convergence are related to constraints on the mixing behavior, especially when

this behavior is not restricted to be smooth.

The main objective of the thesis will be to determine lower bounds for rates of conver-

gence for estimators of #, and to identify how these rates are related to the type of mixing
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behavior. Because of the semiparametric nature of the model, rates of convergence will be

defined in a locally uniform sense to incorporate a minimax approach to estimation.

Chapter 2 formally introduces the idea of locally uniform rates of convergence and
adapts, to the mixture setting, a general approach by Le Cam (1973) and Donoho and
Liu (1987) for determining lower bounds for rates of convergence. The chapter collects
together standard ideas and inequalities which make it possible to relate distances between
probability measures to lower bounds for rates of convergence. Some simple motivating

examples illustrate the ideas and mechanics applied to the mixture problem.

Chapter 3 presents techniques for determining lower bounds for rates. The first step is
to identify mixture models for which it is not possible to estimate 6 at a O, (n_l/ 2) rate.
Section 2 states sufficient conditions for identifying mixture models whose information, in
the sense of <1.10>, can be made arbitrarily close to zero. Consequently, the section makes
it possible to identify models whose structural parameters cannot be estimated at classical
rates. The proof of the main theorem revolves around showing that a linear operator much
like the one in <1.7> has a dense range, so that the information <1.10> is nearly zero.
The result is limited in that it asserts that estimation rates for § must be slower than
n~1/2 but does not give explicit rates. The second step is to explicitly determine lower
bounds. Section 3 describes a Fourier technique for constructing explicit examples that
establish lower bounds for rates of convergence. The technique is applicable to location

mixture models with unknown scale parameter.

Chapter 4 is devoted solely to the normal mean-mixture model and the problem of
determining lower bounds for rates of estimators for the unknown standard deviation.
Both techniques of Chapter 3 are used here. The Fourier technique shows that rates of
convergence depend upon the smoothness of the mixing. We find that the smoother the

mixing is allowed to be, the slower the rates of convergence.

Chapter 5 considers the question of how well the shape parameter, 8, can be estimated
in the Weibull mixture model <1.4> without covariates. By applying a simple transfor-
mation, the model is recast as a location-mixture with unknown scale parameter. The
Fourier technique of Chapter 3.3 is used to show that the scale parameter in the trans-
formed model cannot be estimated at a rate faster than O, (n=1/4). This will indirectly

establish O, (n~1/4) as a lower bound for estimation in the original problem.

4. What Remains The main accomplishment of the thesis is to show that the structural
parameter in the semiparametric mixture model is in general not estimable at classical
O, (n_l/ 2) rates. We do so by exhibiting a general class of mixture models for which

the structural parameter can only be estimated at rates slower than O, (n~!/2), and by
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establishing explicit lower bounds in two well known models.

This research, therefore, has pushed the knowledge about rates of convergence in one
direction. The next logical step is to pursue the problem of determining upper bounds for
rates. In Chapters 4 and 5, we describe constructions which establish explicit lower bounds
in the normal mean-mixture model and the Weibull mixture model. The constructions
are chosen to push the lower bounds as far as possible, but it is unclear whether the rates

given there are optimal or what the upper bound for rates are.

It is left for future research to determine the answers to these questions.



Chapter 2

Regular Estimators

1. Introduction A sensible requirement for a good estimator to satisfy should be that
the estimator perform well under a fairly wide class of models. As discussed in Chapter
1, such a requirement is quite common in the modern semiparametric literature where
the requirement that estimators possess good uniformity properties is motivated by the
existence of super-efficient estimators. We adopt this uniformity approach to the mixture
problem, where our interest in estimation will be from a rates of convergence perspective

rather than an efficiency standpoint.

For simplicity assume that we are interested in uniformly estimating a real parameter
o in a real set ©. Informally, uniformity (or what we will later refer to as regularity) of
an estimator én for 6y will mean for a small fixed € > 0 there exists a small 7 > 0, such

that for a large enough sample size
<2.1> Py 6, — 0> 71} <e,

for all @ in some neighborhood of 0 (here P} denotes the n-fold product measure of Py). By
allowing both 7 and the neighborhood to depend upon the sample size, expression <2.1>
can be made into a precise statement for locally uniform rates of convergence (Defini-
tion <2.3>). Such a definition depends explicitly on the choice of neighborhoods, so that
rates of convergence defined in this fashion should be interpreted in the context of the

implied topology.

The chapter collects together many standard results and illustrates how they can be
applied to the mixture problem. One key idea, introduced by Le Cam (1973), is described
in Lemma <2.5> which asserts that if an estimator satisfies a local uniformity condition,
then a “good” test for discrimination exists. By running the argument in reverse, the
lemma provides a method for determining lower bounds for rates of convergence. Section
3 presents a motivating example that illustrate how the method can be used to determine

lower bounds in the mixture problem.

A story book rendition of the Le Cam argument is as follows. Let P = {Py : 6 € O} be
a class of probability models. The parameter space © can be arbitrary, but for simplicity
take it to be real. You are the statistician interested in estimating 6 for a fixed large
sample size. Someone tries to sell you an estimator for # which is reputed to have good
properties. In fact the seller tells you that he can estimate # with high precision and with

Py-probability of at least 0.99 for a class of models of your choice, C C P. You ask for the

-9 —



Chapter 2.2: Locally Uniform Rates of Convergence 10

precision of the estimator and are told an outrageously small number, such as 107°°. You
doubt that such an estimator can exist, so you perform a simple calculation. If such an
estimator were to exist, then it would be possible to construct a test between two models in
C whose # parameters are separated by more than 2 x 10759, such that under either model
the test has a probability of misclassification of only 1%. This in turn means that the
two sample distributions are “distinguishable”. Therefore, to show that such an estimator
cannot exist, you need only find a pair of models in C with 6 parameters differing by at
least 2 x 107°° but whose sample distributions are “close”. If such a construction were

possible, then you would know not to waste your money.

Story book aside, the mathematical argument follows much along those lines and pro-
vides a means for determining lower bounds for rates of convergence. The key to the
argument involves being able to gauge whether two sample distributions (product mea-
sures) are close in some sense. This is done through the use of the total variation distance,

a metric which measures distances between probability measures. It is defined as:

<2.2> Definition: Let P,@Q be probability measures on (X, A). The total variation

distance between P and @) is defined as,

u(P.Q)=sup | PA-QA|.

If P and Q) have densities p and g with respect to a o-finite measure \ on (X,.A), then
1
v(P,Q) =5 Alp—al.

The total variation distance is a metric with a range of values that lie between zero
and one. A value of zero between two probability measures implies that the measures are
identical while a value of one implies that the two measures are singular and therefore can

be perfectly discriminated between.

In the context of hypothesis testing, the metric has the following interpretation. If F
is the set of all measurable functions over (X, .A) that are bounded between zero and one,
then

o(P.Q) = 1= L [P(L— 1)+ Qf].

That is, the total variation distance between two probability measures equals one minus
the minimum sum of the type-1 and type-2 error amongst all zero-one tests between the
two models. It is this relationship between testing and distance which makes it possible to
translate the problem of determining rates of convergence into one concerning hypothesis

testing.
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2. Locally Uniform Rates of Convergence Let P be a family of probability mea-
sures on a common measurable space (X,.A). Assume that we observe a sequence of n
independent realizations from a distribution Py € P. Our aim is to uniformly estimate

k(Pp), where £ is a functional mapping P onto a metric space (D, d).

Uniform estimation by an estimator T, for x(Py) will mean that under sampling from
P, the estimator T,, gets close to k(P,) for sequences P, which converge to Py in the
total variation sense. In terms of rates of convergence, this idea is made more precise as
follows. Let U equal the topology on P induced by the total variation metric. Let a,, be

a positive sequence converging to zero, and define
U(Py,a) = {P € P s v(Py, P) < an )

to be a sequence of O (a;,) shrinking neighborhoods of Py in 4. With this notation, we

adopt the following as our definition for uniform rates of convergence:

<2.3> Definition: Estimators T, for k(P) are said to be regular at Py for the rate of
convergence 8y, if for each € > 0 there exists a finite positive constant K (e) such that for
each sequence «,, decreasing to zero
limsup sup  P™{d(T,,x(P)) > K(€)dn} <,
n Pe Z/{(P(),Otn)

where P™ denotes the n-fold product measure for P.

Definition <2.3> asserts that if an estimator T, is regular with rate of convergence dy,
then T, estimates x(P) to a precision of O (d,) with high P-probability over a class of
O () shrinking neighborhoods of Py. It also asserts that this hold for each sequence ay,

converging to zero.

One argument for insisting that uniform estimation hold for different «,, sequences
can be made in terms of confidence intervals. If an estimator 7,, is regular with rate of
convergence 6,, then Definition <2.3> implies that for each € > 0 and each sequence «,,
decreasing to zero there exists an integer ng = ng(e, ay,) such that

sup  P™{d(T,,x(P)) > K(€)d,} < e, for n > ny.
PEU(Py,arn)
By inverting this probability statement, we can construct for each n > ngy a confidence
interval for x(P) with size at least (1 —€) x 100%

{0 € D:d(T,,0) < K(¢)on},

that holds for all P € U(Py, o). Of course the confidence statement is only useful if the
data is sampled from a model which lies in the O (4,,) neighborhood U(Py, a,) of Py. How-

ever, since Py is unknown, it may be impossible to discern whether the marginal sampling



Chapter 2.2: Locally Uniform Rates of Convergence 12

distribution falls in the required neighborhood. Thus, to make the confidence statement
practicable, it is desirable to require uniform estimation to hold over neighboorhoods which

shrink at different rates.

If T, is a regular estimator with rate of convergence J,, then it is also regular with
rate ¢/, for each sequence 0, > J,. Thus, Definition <2.3> is a statement concerning
achievability of rates and does not address the issue of whether a regular rate is optimal
in the sense that it is the fastest achievable rate possible (see Stone, 1980 for another
definition of optimality in the context of rates of convergence). We do not pursue the issue
of optimality in the thesis, instead our goal will be to determine lower bounds for rates of
convergence. A problem which amounts to finding a rate (571 such that each estimator for

the functional of interest fails to satisfy the probability inequality in Definition <2.3>.

For example, assume that for each small ¢ > 0, we can show that a regular estimator for
k(Pp) cannot achieve the rate 6n = n~ V(@9 Then this establishes O, (n_l/(d_e)) as a
strict lower bound for each € > 0, and implies that a regular estimator cannot convergence
faster then the lower bound O, (nfl/ 4). Of course to be able to establish that this is
in fact the best lower bound, or more precisely that O, (n_l/ d) is the optimal rate of
convergence, we would need to show that O, (n_l/ d) is an achievable rate of convergence

(for example, by constructing an estimator that is regular with the asserted rate).

Because we only consider the problem for lower bounds of rates of convergence, we here-
after omit the distinction between achievability and optimality except when a clarification

is necessary.

To see how Definition <2.3> applies to the mixture problem, first introduce the following

terminology and convenient notation.

<2.4> Definition: Let F(O,N) = {f(- | 0,n) : (6,n) € © x N C R* x R} be a
parametric family of probability density functions with respect to a o-finite measurev < y,
where p is Lebesgue measure. We assume that f(xz | 6,7) is measurable as a function of
(x,n). Form the mized distribution Py o over (IR, B(IR)) with v-density

f(16.Q) = / £ | 6,m) dQ(n),

and form the class of all such distributions P(©, Q) as 6 ranges over © and () ranges over

a class of mizing distributions Q with support on N.

In the context of the semiparametric mixture problem, take the family of probability
measures P of Definition <2.3> to be the class of mixed distributions P(©, Q) described
in Definition <2.4>. Our interest is in estimation for the structural parameter so that the

functional of interest, &, is defined by x(Py q) = 6 for Py o € P.
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The general approach in the semiparametric mixture literature, at least for the pur-
pose of calculating information bounds, has been to consider estimation along sequences
generated from smooth paths. Rates of convergence for the structural parameter are
implicity set at a O, (n_l/ 2) rate and uniform estimators are required to perform well
over O (n_l/ 2) shrinking Hellinger neighborhoods where the mixing densities satisfy a
Hellinger differentiability property (Begun, Hall, Huang, and Wellner, 1984). We will not
require that the mixing densities be Hellinger differentiable (we will not even require that
the mixing distribution have a density), rather we investigate rates of convergence over
O () shrinking neighborhoods of Py without any additional constraints on the mixing

distribution other than those implied by our choice for Q.

The main differences, therefore, in this approach to uniform estimation is firstly that
we do not presume that rates of convergence are set at a O, (n_l/ 2) rate, and secondly
that we require uniform estimation to hold over classes of O («,) shrinking neighborhoods,
for all o, sequences which decrease to zero. Another argument in favour of using different
shrinking neighborhoods can be made in the mixture problem, as follows. If F(0, ) is a
parameteric family which is smooth in 6, then we would expect that v(Py, B,) = O (8,,) for
sequences P, € P which have parameters (6p + O (d,,) , Qo) converging to the parameter
(6o, Qo) for the distribution Py. If estimation for the structural parameter in such a
family is at a O (d,) rate, then it seems reasonable to require that the rate take into
account shrinking neighborhoods that contain such P, sequences. Our definition takes

into account such neighborhoods.

By working with the total variation distance, the next lemma shows that the uniformity
of an estimator implies the existence of a good test for discriminating between models.
Indirectly, the existence of such a test will provide a method for determining lower bounds
for the rate of convergence of regular estimators. The lemma is a reformulation from
Le Cam (1973, Lemma 1). The same idea is also used effectively in Donoho and Liu (1987,
1991).

<2.5> Lemma: LetP,U, k, and o, be as in Definition <2.3>. If estimators T, for k(P)
are regular at Py € P with rate of convergence 6,,, then for each € > 0 there exists a finite
constant K (e) such that for each sequence P,, € U(Fy, o) with d(k(Fp), k(P)) > 2K (€)dy,

v(P,PY) > 1 — 2, for n > ny,

where ng = ng(€, o, ) is an integer which depends upon both e and the sequence a,.
The proof of this lemma is remarkably simple and is included for completeness.

Proof of Lemma <2.5>: By the regularity of 7T;, it is possible to choose, for a fixed
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€ > 0, a constant K (€) such that for all P € U(Py, o)
Pd(To, 5(P)) < K()a} > 1— ¢, forn > n,
where ng = ng(€, ay). In particular, because Py € U(Fo, ) we have PlA, > 1 — ¢, for
n > ng, where
Ay ={d(Th, k(Po)) < K(€)on}
If d(r(FPo), k(Pn)) > 2K (€)dn, then
P An < PHA(Th, k(Pn)) = K(€)dn}-

Therefore if P, € U(Py, a,), then the right-hand side is less than e for n > ny.

We have exhibited a set A, so that Pj'A, > 1 —¢€ and P'A,, < € for n > ng. This

implies the lower bound

(PP, PY)>1—2,  forn>ng. [

Informally, Lemma <2.5> asserts that if an estimator 7;, is regular with rate of conver-
gence 0, then there exists a test based on T;, which can discriminate between Py and a
sequence P, € P with total variation distance v(Fp, P,) = O (a;,) and whose functionals

are larger than 2K4,, away from k(FP), for a large positive K.

We can exploit the lemma to establish lower bounds for rates of convergence by the
following contrapositive argument. Let § be a fixed small positive number. For a given
suggested rate of convergence ¢,, exhibit for each finite K > 0 a sequence P, € P such
that v(Pp, P,) = O (av,) and

|k(Po) — k(Pn)| > 2K6,,
but with product total variation distance bounded away from one:
v(Pg, P < 4.

By Lemma <2.5> this construction shows that a regular estimator for x(Pp) cannot have

rate of convergence J,, and establishes ¢,, as a lower bound for the rate of convergence.

To be able to implement the Le Cam approach, it is necessary to calculate L'-distances
between product measures. To circumvent the difficulty of such a calculation, the usual
practise is to work with the Hellinger distance because of the convenient manner in which

the distance factorizes for product measures.

<2.6> Definition: Let P, QQ be probability measures over (X, A). The Hellinger dis-

tance between P and (@ is defined as

H(P,Q) = \/A(vp—va)’
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where p and q represent the density of P and () with respect to a o-finite measure \ on

(X, A).

We work with densities
frw) = [ ] 6+ 70 dQ. (o).

and frequently will need to calculate the L!-distance between the product measure for
fr, for 7 > 0, and the product measure for fy, when 7 = 0. In this setting it might be
inappropriate to work with square roots of densities and the Hellinger distance. Instead

we will find it more convenient to work with the squared L2-distance:

2
Ir
(k).
/ fo
(The observant reader will recognize that in the discrete case this is the Pearson goodness

of fit value.)

The following lemma makes explicit the relationship between the “Pearson distance”
and the total variation distance. It is a slightly weaker result than the one used by Donoho
and Liu (1987, 1991) who work with the Hellinger distance.

<2.7> Lemma: Let @ < P be probability measures over (X, A). Then for each 6 > 0
there exists a v > 0 such that,

2
o(P",Q") <5 if P(%—l) <%.

Proof of Lemma <2.7>: Let A = P+ @ and denote its n-fold product measure by \".
Let p =dP/d\, ¢ = dQ/d)\, and denote their n-fold densities by p™ and ¢™ respectively.

From the Cauchy-Schwarz inequality:
1
o(P.Q) = 5A VP Vall VP + val
1
< §H(P7Q)V 4_H(P7Q)2
Rewrite this as,

o(P,QP <1-(1- SH(P,QP)
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Use this inequality and the definition for the Hellinger distance to show:

2
o QY < 1 1= (P Q"]

=1-[\"Vpq"]®
=1-[\/pq]*"
1 2n
<2.8> =1- [1 - §H(P, Q)z] :

Use the fact that @ < P to bound the Hellinger distance (see for example: Le Cam,
1986, Chapter 4):

V

P(%—1)2_)\[(\/ﬁ—\/&)Q(\/ﬁ+\/§)2%{p7A0}]

(VB v’ {p #0)]
H(P.Q)*

Y%

<2.9>

Use this inequality in <2.8> to show that v(P™, Q™) < § when

dQ *
Pl—=-1 —
(dP ) < n’
for a suitably choosen v > 0. [

The next lemma puts together some of the previous ideas and states sufficient conditions
to infer lower bounds for rates of convergence. We refer to it frequently throughout the

thesis.
<2.10> Lemma: Suppose there exists a path P, € P through Py indexed by T > 0,
such that for a 8 > 0:

(i) |&(P;) — &(Py)| > B, for T near zero
(ii) Py (dP;/dPy —1)* = O (1%).

Then the rate of convergence, in the sense of Definition <2.3>, cannot be faster than
0 (nil/d).
Proof of Lemma <2.10>:  Suppose d§,, = o (n’l/d). Write P, for P, at 7 = 2K, /0,
so that [#(P,) — k(Py)| > 2K6, and Py (dP,/dPy — 1) = 0 (n~"). By Lemma <2.7>,
o(Py, P2) = 0.

No matter how large K is chosen, we cannot keep the total variation distance bounded

away from zero. Deduce the asserted lower bound by Lemma <2.5>. []
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In certain cases, we will not be able to establish the conditions of Lemma <2.10> which
are sufficient to show explicit lower bounds for rates of convergence. However, it still may

be possible to obtain a lower bound. The next lemma describes how.

<2.11> Lemma: Suppose the conditions of Lemma <2.10> are replaced by: for each
€ > 0 there is a path satisfying (i), where 8 > 0 is independent of €, such that
dP; ?
Pl == —-1) <er?
’ (dPo )
for T near zero. Then the rate of convergence, in the sense of Definition <2.3>, must be
slower than O (n_l/Q).

Proof of Lemma <2.11>: Fix K > 0 and let § > 0 be a fixed small number. Choose
a path P, so that 4K2¢/(n3?) is less than the v in Lemma <2.7>. Let P, denote P, at
T =2K/(y/np), so that |k(P,) — k(Fp)| > 2K/+/n and

dP; ? 4K?
Py (dPO — 1) < W;, eventually.

Then by Lemma <2.7>

v(Pg, P) <9, eventually.

Because this holds for each K > 0, Lemma <2.5> shows that a regular estimator must

have rate of convergence slower than O (n_l/ 2). [l

3. Two Motivating Examples This section presents motivating examples that indicate
how the inequalities and ideas of the previous section can be used to describe rates of
convergence in the mixture problem. Before proceeding we first need to consider the
problem of identifiability, for without some type of identifiability constraints it would be

futile to pursue the problem of determining rates of convergence.

For example, consider the normal mean-mixture model presented in Chapter 1. This
model is formed by integrating over the mean of a normal density with unknown standard
deviation. As previously observed the model has the convenient representation as a con-
volution 87 + Y, where Z has a N(0, 1) distribution, 8 is the unknown positive standard
deviation, and Y has an unknown distribution independent of Z. Without any constraints
on the types of distributions that Y can take, the model as it stands is unidentifiable. For

example, there is no way to tell the mixture model (slightly abusing notation)
2N(0,1) +3N(0,1)

from the mixture model
3N(0,1)4+2N(0,1),
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even though the structural parameters are different. Clearly then, it is necessary to require
identifiability in the model before pursuing the estimation problem. That is, we need to
assume that if Py, o, = Ps,,Q,, then 0; = 0> and Q1 = Q.

Assuming that we have identifiablity, consider the problem of estimating an unknown
location parameter in the mixture model formed by mixing over the scale of a scale-location

density. This model is described by the random variable
<2.12> X=YZ+0,

where Z has a known density f, and Y is noise with an unknown distribution @ indepen-

dent of Z. The problem is to estimate the unknown location parameter 6.

If Z has zero median, then the median for X equals the parameter of interest, 6.
Therefore, if the mixture model is identifiable and the mixing distribution @ suitably
restricted, we should expect the sample median to be a regular estimator for 6 with

achievable rate of convergence O, (n_l/ 2). The next example shows this to be true.

<2.13> Example (regularity of the median): Let F be the distribution function for
the random variable Y'Z of <2.12>. Let Q be a class of mixing distributions composed of

distributions which satisfy
<2.14> |F(t) — F(0)| > ~[t],

for all ¢ in a fixed neighborhood of zero, where v > 0 is a fixed constant. (Notice that
because the median for Z is zero, F(0) = 1/2.) Let P(©,Q) be the class of mixed
distributions of the form <2.12>, where the unknown location parameter, 0, takes values
in © = IR. We will show that the median is a regular estimator for the structural parameter
of each P € P(0, Q), and has achievable rate of convergence O, (n_l/ 2).

Let M, be the median of the sample obtained from n independent realizations of a

P € P with structural parameter . We will show that by choosing K to be suitably large,
<2.15> P"{|M,, — 6] > Kn~1/?}

can be made arbitrarily small for large n, independent of the sampling scheme P. This
will be more than enough to demonstrate our assertion concerning the regularity of the

median.

For convenience assume that the sample size is even and that some method is used to

determine the sample median in the case of ties. Consider one side of the bound in <2.15>:

<2.16> PY{M, — 0> Kn~'/?} = P"{M, >0+ Kn~'/?}.
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If M,, > C, then the number of observations which are greater than or equal to C' must
be at least n/2. Thus,

n > -1/21 _ pn S —1/2y 5 T
PM, 2 0+ Kn Y2} = PP{S (X, 2 04+ K2y 2 2

}

- P”{Bin (n,1— F(Kn~Y/?)) >

n
2

n 1 71/2 n
<2.17> <P {Bln (n, 3 yKn=%) > 5}
in

where the last inequality is obtained from the constraint <2.14>, and Bin (n, p) is used to

denote a random variable with a binomial (n,p) distribution.

Use the inequality,
Pn|Bln (nup) - np|2

P"{Bin (n,p) —np > Cy/n} < ot : for C >0
n
1
< roik
in <2.17> with p = 1/2 — yKn~/? and C = yK, to show that
1
P"{M, >0+ Kn '/} < :
{ V= Ry

Deduce that the inequality <2.17> can be made arbitrarily small by choosing K large
enough, independent of the sequence P. This takes care of one half of the inequality
in <2.15>. The other half is dealt with in the same fashion.

<2.18> Remarks: It is not hard to construct a class @ which satisfies condition <2.14>.
For example, assume that Q equals the class of distributions that have support on the

set [A,00), where A is a fixed positive constant. Then, by interchanging the order of

0] 1)

A change of variables and the fact that the support of @ is a subset of [A4, c0) allows us

to bound F'(t) by
—[t[/A [t]/A
/_ f(z)dz < F(t) g/_ f(z) de.

oo o0

integration, we can express F'(t) as

Express each integral as F'(0) plus a contribution over a range depending upon ¢ to show

that <2.14> holds for all @ € Q, for values of ¢ in a small neighorhood of zero.
N

On the other hand, there are cases where mixing can pathologically affect rates of

convergence. Consider the normal mean-mixture model once again. As we previously
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observed, the model is unidentifiable if the mixing distribution is allowed to contain normal
components. Consequently no rate of convergence is attainable in the model with normal
components. We would like to find out if this is still the case even when the class of mixing

distributions is constrained to ensure identifiability.

The next example begins to answer this question by showing that the standard deviation
might not be estimable at any guaranteed rate of convergence if the model is only required
to be identifiable. The example shows how to construct two normal mixture models whose
standard deviations are of some distance apart, and yet whose densities can be made to be
as close as possible by an appropriate choice for the mixing distribution. The construction
takes advantage of the near lack of identifiability in the model created by allowing too
large a class of mixing distributions, and because of this the result is not of any practical
consequence. Rather we introduce it at this time to illustrate how the various inequalities
and ideas of the previous sections can be used in the mixture setting to derive rates of

convergence.

<2.19> Example (normal mean-mixture model): Let P(0, Q) equal the class of
normal mean-mixtures, where the unknown standard deviation takes values in © = (0, 00),
and the class of mixing distributions Q is composed of distributions that contain no normal
component. That is, no @ in Q can be expressed as a convolution of a nondegenerate

normal with another distribution.

We will show that P(0, Q) is identifiable and yet a regular estimator for the standard

deviation cannot have rate of convergence faster than O, (n='/4), for each d > 0 .

Establishing the identifiability of P(©, Q) involves a characteristic function argument
which utilizes the fact that the normal mean-mixture model can be expressed as a convo-
lution. Let v; = (0;,Q;) where §; € © and Q; € Q for i = 1,2. Let P,, be the normal
mixture model corresponding to ;7 + Y;, where Z is normally distributed, and Y; has
distribution @; independent of Z.

If P, and P,, are equal, then their characteristic functions must also be equal. There-

fore, if we denote the characteristic function for @; by g,

exp(—5(t01)*)¥q, (t) = exp(—3(t02)*)vq, (1),
which implies that
le (t) = exp(—%tz(eg - 6‘%))2/]@2 (t)

Therefore, @1 is the convolution of Qs and a N(0,603 — 6%) distribution if 63 > 63.
Consequently, P(©, Q) is identifiable if Q consists of distributions that contain no normal

components.
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Let Py be the assumed true mixed distribution with standard deviation 6y and mix-
ing distribution @y corresponding to the atomic distribution which puts all its mass at
zero. Without loss of generality assume that 6y = 1. Then Fy is the standard N(0,1)

distribution.

Let 6, = n~ /% be a fixed sequence decreasing to zero and let K > 0 be a large fixed
constant. Let Z,, denote the random variable with distribution N (0,1 — K§,), and let Y,
be independent of Z,, with distribution N (0, Kd,). Let }N/n =Y, {|Y,| < M,}, where M,
is a positive sequence converging to infinity. Denote the distribution for Y,, and Y, by Qn,

and @n respectively.
Define the sequence of normal mean-mixture models, P,, by the random variables
Z,+Y,.
That is, P, € P with standard deviation (1— K4,)"/2 and mixing distribution Q,,. We
will show that although the standard deviations for P,, and P, are separated by more than

dn, the total variation distance, v(PJ, PY), will be bounded away from one for each K > 0.

By Lemma <2.5> this will establish d,, as a lower bound for the rate of convergence.
Notice that Py can also be represented as
Zn+ Y.

Therefore, the problem of discriminating between a sample from Py and P, should be as

difficult as discriminating between a sample from @,, and @n In particular,
v(Fg, P < 0@, Q).

A proof of this fact follows by working with the product densities. Let h,, denote the
density for Z,. By interchanging the order of integration:

o822 = [| [ e =)ot ) (0Q19) - a3 ax

1 ~
< [ hnler =) bten — v ax 5 [ 0Q3) - Q) |
= (@5, Q).
By the definition for }7n,

dQ.(y)
dQn(y)

Expand the quadratic to obtain,

—1={lyl < M} @uf{lY] < Mp}) ™" — 1.

~ 2
dQn B _1
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By choosing M,, to converge to infinity fast enough, the right-hand side can be made
less than /n for small v > 0. Deduce by Lemma <2.7> that v(Q™, Q") can be made
arbitrarily small for each K > 0, and therefore conclude that the standard deviation is
not estimable at the rate of convergence ¢,,. Because §,, is arbitrary, this shows that the

standard deviation is not estimable at any rate. [

<2.20> Remarks: We return to this example in Chapter 4 where we discuss different
methods for constraining the class of mixing distribution and show how lower bounds for

rates of convergence are related to these constraints.



Chapter 3

Techniques for Determining Rates of Convergence

1. Introduction Consider the parametric family of densities
<3.1> FO,N)={f(-16,n):(0,n) € ©®xN C RFx R},

where the underlying densities f(x | 8,7) are taken with respect to a o-finite measure, v,
dominated by Lebesgue measure. As in Definition <2.4>, we assume that f(z | 6,7) is
measurable as a function of (z,7) and form the class of mixed distributions, P(0, Q), to

consist of distributions with v-densities
f16.0) = [ o 6.1) Q)
where Q is a class of mixing distributions with support on A.

Our objective is to determine lower bounds for rates of convergence for estimators of 6
assuming that © and Q are chosen so as to make P(0, Q) identifiable. Determining a lower
bound for a particular component of the vector 6 is at least as difficult as determining the
rate when the remaining k£ — 1 components are known. Therefore, for simplicity we will

take © to be a one-dimensional parameter space.

Let Py € P(©, Q) have parameter (6p, Qo). Let Pr € P(©,Q) be a path through Py
formed by perturbing 6y by 7 and by perturbing Qg in some fashion. If F(©,N') satisfies
mild regularity conditions and if the perturbation in ()¢ is smooth enough, then we would
expect the likelihood ratio to be expressible as

dP;
dPy
where A is an L?(P,)-function, and R(-,7) has L?(Py)-norm of order o (7) (see Pfanzag],

1990 for a different example where a similar form for the likelihood is assumed).

<3.2>

=14+7A4+ R(-,7),

The layout of the chapter is as follows. Section 2 presents sufficient conditions (Regu-
larity Conditions <3.6>) which ensure that the likelihood ratio for smooth P, paths can
be expressed in a form similar to <3.2>. There we consider families F(©, ') which have
a specific exponential form, and show that when the class of mixing distributions is rich
enough, it is possible to construct for any positive €, a smooth path P, € P(0, Q) through
Py € P(©, Q) with likelihood ratio expressible as <3.2> such that PyA? < e. That is,
the path P, is constructed so that the component in A attributable to the perturbation
in the mixing distribution nearly cancels the component due to the perturbation in the
structural parameter. This will imply that the structural parameter cannot be estimated
at the usual O, (n=1/2) rate.

— 23 —



Chapter 3.2: Checking for Zero Information 24

Section 3.3 describes a Fourier technique for constructing paths, P-, whose likelihood
ratio can be expressed in a form similar to <3.2>, but whose linear coefficient A is an
L?(Py)-function depending upon 7. The rate of decrease of the L?(Pp)-norm of these
tangents determines explicit lower bounds for rates of convergence. The technique is

applicable to location-mixture models with unknown scale parameter.

2. Checking for Zero Information Now to formalize the discussion of the previous
section. Let F(©,N) be a parametric family of densities of the form <3.1> which can be

written as,
<3.3> f(z | 6,n) =exp(ns(x,0) + t(x,0) + b(6,7)).

For fixed 0 it defines an exponential family indexed by 7, with natural parameter space

N(O) = {77 : /exp (ns(zx,0) + t(z,0)) dx < oo}
We assume that A (f) = N for each § € © and that (0,00) C N.

<3.4> Example (Weibull mixture model): Let F(0,\) be the parametric family
of Weibull densities
f(x | 6,n) = 02" nexp(—na?),

with respect to Lebesgue measure on (0, 00), where © = (0,00), and N' = (0,00). The

densities in this family conform to the parametric requirement <3.3> with s(z,0) = —,

t(z,0) = (0 — 1)logz and b(6,7n) = log(fn). Notice that for each 6, the natural parameter
space is NV = (0, 00). U

Let Qo € Q and define £5°(Qo) to be the set of functions which are bounded a.e.
[Qo] and which have zero Qg-expectation. For h € L& (Qo), define the perturbed mixing
distribution Q- by

<35> dQ-n(n) = dQo(n) (1 +7h(n)),

for small 7. In addition to assuming that Q is constrained to ensure that P(©, Q) is
identifiable, we also assume that Q contains all distributions @), for 7 in a neighborhood

of zero depending upon h and Q.

Let Py € P(©, Q) be the assumed true distribution with structural parameter 6y € ©
and mixing distribution Qo € Q. Let f; ; denote the perturbed mixed density

frn(@) = f(x ] 00+ 7,Qrn)
= /f(,f | 6‘0+7—7777) dQT,h(T])-

Denote the density for Py by fo. It is obtained by evaluating f; 5 at 7 = 0.
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Using paths of the form <3.5>, we will show that if Q is a large enough class and
if F(©,N) satisfies regularity conditions, then it is possible to find a Qo € Q and a
h € LF(Qo) so that frp ~ fo. This in turn will show that the structural parameter

cannot be estimated at a O, (n_1/2) rate.

The heuristic for the argument is as follows. Assuming that it is possible to differentiate

densities:

fonlz) = / £ | 8o+ 7 )L+ Th(n)] dQrn(n)
~ [ 100047 s b0+ | 04 rhia@at

= poa) 47 [ [ Go 10+ 0o )] dQulo) + -

By dividing throughout by fo, obtain the approximation

fT"h(I) ~ T x x
Fo(@) ~ 1+ 7[A(Qo, h)(z) + p(z)] ,
where )
AQu1)@) = = [ B 60, dQun),
and
1 0
p(x) = %@ %f(x | 60,m) dQo(n)-

To make f; 5 ~ fo, the aim will be to find a ()g and an h such that
p(x) = —A(Qo, h)(z).
Here are the conditions that justify the formal differentiation:

<3.6> Regularity Conditions: Suppose Py € P(©, Q) with parameter (6y, Qo). Say

that P, satisfies regularity conditions, if for small T

0
A(%nﬂ') = %f(fb | bo + 7—777)
exists for a.a. x [v] and a.a. n[Qo], such that:
(i) A(z,m,T) is continuous in T,
(ii) there exists a dominating function M such that
A(z,1,7)

<3.7> A\E0T)
[z ] 6o,m)

< M(z,m),
and QoM (z,-) € L*(v).

Define L2(Py) to be the equivalence class of Py square integrable functions which have

zero Py-expectation. Under the previous conditions it is possible to show:
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<3.8> Lemma: Assume that Regularity Conditions <3.6> hold for Py € P(©, Q) with
parameter (8y, Qo). Then for each h € L5°(Qo)

,fT,h

0

2
<3.9> P, < - 1> < 7?Py(A(Qo, h) +p)?,

for small 7, where p € L3(Py) and A(Qo, ) is the linear map from L (Qo) into L3(Fp).

The next lemma asserts the existence of a Qo and an h € LF(Qo) which makes the

right-hand side of <3.9> small.

<3.10> Lemma: Suppose Qo € Q is a discrete distribution with countably infinite many
atoms on N* C N. Then the range of the linear operator A(Qo,-) is dense in L3(F).

Lemma <3.8> and Lemma <3.10> will establish the following theorem.

<3.11> Theorem: Assume that Regularity Conditions <3.6> hold for Py € P(0©, Q)
with parameter (0p, Qo), and that Qo satisfies the conditions of Lemma <3.10>. Then a

regular estimator for 6y at Py must have rate of convergence slower than O, (n’l/ 2).

Proof of Theorem <3.11>:  The operator A(Qy, ) is dense by Lemma <3.10>. There-
fore, for each € > 0 there exists a function hg € L5°(Qo) satisfying Py(A(Qo, ho) + p)? < e.
By Lemma <3.8>,

2
Py (% — 1) <er? eventually.
0

The fact that e is arbitrary proves the theorem by Lemma <2.11>. []

<3.12> Example (Weibull mixture model, continued): Let Q be the class of mix-
ing distributions with support on the set N* = (19, 1), where 0 < 9 < 11 < co. Because
N* is bounded, each Q € Q must have first moment bounded by 7;. Chapter 5.1 shows
that this is a sufficient condition to ensure that P(0, Q) is identifiable. Notice, as well,
that if Qo € Q and h € L&°(Qo), then

/ndQT,h(n) = /non(n) +T/h(77) dQo(n)
<m (1 +[7[[[h]ls),

where ||h]|oo is the sup-norm for h. This implies that the left-hand side of the expression
must be less than or equal to 7; eventually, and therefore, that Q is rich enough to contain

all distributions of the form <3.5>, for small enough 7.

We show below that Regularity Conditions <3.6> holds for each P € P(0, Q). There-
fore if Py € P(O, Q) with parameter (6p, Qo), then Theorem <3.11> shows that it is not
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possible to estimate 0y at a O, (n_l/ 2) rate when (g is discrete with countably infinite

many atoms.

Let us verify the regularity conditions. Differentiation with respect to 6 gives

0
50 (x]0,n)=g(z,0,n)f(z|0,n),
where

1
g(z,0,n) = 7 +logz — nal log x.

To establish the regularity conditions we must show that the right-hand side of the

inequality
A(x7n77—)2 2f($|90+7',77)2
— = g(a, 0 + 7)o
7o o)~ " o)
<3.13> < Cg(x,00 4 7,0)2x@T27"D exp [—77:1:9“ (227 — 1)] ,

can be bounded by a function independent of 7 satisfying <3.7> (here C is a finite constant

depending upon 6y for small 7).

By restricting 7 to be positive, construct a dominating integrable function for <3.13>
over the separate regions 0 < z < 1 and x > 1 (for example, use the fact z*|logz |’ is
integrable over 0 < z < 1, for s,t > —1). Use the boundedness of N* to construct the
function independent of 1 to show that <3.7> holds. This verifies the regularity conditions.

O

Now to prove the two lemmas.
Proof of Lemma <3.8>:  Use the mean value theorem to expand the perturbed density
as
<3.14> f(@ 0o +7n) = f(x]bo,n)+7Ax,n,0)+r(z,n,7),
where the remainder term is defined to be
<3.15> r(z,m,7) =T [A(iﬂ, n,7") — Az, m, 0)] ;
and 7 = 7*(z,n, 7) is bounded by |7|.

Square both sides of <3.15>, divide throughout by 72f(- | 6o, 7), and integrate with

respect to v to write

(x,n, T 2
f (x| éo / flz| 90 { (z,n,7°) — A(x,n,())} dv(z).
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Take expectations with respect to Qg on both sides of the expression. Use the dominated

convergence theorem with dominating function

4/M(I,n) dv(z)

(which must be Qg integrable by regularity condition <3.7> and Fubini’s Theorem), to
show by the continuity of A(x,n,7) in 7 that:

<3.16> Qo i ;7'779’07 dv(z) = o(r?).

Divide <3.14> throughout by fy on the set where it is nonzero (which has Py measure

one), and take expectations with respect to @, to write

fT.,h(I) _ 1
fo(@)  fo()

Assume that a term by term expansion on the right side is justifiable, yielding

1+ﬁ{/h(n)f(x|oo, ) dQo(n /Aa:n, ) dQo(n )]

/ (@ | B0.m) + A, 7,0) + r(,m,7)] [1+ rh(n)] dQo(n).

2

T 1
+ e /h(n)A(x,n,O) dQO(”)+m/?‘(%nﬁ)d@,h(n).

Recognize that the coefficient of 7 equals A(Qo, h) + p. Collect the remainder terms, to

<3.17>

write the likelihood ratio as

f‘r,h(x) _
2 o (AQo @) + o)) + Rl ),

<3.18>

for a.a. x [P].

The lemma will be established by showing that A(Qo,h) and p are L3(Pp)-functions,
and that R(-,h,7) has squared L?(Pp)-norm of order o (72). Let us start with the last

term in <3.17>. Because we can bound h by its sup-norm, it is sufficient to consider

Po(% [rtnn) on(n))2

2
<3.19> = / e [ e |x9;7’ 1/2f(9c | 60.m)'? dQo(n)| {fo(x) # 0} dv(x).

From the Cauchy-Schwarz inequality, bound <3.19> by

//fi|n9707 dQo(n) dv(z).

Interchange the order of integration to deduce by <3.16> that this term is of order o (7'2).

This takes care of the last term in <3.17>. The other terms are dealt with in much
the same fashion. Notice also, that if T is a function such that QoT'(x,n) € L2(P),
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then T'(z,-) € L'(Qo) a.a. z [Py]. Therefore, the term by term expansion leading to the
expression <3.17> is valid for a.a.  [P).

Finally, choose h to equal zero. Take expectations of <3.18> with respect to Py, to
show that p has zero Py-expectation. Consequently, A(Qo,h) has zero Py-expectation. []

To prove Lemma <3.10> we will have need of the following Fourier result.

<3.20> Lemma: Let A be a o-finite measure dominated by Lebesgue measure. If there

exists a sequence of distinct real numbers z,, converging to zg € (a, 3) such that

/|7(x)| exp(za)dA(@) < 00 for a<z< B,
and
[ @) explzan) ana) =0,
then
Y=0  ael).

Proof of Lemma <3.20>: The integrability condition implies that

g(z) = / () exp(zz) dA(z)

is analytic on z € A(a, 8) = {z : @ < Re(z) < 8} (Lehmann, 1986: Theorem 9, Chapter
2.7). Because every neighborhood of z; contains points of the sequence z,, the analytic
nature of ¢g implies that it must equal zero in some neighborhood of zy. Therefore by
analytic continuation, g equals zero on A(«,3). Appeal to the uniqueness of the Fourier
transform (Rudin, 1987: Chapter 9) to establish the result. []

Proof of Lemma <3.10>:  Now to prove that the range of A(Qo,-) is dense in L3(P).
To do so, we will show that if ¢ € L2(P) satisfies Py A(Qo, h) = 0 for all h € LF(Qo),
then ¢ = 0 a.e. [Py].

Suppose ¢ € LZ(Py) such that Pyt A(Qo, h) = 0 for all h. Because both ¢ and A(Qo, h)

are elements of L?(Pp), we can mterchange the order of integration to obtain
,T | 6‘0, )
<3.21> dPy(x) dQo(n) =
[ v 55
Therefore, QohT = 0 for all h € L5°(Qo), where
/w (x| 6o,m) dv(x).

Define hg =T — ¢, where £ = QoT'. If T is bounded on N'* (which contains the support
of Qo), then hy € L5 (Qo). For the moment assume that this is the case. From <3.21>, we
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have that Qo hoT = 0. Because hg has zero Qg-expectation, Qg ho(T—¢) = 0. This implies

that Qo h3 = 0, and hence that T' must equal ¢ for all 7 in the support of [Q] (recall that

Qo is discrete). To determine what & equals, interchange the order of integration to show
¢~ [ @) [ 1a 60,0 dQun) dvio),

which equals Pyt and is therefore zero.

Therefore, we have shown that

s> [ @i tomdviz) =0,
for all 7 in the support of Q.

Standard results about exponential families show that &(fg, ) is continuous on N(6p).
Because N* is a proper subset of N' = N (6y) we can find a compact subset [n,n1] C N
which contains it. Thus, the continuity of b(6y, -) implies

<3.23> sup exp(—b(6p,n)) < co.
N0 <<

This allows us to rewrite <3.22> as
<3.24> /1/1(96) exp(ns(z,6p)) dv*(z) =0,
for all n in the support of Qq, where dv*(x) = exp(t(z, 0p))dv(z).

By assumption, Qg puts positive mass on a sequence of atoms a, € N* converging
to an interior point of A*. Thus, the integral in <3.24> equals zero when 7 equals a,.

Therefore, if we can show that

<8.25> [ 10ta) expns(a,b0)) dv(o)” < o0, for o< <,

then a change of variables and an application of Lemma <3.20> will establish the desired

result.

The same argument which shows 7" to be bounded, will also show that <3.25> holds.
Let us first show that T is bounded. Write T as
<a26> 1) = [ (st ) (B2 .
If we can show that each expression in parenthesis is square integrable, uniformly in 7,
then an application of the Cauchy-Schwarz inequality will establish the result. The first
expression is easily dealt with by our assumption that v € L?(P,). To deal with the

second term, consider the inequality

f(@ | 00,m) = f(a | 6o, 1) {n =1},
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where 77 is an atom of Qy. Take expectations with respect to Qg9 on both sides of the
inequality to show that 1/fo < C/f(- | 6, 7), where C is a finite constant depending upon
7. Therefore,

397> /f z | 90, y<C f f(x]60,m)* dv(z).
I | 90,

The integrand on the right side can be written as

<3.28> exp [(277 —)s(x, 00) + t(z,00) + 2b(60,n) — b(Ho, 77)] :

Use the continuity of b(6p, -) on N* C [no,m] to bound the terms involving b(f, -) by a
finite constant, By. By considering whether s(-, ) is positive or negative, bound <3.28>
by

Boexp(t(z, ) [exp[@m ~ 0)s(z,00)] + explnos(a, oon] |

Because 2m; — ng and 7o are interior points of NV = N(6y), deduce that the expres-
sion <3.28> must be v-integrable . Apply the Cauchy-Schwarz inequality in <3.26> to
deduce that

<3.29> (n))? < /w z)dv(x /f z] 90’ dv(z)

is bounded uniformly for n € N'*.

To show that <3.25> holds, multiply the left side of the expression by exp(b(6y, 7)) and
use the previous argument to establish that ¥ f(- | 69,m) is integrable for ng < n < 1.
Now use <3.23> to conclude the proof. [

<3.30> Remarks: It is worth pointing out an interesting connection to the paper of
Begun, Hall, Huang, and Wellner (1984) discussed in Chapter 1. By the inequality <2.9>,
Theorem <3.11> shows that it is possible to find a model Py, such that

/(\/f_h—\/%) < T Py(A(Qosh) +p)?

< 67’2,

for arbitrarily small e. In the context of the Begun paper, this implies that the model has

zero information even for fairly smooth paths <3.5>.

<3.31> Remarks: In the proof of Lemma <3.8>, we show using Regularity condi-
tions <3.6> that r(-,7)%/f(- | 6o,n) has L'(v)-norm of order o (72), for a.a. n[Qo]. The

same argument also implies that A(-,7,0)%/f(- | 6p,n) is a v-integrable function, for a.a.
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7 [Qo]. Consequently, the likelihood ratio

f(|90+7777)
fC 1 60,m)

is L2(f(- | 6o, n))-differentiable with first derivative A(-,1,0)/f(- | 6o,7), for a.a. n[Qo] in

the following sense:

<3.32> Definition: Let g(-,7) be a density, where 7 is real. Define gy = ¢(-,0). Say
that g(-,7)/go is L?(go)-differentiable, with first derivative g1, if

g(z,7)
go(x)
where g1 € L?(go) and 7(-,7) has L*(go)-norm of order o (7).

=1+ 7g1(x) + r(z, 1),

This type of differentiabilty will become useful in the next section when we come to

work with L2-distances of convolutions (Lemma <3.38>).

3. A Fourier Technique for Scale Location-Mixtures Let us introduce a new tech-

nique for determining rates of convergence. Consider a random variable
X=0Z+Y,

where the random variable Z has a known density hg, the parameter € is real, and Y
has an unknown distribution @, independent of Z. The random variable X describes
a location-mixture model with unknown scale parameter . Let © be a real parameter
space and Q a class of mixing distributions that are absolutely continuous with respect
to Lebesgue measure. Take P(O, Q) to be the class of mixed distributions, induced by ©
and Q, which can be described as convolutions like X. The problem will be to estimate
the structural parameter 6, assuming that enough constraints have been placed on © and
Q to make P (O, Q) identifiable.

Because the distribution for X is a convolution, we can write its characteristic function
as the product of the characteristic functions of the distributions for §Z and Y. The
interaction between the structural parameter and the mixing distribution in the real do-
main becomes in the complex domain a much simpler relationship involving products of
characteristic functions. The following heuristic argument takes advantage of this fact and

utilizes Fourier analysis for determining rates of convergence.

First some notation. Denote the Fourier transform of f € L'(u) by f, where

o~ +OO
f(t)=/ exp(itn)f(n)dn,  te€R.

— 00
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Define the convolution between f and g € L*(u) as

+o0
[+ g)(x) = / fa—y)gy)dy, zeR.

— 00

For convenience let us assume that 6y = 1 is an element of ©. Let Py € P(O, Q)
equal the true mixed distribution with density fo, structural parameter 6y, and mixing
density go. All densities are taken with respect to Lebesgue measure. Let P, € P(0, Q)
be a perturbed distribution with density f(-,7), structural parameter 1 4+ 7, and mixing
distribution @,. Assume that the density h(-,7) for the random variable (1 + 7)Z can be

expressed as the Taylor series expansion
<3.33> h(z,7) = ho(x) + Thi(z) + T2ho(x) + - - -,
where each term in the expansion is Lebesgue integrable.
Assume that @, has a density which can be expressed as
<3.34> a(y,7) = qo(y) + a1 (y) + a2 (y) + -,
where, again, all terms in the expansion are integrable. Then, the density for P; is

f(:C,T) = [h('vT) * Q('vT)] (‘T)
=[(ho+7hi + T*ho + -+ ) % (o + Tq1 + T2q2 -+ )] ().

Expand by collecting coefficients in powers of 7. Recognize that fo = ho * ¢o to show
F,7) = folw) = (o * ar] (&) + b * o] (2))
<3.35> + Tz([ho * @) () + [h1 * 1] () + [ha2 * qo] (95)) +o
To make discrimination between Py and P, difficult, we would like to make f(-,7) as

close as possible to fy. Expression <3.35> indicates the first place of attack should be the

linear term and suggests we choose @, such that
<3.36> ho * q1 + h1 % qo =0,

or so that the left-hand side can be made as close to zero as possible. It will be convenient
to recast this problem into one involving products of Fourier transforms. Shortly we will

see how to do this.

Let us assume that the left-hand side of <3.36> can be made to be exactly zero. Di-
vide <3.35> by fo to obtain

<3.37>
f(x,T)_ 2 b « T b % T 1 % x
ot 1T (fo(x) ol )+ gy = a0+ gy the = anlt )>+
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By Lemma <2.10>, to be able to infer a lower bound of n~1/4 for the rate of convergence,

Py (%—1)20(74).

This can be established by showing that the right-hand side of <3.37> has squared L?(F)-
norm of order O (7'4). The following lemma will be helpful in showing this.

it is sufficient to show

<3.38> Lemma: For functions Fy, Fy, G, and Go in L?(u)

F; F
<3.39> /[( 1G11;)2 *FgGQ /GQ/G2

Proof of Lemma <3.38>: By the Cauchy-Schwarz inequality

) 2
[(F1Gh) * (F2G2)]” = (/ Fi(z —y)Gi(z — y) F2(y)Ga(y) dy)
< /Fl(w —y)*Fa(y)” dy/Gl(:v —y)*Ga(y)* d

The first integral on the right-hand side equals F7 x F, which is finite almost everywhere,

being a convolution of two integrable functions. When this factor is finite (and nonzero),
we deduce that the integrand on the left-hand side of <3.39> is bounded by

<3.40> /G1 (z — y)*Ga(y)? dy.

(When F? % F§ equals zero, the left-hand side of <3.39> equals zero, so that the same
bound still holds.)

The integral over = of the expression <3.40> factorizes into the product on the right-
hand side of <3.39>. []

For example, to show that the term 72 [h; * q1] / fo has squared L?(Pp)-norm of order
O (%), we need to show that [h; * @1]” / fo is Lebesgue integrable. This can be established
by applying the previous lemma with Fy = vho, F» = \/qo, G1 = h1/vho and G2 =
01/v/0

/[m « ] -/ (Vo /o) * (Vi 0/v0)]”
Jo (Vho)" * (vao)*
< / h / at
~J hJ
The integrability of [hy * q1]* /fo can be established by showing that that both integrals
on the right-hand side are finite. The first integral can be made finite by assuming that

that the likelihood ratio h(-,7)/hg is L?(ho)-differentiable, while the second integral can
be dealt with by imposing constraints on the the mixing distribution Q.
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Now, let us describe a Fourier technique for solving <3.36>. The Fourier analog

of <3.36> is
<3.41> ho(t)@(t) + ha(t)Go(t) = 0.

This problem can be formulated more simply by assuming that iALO(t) is expressible as
exp(l(t)). Assume, as well, that [(¢) is smooth enough that a Taylor series expansion of
ﬁ(t, 7) = exp[l(t + 7t)] about T = 0 yields

<3.42> exp(l(t)) + Texp(L(t)t!'(t) + -

The Fourier transform of A(-,7) should have an expansion analogous to <3.33>

~

h(t,7) = ho(t) + Thy(t) + 72ha(t) + - -

Comparing this with <3.42>, gives

~

hy(t) = ho(t)t ().

Take out the common factor EO so as to reformulate the Fourier problem <3.41> more

simply as,

<3.43> qu(t) +t'(t)qo(t) = 0.

The advantage of trying to satisfy the Fourier expression <3.43> over the analogous real
expression <3.36> is that the problem shifts from one involving convolutions of functions
to a simpler one involving products of functions. In particular, solving the Fourier problem
will involve choosing Qg so that the density qg and its Fourier transform ¢y are easy to

work with, while at the same time choosing an appropriate Fourier perturbation ;.

It will not always be possible to choose gy and ¢; to satisfy all the constraints and
to make the left-hand side of <3.43> exactly zero, but it is possible to use <3.43> as a
starting point to choose ¢p and ¢; in such a way that the leading term on the right-hand
side of

f@r) | _ s (1o ) @)+ [ o] (0)

2
)

contributes only a term with squared L?(Pp)-norm of order o (72) to the left-hand side.

(1o * a2l (@) + b * 1] (@) + [h2 * o] () + -

A careful analysis will then involve consideration of the remainder terms, to ensure that

they not undo the work that goes into making the coefficient of 7 small.



Chapter 4
Normal Mean-Mixture Model

1. Introduction The normal mean-mixture model is formed by mixing over the mean of
a normal density with unknown standard deviation. Interest in this chapter will focus on
the problem of estimation for the standard deviation in the presence of the nuisance mixing
distribution. More precisely, we have independent observations from 87 4+ Y, where Z has
a N(0,1) distribution, 6 is a unknown parameter in © = (0, 00), and Y has an unknown

distribution @, independent of Z. The problem is to estimate the standard deviation, 6.

We showed earlier in Example <2.19> of Chapter 2, that the class of mixed distributions
P(©, Q) induced by © and a class of mixing distributions Q will not be identifiable if
Q@ contains distributions which have normal components. For example, if 7 is a small
real number, then there is no way to discriminate between a N(0,1 — 7) distribution
convolved with a N (0,1 + 7) distribution, and a N(0,1) distribution convolved with a
N(0,1) distribution. Thus, for the estimation problem to be of any practical significance,

we need to place constraints on © and Q so as to make the model identifiable.

Example <2.19> makes it clear that the standard deviation might not be estimable at
any rate of convergence if the model is only required to be identifiable. The example takes
advantage of the near lack of identifiablity by considering mixing distributions which are
nearly normal. One wonders then, if the only examples which establish slow rates are
those which take advantage of the near lack of identifiability. We show that this is not the

case in sections 2 and 3 of the chapter.

Section 2 verifies the regularity conditions for Theorem <3.11> and shows that the model
has zero information even when the mixing distribution is constrained to be discrete with
finite support. Furthermore, the proof that the model has zero information follows from

considering smooth paths through the mixing space Q.

Section 3 uses the Fourier technique of Chapter 3.3 to deduce lower bounds for rates
of convergence. There Q is constrained in the frequency domain and rates are directly

related to the manner of constraint.

2. Zero Information Let F(©,N) be the parametric family of normal densities of the

form

f(@|0,m) =

1 1 )
\/WGXP {_W(I —n) ] 3
where 0 takes values in © = (0,00), and 5 ranges over A’ = IR. Let Q be the class of
mixing distributions with support contained within the set N* C A. Form the class of

— 36 —
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identifiable normal-mean mixture models P(©, Q) by mixing over the densities in F(0,N)

by distributions in Q.

We show that the model has zero information according to Theorem <3.11> of Chapter

3.2, by verifying Regularity Conditions <3.6> of the same chapter.

First verify that the densities satisfy the parametric form <3.3>. Check that this holds
with s(z,0) = x/62, t(z,0) = —22/(20%) and b(0,n) = —n?/(26°) — log(2m6?)/2. Now

verify the remaining conditions. Observe that for small 7,

f(I | 00 +Ta 77)2 |: 1 2:|
<4.1> ST < 0 exp|——s(z — ,
T B BT A

where (7 is a fixed positive constant.

Differentiation yields
0

where
1
Use <4.1> to obtain the bound
[0f (x| 0o + 7,1)/96) 212 { 1 2]
<4.2> <Cy |14 (x— exp|——5(z — ,
([ 60,m) 2Lt (o= exp| =g (@ =)

for small 7, where Cs is a fixed constant. Integrate <4.2> over x to obtain a function inde-

pendent of 7 to show that <3.7> holds and consequently that Regularity Conditions <3.6>
hold.

Therefore, if Py € P(©, Q) with parameter (6, Qo), then Theorem <3.11> shows that
the rate of convergence for estimators of the standard deviation must be slower than
O, (n‘l/ 2) when (o is discrete with countably infinite many atoms. In particular the
theorem shows, for such Q, the existence of an h € £§°(Qo) which makes discrimina-
tion difficult between Py and the model P, with structural parameter 6y + 7 and mixing

distribution
<4.3> dQrp = dQo(1 + Th).

The next section extends this result. By working with a constrained class Q, we show

how to construct mixing paths, analogous to <4.3>, of the form

q(y,7) = W) + 1Y) + - +7qa(y),

to derive explicit lower bounds for rates of convergence which depend upon d and the

manner in which Q is constrained.



Chapter 4.3: Rates of Convergence Using Fourier Analysis 38

3. Rates of Convergence Using Fourier Analysis In this section we rigorously apply
the Fourier argument of Chapter 3.3 to the problem of estimation for the standard devi-
ation in the normal mean-mixture model. Because we work with Fourier transforms, the
most natural way to ensure identifiability in the model will be to place Fourier constraints

on the class of mixing distributions, Q.

Assume that Q is absolutely continuous with respect to Lebesgue measure. To ensure
that Q contain no normal distributions, require that each Q € Q have density ¢ (with

respect to Lebesgue measure) such that
<4.4> /a(t)t2d+1 dt = oo,
where d is a fixed positive integer.

By constraining the tail behavior for the Fourier transform, condition <4.4> limits the
amount of smoothness a distribution in Q might have. For example, consider the case
when d = 1. Let @ be the distribution for the convolution of four uniform distributions on
[—1,+1]. Then @ has Fourier transform (sin¢)*/¢t* which satisfies <4.4>. Notice, however,
that the distribution for five uniform [—1,+1] distributions would be too smooth in this

case. Its Fourier transform, (sint)®/t5, decreases too rapidly to satisfy <4.4> when d = 1.

Let P(©, Q) be the class of identifiable normal-mean mixture models induced by Q
and © = (0,00). We will show for this class of models, a lower bound of O, (n_l/(2d+2))
for the rate of convergence. The fact that the result depends upon d shows that rates
of convergence depend directly upon the amount of smoothness allowed in the mixing

densities: the smoother the mixing density, the slower the rates of convergence.

Let Py € P(O, Q) be the true model with structural parameter 6y and mixing distribu-
tion Qg with density go. Without loss of generality, let p = 1. Define P, as the perturbed
mixed distribution with structural parameter (1+7)'/? and mixing distribution Q,. Then
P, corresponds to the random variable (1 4+ 7)/2Z + Y, where Z is normally distributed,
and Y has distribution @, independent of Z. (Notice that the standard deviations for Py
and P, are separated rougly by 7. Therefore, the convenient parameterization that we

employ here will not affect the argument given in Chapter 3.3.)

Let hg equal the standard normal density. Expand the density h(-,7) for the random
variable (1 +7)'/2Z to (d + 2)-terms in a Taylor series expansion about 7 = 0
<4.5> h(z,7) = ho(x) + Thi(z) + - + 7%hg(x) + 7 hay 1 (2, 7),

where h, () = ho(2)Pnp(x) and hgy1(z,7) = h(z,7)Pii1(x, 7), and where P, (z) is a
polynomial in z of degree 2m, for m = 1,2,--- ,d and P41 (z,7) is a polynomialy in x of
degree 2d + 2.
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Let @, have density which can be expressed as the sum of (d + 1)-integrable functions

a(y,7) = qo(y) + Ta1(y) + -+ + 7%qa(y).

We will construct @, by choosing g and the perturbations q1, - - , ¢4 so as make discrim-

ination between Py and P, difficult.
The density for (14 7)/2Z +Y equals,
f(‘rv T) = [h('v T) * Q('v T)] (CL‘)
= [(ho +7hy + -4+ 7hg + 7 gy (2, 7')) * (qo +7Tq 4+ qud)] (z).

The density for Py can be written as fo = hg * ¢o. Expand the previous expression by

collecting coefficients in powers of 7 and use this identity to obtain
F(@,7) = fol@) = 7([ho * a1] (@) + b1 % ao] ()

+ 4 Td([ho * qd] (JJ) + [hl * qd—l] (JJ) +---+ [hd * q0] (‘T))

<4.6> o TP gy (0 7) * qd) (2).

As discussed in the heuristic, estimation for 6 is made difficult by making f(-,7) as
close to fo as possible, for a suitable choice ¢(-, 7). To establish the asserted lower bound
for the rate of convergence, we will construct ¢(-,7) so that the first d coefficients in the
expansion <4.6> are zero. Each coefficient is made zero by requiring that gg is smooth:
the higher the order of the coefficient, the more smoothness required to eliminate it.
Eventually the Fourier constraint imposed on Q hinders the construction from affecting

coefficients of higher order than d. This gives the required lower bound.

Let us start with the first coefficient on the right of <4.6>. Therefore, try to solve for
q1 so that
ho * q1 + h1 % qo = 0,

or equivalently, solve the Fourier analog

<4.7> hod1 + hado = 0.

Expand the Fourier transform for h(-,7) as
h(t,7) = exp (=3£°(1 + 7))
= ?LO(t) + Cthzﬁo(t) 4+ 4+ chdthﬁo(t) 4o,

where iALO(t) = exp(—t?/2) and ¢, = (—1)™/(2™m!), for m > 1. A careful analysis shows

that by comparing the Fourier expansion of <4.5> with the previous expansion,

<4.8> T () = Cont>™ho(t).
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In particular <4.8> asserts that ﬁl(t) = cthEO(t). Factor out the common term, ?LO,
and reexpress <4.7> as

<4.9> Qi (t) = —c1t®Go(t).

Solving this equation is simple by an application of the following standard result (see
for example, Feller Vol. II, 1971, Chapter XV .4)

lth

<4.10> Lemma: Suppose a density q has integrable derivatives up to [""-order, and a

Fourier transform for which t'g(t) is integrable. Then the Fourier transform for the m'"
derivative, ¢(™, equals

T(t) = (—it)"q(t), for m=1,2,---,1.

Therefore, if we assume that go has integrable second derivative, then Lemma <4.10>

asserts that

2
a(y) = c1g5” (v)
is a solution to <4.9>.

Let us require qg to be even smoother. Assume that gg has 2d integrable derivatives
and a Fourier transform such that ¢29g(t) is integrable. The recursive argument below
shows that not only can we eliminate the first coefficient in the expansion <4.6> of f;,

but we can eliminate each of the next d — 1 coefficients as well.
The d** coefficient in the expansion <4.6> equals
<4.11> ho*qq+hi*xqa_1+ -+ hg*qo-
To make the expression zero, we will show that its Fourier transform equals zero:
<4.12> hoGa + h1Ga—1 + - - - + hato = 0.

By identity <4.8>, we can factor out the common term, ﬁo, to reexpress this d** Fourier

problem as

<4.13> Qa(t) + c1t?qa-1(t) + - - + cat®*Go(t) = 0.

Assume that the first d — 1 Fourier problems are of the form

~

<4.14> Gm () = Yt ™G0 (1),

for constants ,,, and that each problem has the solution

<4.15> an(¥) = (=)™ g™ (),
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where m < d — 1. We have already shown this is true for m = 1 with 73 = —¢;. By
recursion we will show that the Fourier problem and its solution are of this form for all
m < d.

The d** Fourier problem <4.13> upon substitution of <4.14> becomes

Qa(t) = —c1t?Ga_1(t) — -+ — ca_1* 21 (1) — cat®*qo(t)
= (—C1Yd-1— - — ca—171 — ca) t*2qo(t)
= 74t ().

By Lemma <4.10> the solution to this problem is of the form <4.15> when m = d. This

establishes our assertion as to the form and solution of each of the first d Fourier problems.

Reintroduce the factor ﬁo to deduce that the d* term <4.12> and the preceding d — 1
terms all equal zero. By the uniqueness of the Fourier transform conclude that the the d'"

coefficient <4.11> as well as the preceding d — 1 coeflicients are all zero.

However, it is not enough to simply show that these coefficients are zero. We must
also show that the solutions <4.15> for q,, satisfy the constraints required for @, to
be a member of Q. This amounts to showing that one can find a density gg with 2d
integrable derivatives such that t2gy(t) is integrable (but so that gy satisfies the Fourier
constraint <4.4>) and such that the expression

<at6> gl = aoy) — e @)+ e )+ (CD) ™ ()
is a density.

This is fairly easy to do. One such choice being the distribution (¢ formed by the

random variables
(Ey — Eo) + (B3 — E4) + -+ + (Faay1 — Eaat2),
where F,, are independent standard exponentials, for m =1,2,--- ,2d 4 2.
The Fourier transform for gy equals
Go(t) = (1+1%)7(+D),

so that go(t) has tails of order O (t~(2¢+2)). A later observation (Remark <4.19>) shows

that the density can be expressed as

<4.17> q0(y) = exp(—|y|) P(lyl, d),

where P(y,d) is a polynomial in y of order d. Deduce, therefore, that the derivatives
q(()2m) form=1,---,d exist and can be expressed in a form similar to <4.17> (in fact the

polynomials will also be of order d). Hence, gy has 2d integrable derivatives.



Chapter 4.3: Rates of Convergence Using Fourier Analysis 42

To show that <4.16> is a density, we need to verify that the expression is non-negative
and integrates to one. The smoothness of gy will imply that f q(()zm) =0,form=1,---,d.
Thus, we need only establish the non-negativity of the function. This amounts to showing:
(2) (4) (2d)

T
—Q( ) :1_,717(10_ +7272q0_+...+(_1)d,7d7—d_q0 > 0.
do do do do
Remark <4.19> also shows that ¢o(y) is bounded away from zero for finite values of y.

Therefore, because the derivatives q((fm) are expressible in the same form as ¢y deduce that

qém) /qo is bounded. This verifies the non-negativity requirement.

Now let us formally establish that our choice has led to the desired rate of convergence.

We have already shown that the first d coefficients in the expansion <4.6> equal zero
for our choice <4.16> for ¢(-, 7). Therefore, dividing throughout by f; we are left with

o) o 2 (e @4+ e ) @)+ 7)) ()
7 () () s ] )+ 7)) )
<a1e> bt T e () i) (0
We will show that )
P (%ﬂ - 1) — 0 (724

by using Lemma <3.38> to show that each of the terms on the right-hand side of <4.18>

have squared L?(Pp)-norms of the same order.
For example, a typical term on the right-hand side is of the form

hl % q((JQm)

hi* q
i m h *q b)
0% qo

o (=)™

where 1 <I,m <d.

Use Lemma <3.38> with Fy = v/, Fy = /@, G1 = hi//ho and Gy = ¢i*™ / /70, to
bound the squared L?(P,)-norm of this term by:

2/[m*q§3m>12_ 2/[(\/70 mivis) « (vas /v )]
hoxa (Vio)® * (vao )

m 2
oo i )

We observed earlier that h;(x) = ho(x)P,(x), where P;(x) is a polynomial in z of degree

m m

2l. This shows that the first integral on the right is finite (this is the same phenomenon
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that shows h(-,7)/ho to be L?(hg)-differentiable in the sense of Definition <3.32>). Our
previous observation that q(()2m) has an expression similar to <4.17> shows that the second

term is also bounded.

This takes care of the majority of the terms on the right of <4.18>. The terms that

contain hqy1(-,7) are dealt with in a similar fashion.

Therefore, all the terms on the right side of <4.18> have squared L?(P,)-norms of order

O (729+2). Hence,
2
Py (f( 7)) 1) = O (r242).
Jo
Appeal to Lemma <2.10> to infer that a regular estimator for the standard deviation has

rate of convergence no faster than O, (n=1/(24+2)),

<4.19> Remarks: One way to derive an explicit representation for g is to use a contour

integration argument. We know that ¢p has Fourier transform

Go(t) = (141710,
This transform is integrable so that go can be expressed as the inversion of its transform

1o[re
wly) = o [ expl(-ity)(1+£) 0D .
m

— 00

Define
v(z) = exp (—zy) (1 + z)_(d+1) (1— Z)—(d+1) '

Observe that the integrand in the expression for gy equals the function v(it). The
function v is analytic expect for the (d 4+ 1)-poles at z = 1 and z = —1. Let C equal
the positively oriented semi-circle contour, with large radius, centered at zero and which
lies in {z : Re(z) > 0}. Integrate v over C for y > 0. Apply the Cauchy Residue theorem
(Cartan, 1973, I11.5.2) and let the radius of the contours go off to infinity, to obtain for
y=>0

oo —(d+1)

P(y) = a 2131_11 924 exp (—zy) (1 - 2) :
This function can be written as exp(—y) multiplied by a polynomial in y of order d. The
representation for y < 0 is obtained by the symmetry of ¢y about zero, which proves our

earlier assertion that

q0(y) = exp(—|y|) P(|yl, d),

where P(y,d) is a polynomial in y of order d.
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Finally, to show that go(y) is bounded away from zero for finite y, recognize that it can
be written as d + 1 convolutions of the double exponential density, exp(—|y|)/2. Because
each of these densities are strictly positive for finite y, deduce that gy can be zero only for

infinite y values.



Chapter 5
Weibull Mixture Model

1. Introduction The Weibull density with unknown shape and scale parameter can be

written as
<5.1> f@]6,m) = 02" nexp(—na?),

where the density is taken with respect to Lebesgue measure on (0,00). The shape pa-
rameter 0 is assumed to lie in the set © = (0, 00), while the scale parameter 7 lies in the
set N'= (0,00). In Chapter 1, we presented the semiparametric Weibull mixture model
studied by Heckman and Singer (1984). A special case of this model is formed by integrat-
ing over the scale parameter of the density <5.1> with an unknown mixing distribution.
The chapter studies this model and investigates the problem of estimation for the shape

parameter, 6.

Let Q be the class of mixing distributions consisting of those distributions which have
support on N and whose first moment is less than a fixed positive constant. Heckman
and Singer (1984) show that for this Q the class of Weibull mixture models, P(0, Q), is

identifiable. Their proof, expressed in our notation, is as follows.

Let v; = (0;,Q;), where 6; € © and @); € Q for i = 1, 2. If the two distributions P, , P,
are equal, then the continuity of the density <5.1> implies that f,,(z) = f,,(z) for all

positive z. Therefore,

1= f’Yl (x)
fra(2)
_ O oe Jnexp(ne®™)dQum)
02 [ nexp(—nzb2) dQa(n)’ '

The monotone convergence theorem shows that the ratio of integrals tends to the finite
positive constant [ 1ndQ1(n)/ [ ndQ2(n) as x — 0. Therefore, the right-hand side would
converge to either 0 or +o0 if 61 # 0. That leaves

/nexp(—nw"l)dQl(n) = /nexp(—nwel)d%(n)a

for all x > 0. The uniqueness theorem for Laplace transforms (Feller Vol. II, 1971, Chapter
XIII.1) gives equality of @1 and Q2. Therefore, the two parameters v; and 72 must be
equal. Conclude that P(0, Q) is identifiable.

This chapter will consider the question of how well the shape parameter # can be

estimated from a sample of independent realizations of an identifiable Weibull mixture
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model. We have already seen, by Example <3.12> of Chapter 3, that the model has zero
information and consequently that the shape parameter can only be estimated at a rate
slower than O, (nil/ 2). By applying a simple transformation, the model can be recast as
a location-mixture with unknown scale parameter. Section 5.2 takes advantage of this and
extends the result of Example <3.12> by showing an explicit lower bound of O, (n_l/ 4)

for the rate of convergence.

2. Rates of Convergence Using Fourier Analysis The Weibull density <5.1> with
shape parameter 1/6 and scale parameter 7 is that of the random variable (E/n)?, where
E has a standard exponential distribution. Form the Weibull mixture model by taking
7 to be a random variable independent of E, with unknown distribution concentrated on
(0,00). The problem is to determine the rate at which 1/6, or equivalently 6, can be

estimated at given an independent sample of realizations from the model.
Transform the data by taking logs. The new data have the form
<5.2> X=0Z+Y,

where Z = log F, and Y = —flogn has unknown distribution (). By observing that Z
is independent of Y recognize that the transformation describes a location mixture model

with unknown shape parameter 6.

The following argument shows that it is difficult to discriminate between a mixture
model of the form <5.2> with structural parameter 6y compared against models with
structural parameters smaller than 8y. Without loss of generality we take the true struc-
tural parameter to be 8y = 1, and the parameter space as © = (1 — ¢, 00) for a fixed small
€ > 0. We show by using the Fourier technique of Chapter 3.3 that 6y can be estimated
at a rate no faster than O, (n_l/ 4). The result is obtained as a consequence of working
with the total variation distance. Therefore, because the log transformation is invertible
and measurable, the result can be readily translated back into the Weibull setting. Thus,
we prove that the shape parameter in a Weibull mixture model can be estimated at a rate
no faster than O, (n_1/4).

We first need to introduce constraints which ensure identifiability of the model. Let
P(©, Q) be the collection of all distributions of the form <5.2> as 6 ranges over the
parameter space © and @ ranges over a class of distributions Q. As discussed in the
introduction, identifiability in the Weibull model is ensured by assuming that the unknown
mixing distribution has finite moment bounded by a fixed constant, M. By the invertibility
of the transformation this requirement becomes Q exp(—Y/0) < M. If 0 < e < 1/2, then
1/6 < 1/(1 —€) < 1+ 2¢ for each § € ©. Thus, a sufficient condition to satisfy the
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integrability constraint becomes

<5.3> /exp((l + 2e)|y|) dQ(y) < M.

Let Q be the class of mixing distributions that have support on IR and which satisfy
condition <5.3>. Then P(0, Q) is identifiable.

Let Py € P(©, Q) equal the true mixed distribution with structural parameter 6y = 1
and mixing distribution Qy € Q. Let Qg have density gy with respect to Lebesgue measure.
Let P, € P(©, Q) equal the perturbed mixed distribution with structural parameter 1 —7
and mixing distribution Q, € Q, for small 7 > 0.

Let ho equal the density of Z and h(-,7) the density for the random variable (1 —7)Z.
The density hg is smooth enough to allow a Taylor series expansion of h(-,7) about 7 =0

as the sum of integrable functions:

1 T x
h@”7_1—76m{_“p(1—7>+1—7}

ho(x) 4+ Thy (x) + T2hg(x) + - |

<5.4>

where, for example,

9]

= ho(z) [1 — exp(z) + 2] .

hl (ac)

Some calculus shows that when 7 > 0, the ratio h(-,7)/hg is L?(hg)-differentiable (in the
sense of Definition <3.32>) with first derivative hq/hg. This fact will become useful later.

Let @, have density

q(y,7) = qo(y) + 7q1(y).

To make estimation for the structural parameter difficult, we will try to construct Q. so
that

<5.5> ho * g1 + h1 * g0 = 0,
or at least so that the expression on the left-hand side is made close to zero.

The argument of Chapter 3.3 suggests it may easier to work with the Fourier analog

of <5.5>
<5.6> hody + hido = 0.

The same argument also indicates that it may be easier to satisfy the expression <5.6> if

?Lo(t) is expressible as exp(I(t)) for a smooth function .
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Let us show that ﬁo can be expressed in such a form. The Fourier transform for hg

equals:
ho(t) = Pexp(itlog E)

+oo
= / exp(—xz) exp(itlog x) dx
0

+o0 )
= / exp(—z)z D1 4y
0
=Tt +1),

where I' is the Gamma function. On the domain {z : Re(z) > 0}, where it is analytic, the

Gamma function has an infinite product expansion (Ahlfors, 1979, Chapter 5.2.4)
1 z 2\ 7t
[(z) = —exp(—y2) [Jexp (=) (1+=)
z 51 J J
i>
where ~ is Euler’s constant with approximate value 0.57722. This expansion and the

property I'(z + 1) = 2I'(z) enables us to express hg as
~ it it\
<5.7> ho(t) = exp(—~it) H exp (—) (1 + —,) )
i>1 J J

which can also be written as iALO(t) = exp(I(t)), where I(t) = —vit + S(it) and S is the
analytic function on {z : Re(z) > —1} defined by

S(Z)z; G—bg (1+§>)

(For definiteness, we take the principal branch for each log in the expression for S.)

The analytic nature of [ enables us to write
R(t, ) = exp(I(t — Tt))
<5.8> = ho(t) — Tho()' () + - - - ,
where

1
t(t) = —yit — 2y 7 (t),
j>1

and

s (t) = (1 + %>_1 .

Notice that m; is the Fourier transform for the distribution of the random variable —E/j,

where F has a standard exponential distribution. It has density jexp(—j|y|){y < 0}.
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By comparing the expansion <5.8> for ﬁ(, 7) with the corresponding Fourier expansion

for <5.4>, we show later (Remark <5.26>) that

<5.9> hy(t) = —ho()tl (1)

Factor out the common term EO in the Fourier expression <5.6>. We should try to

solve for ¢; in

@ (t) = t'(t)qo(t)
<5.10> = —yitgo(t) — t* Z — m;(t) qo(t),
g>1

subject to the constraints of the model.

The next lemma shows that if gg is smooth enough, then an exact solution to the
unconstrained problem exists. (First some notation: let L{(u) be the set of Lebesgue
integrable functions which integrate to zero.)
<5.11> Lemma: Assume that the density qo has first two derivatives q(() ), q(()z) € Li(p),

and a Fourier transform for which t2qy(t) is integrable. Then,

<5.12> o (y) = a5 +Z [m] g } )

is an element of L{(u) with Fourier transform

Proof of Lemma <5.11>:  Let us first prove that ¢; is integrable. Interchange the

order of integration, by the assumption that q(g2) is integrable, to show

J[mitc =l wlavaz = [1a)1a

The integrability of ¢; follows by:

/|q1 |dy<7/|% Idy+z /‘ *qo ‘dy

1
<7/|Q0 Idy+/|qo yldy Y 7

g>1
<5.13>

Use the fact that q(()z) integrates to zero to infer that f m; * q(()2) = 0. Because q(()l) also

integrates to zero, deduce that q; € L}(u).
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The integrability of t2g(t) and the integrability of the first two derivatives for gy shows
by Lemma <4.10>, that
~(1)

<5.14> Qo ' (t) = —itqo(t)
and
<5.15> a2 t) = —2q ().

Expression <5.13> shows that ¢; can be bounded by an integrable function. Use this
dominating function coupled with identities <5.14> and <5.15> to deduce by the domi-

nated convergence theorem that ¢; has the desired Fourier transform. []

Therefore to solve the unconstrained problem <5.10>, choose Qg to be a distribution

satisfying the conditions of the lemma and take ¢; to be the function <5.12> defined by
Qo.
However, to be able to solve the constrained problem, we also need to show that
a(y,7) = qo(y) + 71 (y)

satisfies, at least for T near zero, the constraints necessary for ¢(-,7) to be a density
(C1) [aly,m)dy =1,

(C2) q(y,7) >0,

and the constraint

(C3) [exp((1+2€)|y|)q(y,7)dy < M, for Q- to be a member of Q.

To satisfy the constraints we will perturb the solution go(y)+ 741 (y) to qo(y)+74¢1(y, 7),
with ¢1(y, 7) = ¢1(y). We will then no longer have an exact solution to <5.10>, but it will

still be possible to prove the asserted O, (n’l/ 4) lower bound for the rate of convergence.

First let us consider the effect that each constraint has on the possible solutions <5.12>
for ¢;. Condition (C1) will not present an obstacle, for we know that ¢; must integrate
to zero by Lemma <5.11>. For condition (C2) to hold, we would need to show for small

values of 7

(2)
1 (1) [mj * g }
—(go+7q1) = 1y 7Y e
do q0 =1 77490

<5.16> > 0.

If gy were convex in the tails, the second derivative, q(()z) (y), would be positive for large

absolute values of y. In addition, if go(y) were bounded away from zero for finite y, then



Chapter 5.2: Rates of Convergence Using Fourier Analysis 51

for small positive 7 the expression involving m; * q(g2) in <5.16> should be positive. If

in addition q(()l) decreases more rapidly than gy, then the left-side of <5.16> should be

positive, and condition (C2) should hold.
The constraint (C3) is the most difficult to satisfy. The density
m;(y) = jexp(—jly[){y < 0}

has tails decreasing faster than exp(—(1 + 2¢)|y|) except when j = 1. Therefore, we seek

a qo for which qél) and m; * q(g2) decrease faster than exp(—(1 + 2¢)|y|), for j > 1.

Here is one way to construct an approximate solution to <5.10>. Let Qg be the distribu-
tion for the random variable 3~'(Ly + L2), where L; are independent double exponential

random variables, for j = 1,2, and ( is chosen larger than 1 4 2¢ so that the density
p
q0(y) = 7 exp(=Blyl) (1 + Bly|)
satisfies the integrability constraint <5.3> needed to ensure that Qg € Q.

The density for Qo has first derivative
-3

<s.17> 45" () = = exp(=Blyl)y,
second derivative

() ok
<5.18> g (y) =~ exp(=Bly)(Bly| - 1),

and Fourier transform
o\ —
. t
qo(t) = (1 + <B> )

The integrability of t24y(t) and the smoothness of go shows that Qg satisfies the conditions

of Lemma <5.11> (it is fairly easy to check that the derivatives have zero expectation).

To be able to satisfy the constraint (C3), we need that both qél) and m; * qéz) decrease
faster than exp(—(1 + 2¢)|y|), for j > 1. Use the expression <5.17> for the first derivative
qél) to see that the presence of this term will not violate the constraint. A little bit of

work shows
s ) ) = o < 0} (1 ) exp(sla) + Cati 8. exo(-l)
<5.19> +{y = 0} C3(4, B, y) exp(—Blyl),

where C1(j,3) is a constant which is uniformly bounded in j and Cs(j, 8,y), Cs5(4, 5,v)
are functions which are uniformly bounded in j by a function of y which is of order O (|y|),

for large y.
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Therefore, the tails for <5.19> are of order o (exp(—(1 + 2¢)|y|)) when j > 2. To ensure
that condition (C3) not be violated when j = 1, define @, to be the distribution with
density

q(y,7) = qo(y) + 71 (y, 7),

where ¢1 (y, 7) is an approximate solution for <5.10> defined by:
a1(y.7) =a1(v) + [(ma(y, 7) = m) < af”] )

<5.20> zwqél)(y) + {ml(y, ) * qo } )+ Z { j % qo } (y),

_]>2

where the truncated function m(y, 7) is defined as
)
() = m() { 5 toe7 <

)
= exp(y) {ZlogT <y< O},
for a fixed small 0 < § < 1.

Condition (C3) is now no longer a problem, for

‘ T/exp((l + 2e)|y|) [m1(',7') * Q(()2)] (y) dy ’ =0 (7'1_6)

will be small enough, eventually, to guarantee that the integrability constraint <5.3> holds.

This combined with our previoius observations concerning the tail behavior of m; * q(() ),
for j > 2, and the tail behavior of qél) shows that (C2) holds.

Condition (C1) must also hold for this choice, for ¢;(-,7) must integrate to one by
Lemma <5.11> and the fact that

/ ml(z,T)q((JQ) (y—z)dydz = 0.

To verify the nonnegativity constraint implied by condition (C2), it is sufficient to observe
that the ratio qO () /qo is bounded and that the second derivative q( )( ) is positive for large
absolute values of y. Therefore, deduce that @, € Q.

Notice that we can choose § and € as we wish subject to the constraints of their range.

Later we will need 6/2¢ > 2; therefore assume that the two values are chosen accordingly.

Now let us rigorously show that our choice for @),, and its density, have led to the

desired rate of convergence. Expand h(-,7) to three terms in the Taylor series expansion

h(z,7) = ho(x) + Thy(z) + T2ho(x, 7).

Let fo and f(-,7) be the mixed densities for Py and P;. Then
flz,7) = [(ho +7hy + Tzhg(',T)) * (qo + 7'(]1(',7'))} (x).
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We can expand this expression term by term, since all terms are integrable. Collect

coefficients in powers of 7, and use the identity fo = hg*qo to find by dividing throughout
by fo:

fla,r) 7 T ol () 4 =T Ty %o ()] (2
o —1—f0(x)([h0 a1(, 7)) () + [h * 0] ( >)+f0(x) b+ 1 ()] (@)
7_2 7.3
<5.21> + e [ha(-, T) * qo] (z) + 0@ [ha(-,7) * qu (-, 7)] ().

We will show that

P (f(J';OT) - 1)2 —0(r)

by using Lemma <3.38> to show that each of the four terms on the right side of <5.21>

have squared L?(P,)-norms of order O (7).

Let us start with the first term. We have already established that )¢ satisfies the
conditions of Lemma <5.11>. Therefore by the conclusion of the same lemma and the

identity <5.9>, deduce that the Fourier transform for hg * ¢1 (-, 7) equals

(8o (t) + Ro(t) (7 (8, 7) — i (1)) 2 (8):

Remark <5.26> shows that iALO and iALl are integrable. Thus, by the uniqueness of the
Fourier transform deduce that the first term on the right side of <5.21> equals

ﬁ {ho * (ma(-,7) —my) * qém} ().

Use Lemma <3.38> with F; = \/ho, Fy, = \/q_o, G1 = hg * (m1(~,7') —ml)/\/ho and
Gy = q((f)/\/q_o, to bound the squared L?(Pp)-norm of this term by:

72/ o ma,7) — ) » q((f)r

ho * qo

B 2/ [(\/h—o ho % (m1(-,7) —m1) /Vho ) * (\/q_o q52>/\/q—0)r
- (V) (V&)
S7_2/[ho>»<(m1(',7')—m1)]2 /((J(()2))2'

do
Deduce from the expression <5.18> that the second integral on the right is finite. To deal

with the first integral, observe that the density
ho(x) = exp(—exp(z) + )

has tails of the order exp(x) for large negative x and tails of the order exp(— exp(x)) for

large positive . This tail behavior remains unaffected when hg is convolved with the
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density m;. In fact a direct calculation shows that for j > 2
<5.22> [ho * mj] (.I) < Cho(I),

for a finite constant, C, not depending upon j. In particular, it is possible to show
2
[l m o)
ho
which is of order O (7'2) by our choice for § and e. Conclude that the first term on the
right side of <5.21> has squared L?*(Fy)-norm of order O (74).

To show that the squared L?(FPy)-norm of the third term on the right side of <5.21> is
of order O (74), use Lemma <3.38> with | = /'ho, F» = \/qo, G1 = ha(-,7)/v/ho and
G2 = qo/+/q0, to bound the squared L?(Fy)-norm of this term by:

L / [Pa(o7) # a0l _ 4 / (VAo ha(.7)/vFo) * ao]”
fo (VAo)™* (vao )’

< 74/ ha(7)?
=~ h,O .

The L?(hg)-differentiability of h(-,7)/ho shows that the right-hand side is finite.

The remaining two terms on the right side of <5.21> are dealt with by a similar argu-

ment. To illustrate the method, consider the squared L?(Pp)-norm of the second term

74/ [h *fh('ﬂ')]Q.

<5.24>
ho * qo

From the expression <5.20> for ¢ (-, 7),

1
<5.25> hi*xq(,7) =7 (h1 * q(()l)) + hyxmy(-,7) * q(()2) + Z 7 (h1 * MM % q(()2)).
Jj=2

4
-
by fo and bound their squared L?(Py

/ [h1 *m; * q(() )]2 < / [hy * mj]2 / (Q(()2))2'
ho * qo - ho qo

We have already observed that the second integral on the right side is finite. The first

To show that <5.24> is of order O ( ) divide each of the terms on the right side of <5.25>
)-norms by Lemma <3.38>. For example
2

integral can be shown to be finite by an argument similar to the one which led to inequali-
ties <5.22> and <5.23>. The other terms in <5.24> are dealt with by using Lemma <3.38>
and the fact that h?/hg and (qél))2/qo are integrable (see <5.17>). Deduce that <5.24>

is of order O (7'4). A similar argument takes care of the remaining term in <5.21>

All the terms on the right side of <5.21> have squared L?(Py)-norms of order O (74).
We find that

Py <%—1>2—O(7’4).
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Invoke Lemma <2.10> to deduce that a regular estimator for the shape parameter in an

identifiable Weibull mixture model cannot have rate of convergence faster than O, (n_l/ 4).

<5.26> Remarks: To verify that <5.9> is a valid identity, first establish the integrability
of iALO by using the representation <5.7> to bound the modulus:

. 2 k)2
<5.27> < <1+ (E) ) ;

for any positive integer, k. The terms in the expansion <5.4> and the expansion <5.8>
are both obtained by differentiation with respect to 7. In particular, hy(x) = Oh(z,0)/0T

and

—ho(t)tl'(t) = w.

T

The bound <5.27> implies that ﬁ(, 7) is integrable and enables us to express h(-,7) as an
integral representing the Fourier inverse of its transform. Differentiation applied to the
outside of the integral, with respect to 7, can be taken inside the integral by appealing to
the dominated convergence theorem and the fact that it is possible to find an integrable
function which dominates dh(-, 7) /07 for small T (use the bound <5.27> and the expression
for I). Therefore, hy can be evaluated by differentiating the Fourier transform ?L(, 7) and
computing the Fourier inverse of the resulting function as 7 goes to zero. By the uniqueness

of the Fourier transform, deduce that <5.9> is a valid identity.
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