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The semiparametric mixture model has density

f(x | θ,Q) =

∫
f(x | θ, η) dQ(η),

where θ is a real vector, sometimes referred to as the structural parameter, and Q is

an unknown distribution commonly referred to as the mixing distribution. The thesis

considers the problem of estimation for θ with Q playing the role of a nuisance parameter.

The problem of estimation for θ in the semiparametric mixture model has generally

focused on the question of efficiency. Van der Vaart (1988) and Pfanzagl (1990) show that

when the type of mixing behavior is constrained it is possible to state efficiency results

as local asymptotic minimax (LAM) theorems and convolution theorems. These results

implicitly presuppose the existence of a Op

(
n−1/2

)
estimator for θ.

However, it is not always clear that the structural parameter is estimable at aOp

(
n−1/2

)

rate. Carroll and Hall (1988) and Zhang (1990) show that when θ is known, the mixing

distribution in a location mixture model is typically estimable only at very slow rates.

It is possible, therefore, for the difficulty in estimating the mixing distribution to create

problems, as well, in the estimation for θ.

Rates of convergence for estimators of θ are defined in a locally uniform sense to incor-

porate a minimax approach to estimation. Le Cam (1973) and Donoho and Liu (1987)

describe a general approach for determining lower bounds for uniform rates of convergence

which is adapted to the mixture setting.

The thesis presents a general class of mixture models for which the structural parameter

can only be estimated at rates slower than Op

(
n−1/2

)
. A new Fourier technique is used to

determine explicit lower bounds for rates of convergence in location-mixture models, where

estimation is for an unknown scale parameter. The theory is illustrated by application to

two well known models: the mixture model formed by constrained mixing over the mean

of a normal density with unknown variance, and the Weibull mixture model as studied by

Heckman and Singer (1984).
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Notation

The linear functional notation for expectation is usually employed. For example, the

expected value of a function g with respect to a probability measure P is written as Pg

rather than the usual convention of
∫
g(x) dP (x). One exception is that we write

∫
g(x) dx

for the integral of g with respect to Lebesgue measure.

The function f(x | θ, η) is used to describe a real valued density in x, indexed by two real

parameters θ and η. The parameter set for θ is denoted by Θ, and may be k-dimensional,

while the parameter set for η is always one-dimensional and denoted by N . We assume

that f(x | θ, η) is measurable as a function of (x, η), so that the mixture

f(x | θ,Q) =

∫
f(x | θ, η) dQ(η)

formed by the mixing distribution, Q, is well defined (we adopt the conventional form for

expectation when describing mixtures). Denote the corresponding probability measure by

Pθ,Q, which is sometimes referred to as the mixed distribution.

Symbols which are assignable to letters (followed by the convention with which they

are usually employed):

B(IR) Borel σ-algebra of the real line

(D, d) metric space D with metric d

δn sequence converging to zero

η nuisance parameter

f0 true mixed density

fτ perturbed mixed density

f(x | θ, η) real valued density with real parameters (θ, η)

f(x | θ,Q) mixed density with real parameter θ and mixing distribution Q

F(Θ,N ) parametric family of densities

Γ gamma function

H(P1, P2) Hellinger distance between probability measures P1 and P2

i
√
−1

κ(P ) functional mapping a probability measure P onto a metric

space (D, d)

Lp
0(P ) equivalence class of of p-integrable functions with zero

expectation with respect to probability measure P

L∞
0 (P ) class of essentially bounded functions that have zero P -expectation

µ Lebesgue measure

c©ISHWARAN 1993 – iv –
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N(0, 1) standard normal distribution

N parameter set for η

N (θ) natural parameter space at θ

P probability measure

Pn n-fold product measure for P

P0 true probability measure

Pτ perturbed probability measure

U topology on P induced by the total variation distance

U(P0, αn) O (αn) shrinking neighborhood of a probability measure P0

Pθ,Q mixed distribution with real parameter θ and mixing

distribution Q

P class of probability measures

P(Θ,Q) class of mixed distributions

q mixing density

q(m) mth derivative for the mixing density q

q0 true mixing density

q(·, τ) perturbed mixing density

Q mixing distribution

Q0 true mixing distribution

Qτ perturbed mixing distribution

Q class of mixing distributions

IRk k-dimensional real space

τ small real number

θ structural parameter

θ0 true structural parameter

Θ parameter space for θ

ν σ-finite measure dominated by Lebesgue measure

v(P1, P2) total variation distance between two probability measures

P1 and P2

(X ,A) measurable space with set X and σ-algebra A

Symbols not assignable to letters (followed by the convention with which they are

usually employed):

∗ g ∗ h denotes the convolution of two Lebesgue integrable

functions g and h

� measure R dominates measure P : P � R



vi

∈ element of

̂ ĝ denotes the Fourier transform for Lebesgue integrable g

∧ a ∧ b = minumum (a, b)

⊂ proper subset

⊆ subset



Chapter 1

Introduction

1. Semiparametric Mixture Models The semiparametric mixture model has density

<1.1> f(x | θ,Q) =

∫
f(x | θ, η) dQ(η),

where θ is a real vector, sometimes referred to as the structural parameter, and Q is an

unknown distribution commonly referred to as the mixing distribution.

When θ is known, the model <1.1> is completely nonparametric and interest focuses

on estimation for the unknown mixing distribution, Q.

Carroll and Hall (1988) address the problem of determining rates of convergence in

deconvolving densities. Their results, therefore, pertain to the problem of estimating the

mixing density in location mixture models. What they find is that the smoother the known

location density, the slower the optimal rate of pointwise estimation for the unknown

mixing density. For example, in the normal mean-mixture model they find optimal rates

which are logarithmic, while in the double-exponential mixture model they find geometric

optimal rates.

Zhang (1990) also considers the problem of estimation for the mixing density (and

distribution) in the location mixture model. He gives lower bounds for rates of convergence

for the mixing density in the form of pointwise results and integrated mean square error

and shows that the rates are related to the tails of the characteristic function of the known

location density, with slower rates being found for more rapidly decreasing tails. By

considering mixing densities whose Fourier transforms decrease on the order of O
(
1/t2

)
,

he finds a mean square error lower bound in the normal mean-mixture model of (log n)−1/2,

while in the double exponential mixture model the bound is n−1/6.

Therefore, estimating the mixing distribution can sometimes be difficult.

The question that we will pursue in this thesis is whether the difficulty in estimation

for the mixing distribution creates problems for estimation of the structural parameter.

Therefore, we will consider the problem of estimation for the structural parameter, with

the mixing distribution acting as nuisance. The problem is motivated by the following

examples.

<1.2> Example (normal mean-mixture model): The semiparametric normal mean-

mixture model can be written in the form <1.1> by integrating over the mean of a normal

density with unknown standard deviation. The model can also be more conveniently

– 1 –



Chapter 1.1 : Semiparametric Mixture Models 2

expressed as the convolution θZ + Y , where Z has a standard N(0, 1) distribution, θ is

the unknown standard deviation, and Y has unknown distribution Q independent of Z.

Determining θ in this model corresponds to estimating the common standard deviation

amongst various normal populations which are heterogeneous in their means.

Roeder (1990) uses such a model to investigate a clustering hypothesis in astronomy.

The data consist of velocities at which galaxies in the Corona Borealis region are receding

from us. According to the Big Bang theory of cosmology, the further the galaxy is from us,

the faster it is receding. If galaxies are clustered, the data should be multimodal generated

with modes corresponding to clusters of galaxies and could be be modeled as realizations

from a normal mean-mixture. Under this hypothesis, the unknown standard deviation

corresponds to the tightness of the clustering in the galaxies and is of cosmological interest.

<1.3> Example (Weibull mixture model): Heckman and Singer (1984) study eco-

nomic theories concerning continuous durations of occupancy of states. To test such

theories and to estimate structural parameters, they propose the use of a semiparametric

mixture model to account for population heterogeneity in unobserved variables. They

assume a Weibull functional form for the hazard function

h(x | z, θ,ααα, η) = exp (zααα) θxθ−1η,

where x is the observed positive duration time, z is a vector of time invariant observed

covariates independent of the positive heterogeneity component η, and (θ,ααα) is a vector

of real parameters to be estimated. The authors model the unobserved η as a random

variable with unknown distribution, Q, and propose the Weibull mixture model

<1.4> f(x | z, θ,ααα,Q) =

∫
θxθ−1η exp

(
zααα− ηxθ exp (zααα)

)
dQ(η)

as a device for modeling duration data. The hazard function for the mixture <1.4> takes

the form

h(x | z, θ,ααα,Q) = exp (zααα) θxθ−1ψ(x, z |, θ,ααα,Q),

where

ψ(x | z, θ,ααα,Q) =

∫
η exp

(
−ηxθ exp (zααα)

)
dQ(η)∫

exp (−ηxθ exp (zααα)) dQ(η)
.

Notice that the hazard function is not a proportional hazard as discussed in Cox (1972),

so that the usual conditioning argument employed to estimate ααα will not work here.

The authors use a nonparametric maximum likelihood estimator (NPMLE) as a means

for estimating (θ,ααα,Q) and verify conditions that Kiefer and Wolfowitz (1956) prove to be

sufficient for establishing the consistency of the maximum likelihood estimator in general
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semiparametric mixture models (cf. Wald, 1949). Heckman and Singer also state results

from simulations indicating the difficulty in estimation for the unknown distribution, Q.

They remark:

“A limited set of Monte Carlo experiments was conducted to evaluate the

performance of the estimator. The NPMLE estimated the parameters of the

structural duration model very well for samples as small as 500. Estimation

of the distribution of the unobservables was less successful.”

They note that the same phenomena is observed for both finite and continuous mixing

distributions.

2. Estimation for the Structural Parameter Let us first consider the parametric

problem created when the mixing distribution is known and interest is in estimation for

the unknown structural parameter. Let Pθ0
equal the true distribution with structural

parameter θ0 and known mixing distribution Q0. Under standard regularity conditions

we should expect the maximum likelihood estimator for θ0 to be
√
n-consistent. Typically

it should be asymptotically normal with expectation θ0 and with variance equal to the

reciprocal of the Fisher information for θ0, where the Fisher information is defined as

<1.5> I(θ0, Q0) = Pθ0

(
∂

∂θ
log f(x | θ0, Q0)

)2

.

By the Cramér-Rao inequality, this implies that the asymptotic variance of the maxi-

mum likelihood estimator equals the smallest variance possible amongst unbiased estima-

tors for θ0. One might naively be led to believe that I(θ0, Q0)
−1 provides a lower bound

for the asymptotic variance for all Op(n
−1/2) estimators for θ0. The assertion, as is well

known, is false and disproved by superefficient estimators.

To eliminate the superefficiency problem and to rescue the concept of efficiency, the

modern fix is to recast the definition in a minimax framework. A treatment of efficiency

can be found in Le Cam (1972), Hájek (1972) and Millar (1981, Chapter 7). We describe a

more recent treatment of the problem by Le Cam and Yang (1990, Chapter 5.6, Theorem

1) and apply it to the parametric mixture setting. Let

Θ(θ0, C, n) = {θ : |θ − θ0| ≤ Cn−1/2}

be a O
(
n−1/2

)
shrinking neighborhood of θ0. Let Pn

θ be the n-fold product distribution

for Pθ and assume that {Pn
θ0+t/

√
n

: t ∈ IR} is locally asymptotically normal (Le Cam and

Yang, 1990, Chapter 5.7). Then if θ̂n is an estimator for θ0,

<1.6> lim
B→∞

lim
C→∞

lim inf
n

sup
θ∈Θ(θ0,C,n)

Pn
θ

[
B ∧

(
n1/2(θ̂n − θ)

)2
]
≥ I(θ0, Q0)

−1.
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The minimax statement <1.6> asserts a lower bound for the risk of an estimator over

n−1/2 shrinking neighborhoods of the true parameter, θ0. The statement implicitly as-

sumes the existence of a Op

(
n−1/2

)
estimator for θ which performs uniformly well under a

whole class of models, for if such an estimator were not to exist the left-hand side of <1.6>

would be infinite for each θ̂n and the minimax expression trivial. However, under fairly

mild regularity conditions, it is possible to prove the existence of theoretical minimum

distance estimators which attain the n−1/2 rate (Millar, 1981, Chapter 10). In fact it is

possible to use these preliminary Op

(
n−1/2

)
estimators to construct new estimators which

have asymptotic minimax risk equal to the asserted lower bound (Le Cam and Yang, 1990,

Chapter 5.3; Millar, 1981, Chapter 10). Such estimators are said to be efficient.

When the mixing distributionQ is unknown and the model semiparametric, the problem

of estimation for θ has generally focused on the question of efficiency. The approach taken

to this problem follows a line of argument described by Stein (1956). He argues that a

nonparametric problem is at least as difficult as any parametric sub-problem and states:

“it frequently happens that ... there is, through each state of nature, a one-

dimensional problem which is, for large samples, at least as difficult (to a

first approximation) as any other finite-dimensional problem at that point.

If a procedure does essentially as well, for large samples, as one could do

for each such one-dimensional problem, one is justified in considering the

procedure efficient for large samples.”

Koshevnik and Levit (1976) and more recently Begun, Hall, Huang, and Wellner (1983)

expand upon this idea in the semiparametric setting. The general approach is to find the

smooth path (indexed by a one-dimensional real parameter) through a space of probability

models which makes estimation for a finite dimensional parameter as difficult as possible.

This worst one-dimensional problem, for large sample sizes, determines the minimax effi-

ciency for estimators of the finite dimensional parameter.

Begun et al. consider paths which are smooth in a Hellinger differentiable sense. Their

argument specialized to the semiparametric mixture model is as follows. They work with

a specified class of mixing densities Q taken with respect to a σ-finite measure λ. The

semiparametric mixture densities are taken with respect to a σ-finite measure ν. Let ‖ · ‖λ

and ‖ · ‖ν denote the L2(λ) and L2(ν) norms respectively. Thus if f is a semiparametric

mixture density and q a mixing density,
√
f ∈ L2(ν) and

√
q ∈ L2(λ).

The semiparametric density f(x | θ, q) is Hellinger differentiable at a fixed structural

parameter, θ0, and mixing density, q0, if

<1.7>
√
f(x | θ, q) =

√
f(x | θ0, q0)+ (θ− θ0)ρ(θ0, q0) +A(θ0, q0)(

√
q−√

q0 ) + r(x, θ, q)
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with

‖r(x, θ, q)‖ν = o (|θ − θ0| + ‖√q −√
q0 ‖λ) ,

and A(θ0, q0) : L2(λ) → L2(ν) is a bounded linear operator.

They assume that <1.7> holds for θ sequences

<1.8> θ0 +Kn−1/2,

for real K, and sequences qn ∈ Q such that

<1.9>
√
qn =

√
q0 + n−1/2∆ +Rn,

where ∆ ∈ L2(λ) and ‖Rn‖λ = o
(
n−1/2

)
. By doing so, they assume a sufficient condition

for local asymptotic normality (cf. Le Cam and Yang, 1990, Chapter 5.7). Let T equal the

set of all tangent scores, ∆, obtained from sequences <1.9>. By assuming that A(θ0, q0)T
is a closed space, the authors prove a minimax theorem similar to <1.6> over sequences

in θ and q of the form <1.8> and <1.9>. They show that semiparametric minimax risk

equals the reciprocal of

<1.10> 4
∥∥∥ρ(θ0, Q0) − Π ρ(θ0, Q0)

∥∥∥
2

ν
,

where Π is the L2-projection of ρ(θ0, Q0) onto A(θ0, q0)T . Thus for example, when the

mixing distribution is known, the minimax risk equals the reciprocal of the Fisher infor-

mation <1.5> from the parametric problem (the factor of four results from the use of

square roots). However, when the mixing distribution is unknown, the information for θ0

is smaller and consequently the minimax risk increases.

The information <1.10> can also be calculated as

4
∥∥∥ρ(θ0, Q0) −A(θ0, q0)∆

∗
∥∥∥

2

ν
,

for a unique ∆∗ ∈ T . In the context of Stein’s paper, the path of mixing densities√
f(x | θ0 + τ, qτ ) with

√
qτ =

√
q0 − τ∆∗ represents, as τ converges to zero, the worst

possible one-dimensional approach through
√
f(x | θ0, q0) for the problem of estimating

θ0.

Pfanzagl (1990) and van der Vaart (1988) show that in certain semiparametric mixture

models, the information <1.10> can be calculated explicitly and used to state efficiency

results.

Pfanzagl considers exponential mixture models

f(x | θ0, Q0) =

∫
exp(−ηS(x, θ0) + b(η)) dQ0(η),

which belong to the class considered by Lindsay (1983). The models which are studied have

the interesting property that no loss in information for θ0 results due to the presence of the
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nuisance mixing. The information in these models equals the ordinary Fisher information

for θ0 and can be computed as the squared L2(P0)-norm of

<1.11> − ∂

∂θ
S(x, θ0)

∫
η exp(−ηS(x, θ0) + b(η)) dQ0(η)∫
exp(−ηS(x, θ0) + b(η)) dQ0(η)

,

where P0 equals the true model.

Pfanzagl describes a procedure (Chapter 5, Theorem 5.6) for constructing an efficient

estimator for θ0 which is based on a preliminary Op

(
n−1/2

)
estimator for θ0 and a consis-

tent estimator for the P0-expectation of <1.11>. The procedure is implemented in several

examples and simulation results indicate that even when Q0 is crudely estimated, the

variance for the new estimator for θ0 is substantially smaller than the variance for the

preliminary estimator and close to the theoretical asymptotic lower bound.

Van der Vaart assumes that the information <1.10> is positive and states under certain

regularity conditions a local asymptotic minimax theorem and a convolution theorem.

These results also implicitly presuppose the existence of an n−1/2 estimator for θ0. He

describes a method for constructing such estimators.

In certain cases, it is easy to see why the structural parameter can be estimated at

the classical n−1/2 rate. Pfanzagl (1990, Example 1, page 67) and van der Vaart (1988,

Example 5.2) both consider the paired exponential mixture model with density

f(x1, x2 | θ,Q) =

∫
η exp(−ηx1)θη exp(−θηx2) dQ(η),

with respect to Lebesgue measure for x1, x2 positive. This model corresponds to observing

the random variables X1 = Y −1Z1 and X2 = (θY )−1Z2, where Z1 and Z2 are independent

standard exponentials, independent of the random variable Y with unknown distribution

Q. The model becomes parametric when the data is transformed by taking the ratio

X1/X2. Consequently, the question of whether the structural parameter can be estimated

at classical rates is not an issue. The only problem that remains is the determination of

lower bounds for efficiency and the construction of Op

(
n−1/2

)
efficient estimators for the

structural parameter θ.

3. Objective and Layout of Thesis It is not always clear whether n−1/2 is the correct

rate of convergence for uniform estimators of the structural parameter. Nor is it clear how

rates of convergence are related to constraints on the mixing behavior, especially when

this behavior is not restricted to be smooth.

The main objective of the thesis will be to determine lower bounds for rates of conver-

gence for estimators of θ, and to identify how these rates are related to the type of mixing
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behavior. Because of the semiparametric nature of the model, rates of convergence will be

defined in a locally uniform sense to incorporate a minimax approach to estimation.

Chapter 2 formally introduces the idea of locally uniform rates of convergence and

adapts, to the mixture setting, a general approach by Le Cam (1973) and Donoho and

Liu (1987) for determining lower bounds for rates of convergence. The chapter collects

together standard ideas and inequalities which make it possible to relate distances between

probability measures to lower bounds for rates of convergence. Some simple motivating

examples illustrate the ideas and mechanics applied to the mixture problem.

Chapter 3 presents techniques for determining lower bounds for rates. The first step is

to identify mixture models for which it is not possible to estimate θ at a Op

(
n−1/2

)
rate.

Section 2 states sufficient conditions for identifying mixture models whose information, in

the sense of <1.10>, can be made arbitrarily close to zero. Consequently, the section makes

it possible to identify models whose structural parameters cannot be estimated at classical

rates. The proof of the main theorem revolves around showing that a linear operator much

like the one in <1.7> has a dense range, so that the information <1.10> is nearly zero.

The result is limited in that it asserts that estimation rates for θ must be slower than

n−1/2 but does not give explicit rates. The second step is to explicitly determine lower

bounds. Section 3 describes a Fourier technique for constructing explicit examples that

establish lower bounds for rates of convergence. The technique is applicable to location

mixture models with unknown scale parameter.

Chapter 4 is devoted solely to the normal mean-mixture model and the problem of

determining lower bounds for rates of estimators for the unknown standard deviation.

Both techniques of Chapter 3 are used here. The Fourier technique shows that rates of

convergence depend upon the smoothness of the mixing. We find that the smoother the

mixing is allowed to be, the slower the rates of convergence.

Chapter 5 considers the question of how well the shape parameter, θ, can be estimated

in the Weibull mixture model <1.4> without covariates. By applying a simple transfor-

mation, the model is recast as a location-mixture with unknown scale parameter. The

Fourier technique of Chapter 3.3 is used to show that the scale parameter in the trans-

formed model cannot be estimated at a rate faster than Op

(
n−1/4

)
. This will indirectly

establish Op

(
n−1/4

)
as a lower bound for estimation in the original problem.

4. What Remains The main accomplishment of the thesis is to show that the structural

parameter in the semiparametric mixture model is in general not estimable at classical

Op

(
n−1/2

)
rates. We do so by exhibiting a general class of mixture models for which

the structural parameter can only be estimated at rates slower than Op

(
n−1/2

)
, and by
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establishing explicit lower bounds in two well known models.

This research, therefore, has pushed the knowledge about rates of convergence in one

direction. The next logical step is to pursue the problem of determining upper bounds for

rates. In Chapters 4 and 5, we describe constructions which establish explicit lower bounds

in the normal mean-mixture model and the Weibull mixture model. The constructions

are chosen to push the lower bounds as far as possible, but it is unclear whether the rates

given there are optimal or what the upper bound for rates are.

It is left for future research to determine the answers to these questions.



Chapter 2

Regular Estimators

1. Introduction A sensible requirement for a good estimator to satisfy should be that

the estimator perform well under a fairly wide class of models. As discussed in Chapter

1, such a requirement is quite common in the modern semiparametric literature where

the requirement that estimators possess good uniformity properties is motivated by the

existence of super-efficient estimators. We adopt this uniformity approach to the mixture

problem, where our interest in estimation will be from a rates of convergence perspective

rather than an efficiency standpoint.

For simplicity assume that we are interested in uniformly estimating a real parameter

θ0 in a real set Θ. Informally, uniformity (or what we will later refer to as regularity) of

an estimator θ̂n for θ0 will mean for a small fixed ε > 0 there exists a small τ > 0, such

that for a large enough sample size

<2.1> Pn
θ {| θ̂n − θ |> τ} < ε,

for all θ in some neighborhood of θ0 (here Pn
θ denotes the n-fold product measure of Pθ). By

allowing both τ and the neighborhood to depend upon the sample size, expression <2.1>

can be made into a precise statement for locally uniform rates of convergence (Defini-

tion <2.3>). Such a definition depends explicitly on the choice of neighborhoods, so that

rates of convergence defined in this fashion should be interpreted in the context of the

implied topology.

The chapter collects together many standard results and illustrates how they can be

applied to the mixture problem. One key idea, introduced by Le Cam (1973), is described

in Lemma <2.5> which asserts that if an estimator satisfies a local uniformity condition,

then a “good” test for discrimination exists. By running the argument in reverse, the

lemma provides a method for determining lower bounds for rates of convergence. Section

3 presents a motivating example that illustrate how the method can be used to determine

lower bounds in the mixture problem.

A story book rendition of the Le Cam argument is as follows. Let P = {Pθ : θ ∈ Θ} be

a class of probability models. The parameter space Θ can be arbitrary, but for simplicity

take it to be real. You are the statistician interested in estimating θ for a fixed large

sample size. Someone tries to sell you an estimator for θ which is reputed to have good

properties. In fact the seller tells you that he can estimate θ with high precision and with

Pθ-probability of at least 0.99 for a class of models of your choice, C ⊆ P . You ask for the

– 9 –
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precision of the estimator and are told an outrageously small number, such as 10−50. You

doubt that such an estimator can exist, so you perform a simple calculation. If such an

estimator were to exist, then it would be possible to construct a test between two models in

C whose θ parameters are separated by more than 2×10−50, such that under either model

the test has a probability of misclassification of only 1%. This in turn means that the

two sample distributions are “distinguishable”. Therefore, to show that such an estimator

cannot exist, you need only find a pair of models in C with θ parameters differing by at

least 2 × 10−50 but whose sample distributions are “close”. If such a construction were

possible, then you would know not to waste your money.

Story book aside, the mathematical argument follows much along those lines and pro-

vides a means for determining lower bounds for rates of convergence. The key to the

argument involves being able to gauge whether two sample distributions (product mea-

sures) are close in some sense. This is done through the use of the total variation distance,

a metric which measures distances between probability measures. It is defined as:

<2.2> Definition: Let P,Q be probability measures on (X ,A). The total variation

distance between P and Q is defined as,

v(P,Q) = sup
AεA

| PA−QA | .

If P and Q have densities p and q with respect to a σ-finite measure λ on (X ,A), then

v(P,Q) =
1

2
λ | p− q | .

The total variation distance is a metric with a range of values that lie between zero

and one. A value of zero between two probability measures implies that the measures are

identical while a value of one implies that the two measures are singular and therefore can

be perfectly discriminated between.

In the context of hypothesis testing, the metric has the following interpretation. If F
is the set of all measurable functions over (X ,A) that are bounded between zero and one,

then

v(P,Q) = 1 − inf
f∈F

[P (1 − f) +Qf ] .

That is, the total variation distance between two probability measures equals one minus

the minimum sum of the type-1 and type-2 error amongst all zero-one tests between the

two models. It is this relationship between testing and distance which makes it possible to

translate the problem of determining rates of convergence into one concerning hypothesis

testing.
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2. Locally Uniform Rates of Convergence Let P be a family of probability mea-

sures on a common measurable space (X ,A). Assume that we observe a sequence of n

independent realizations from a distribution P0 ∈ P . Our aim is to uniformly estimate

κ(P0), where κ is a functional mapping P onto a metric space (D, d).

Uniform estimation by an estimator Tn for κ(P0) will mean that under sampling from

Pn, the estimator Tn gets close to κ(Pn) for sequences Pn which converge to P0 in the

total variation sense. In terms of rates of convergence, this idea is made more precise as

follows. Let U equal the topology on P induced by the total variation metric. Let αn be

a positive sequence converging to zero, and define

U(P0, αn) =
{
P ∈ P : v(P0, P ) ≤ αn

}

to be a sequence of O (αn) shrinking neighborhoods of P0 in U . With this notation, we

adopt the following as our definition for uniform rates of convergence:

<2.3> Definition: Estimators Tn for κ(P ) are said to be regular at P0 for the rate of

convergence δn if for each ε > 0 there exists a finite positive constant K(ε) such that for

each sequence αn decreasing to zero

lim sup
n

sup
P∈U(P0,αn)

Pn{d(Tn, κ(P )) ≥ K(ε)δn} < ε,

where Pn denotes the n-fold product measure for P .

Definition <2.3> asserts that if an estimator Tn is regular with rate of convergence δn,

then Tn estimates κ(P ) to a precision of O (δn) with high P -probability over a class of

O (αn) shrinking neighborhoods of P0. It also asserts that this hold for each sequence αn

converging to zero.

One argument for insisting that uniform estimation hold for different αn sequences

can be made in terms of confidence intervals. If an estimator Tn is regular with rate of

convergence δn, then Definition <2.3> implies that for each ε > 0 and each sequence αn

decreasing to zero there exists an integer n0 = n0(ε, αn) such that

sup
P∈U(P0,αn)

Pn{d(Tn, κ(P )) ≥ K(ε)δn} < ε, for n ≥ n0.

By inverting this probability statement, we can construct for each n ≥ n0 a confidence

interval for κ(P ) with size at least (1 − ε) × 100%

{θ ∈ D : d(Tn, θ) < K(ε)δn},

that holds for all P ∈ U(P0, αn). Of course the confidence statement is only useful if the

data is sampled from a model which lies in the O (δn) neighborhood U(P0, αn) of P0. How-

ever, since P0 is unknown, it may be impossible to discern whether the marginal sampling
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distribution falls in the required neighborhood. Thus, to make the confidence statement

practicable, it is desirable to require uniform estimation to hold over neighboorhoods which

shrink at different rates.

If Tn is a regular estimator with rate of convergence δn, then it is also regular with

rate δ′n for each sequence δ′n ≥ δn. Thus, Definition <2.3> is a statement concerning

achievability of rates and does not address the issue of whether a regular rate is optimal

in the sense that it is the fastest achievable rate possible (see Stone, 1980 for another

definition of optimality in the context of rates of convergence). We do not pursue the issue

of optimality in the thesis, instead our goal will be to determine lower bounds for rates of

convergence. A problem which amounts to finding a rate δ̃n such that each estimator for

the functional of interest fails to satisfy the probability inequality in Definition <2.3>.

For example, assume that for each small ε > 0, we can show that a regular estimator for

κ(P0) cannot achieve the rate δ̃n = n−1/(d−ε). Then this establishes Op

(
n−1/(d−ε)

)
as a

strict lower bound for each ε > 0, and implies that a regular estimator cannot convergence

faster then the lower bound Op

(
n−1/d

)
. Of course to be able to establish that this is

in fact the best lower bound, or more precisely that Op

(
n−1/d

)
is the optimal rate of

convergence, we would need to show that Op

(
n−1/d

)
is an achievable rate of convergence

(for example, by constructing an estimator that is regular with the asserted rate).

Because we only consider the problem for lower bounds of rates of convergence, we here-

after omit the distinction between achievability and optimality except when a clarification

is necessary.

To see how Definition <2.3> applies to the mixture problem, first introduce the following

terminology and convenient notation.

<2.4> Definition: Let F(Θ,N ) = {f(· | θ, η) : (θ, η) ∈ Θ × N ⊆ IRk × IR} be a

parametric family of probability density functions with respect to a σ-finite measure ν � µ,

where µ is Lebesgue measure. We assume that f(x | θ, η) is measurable as a function of

(x, η). Form the mixed distribution Pθ,Q over (IR,B(IR)) with ν-density

f(x | θ,Q) =

∫
f(x | θ, η) dQ(η),

and form the class of all such distributions P(Θ,Q) as θ ranges over Θ and Q ranges over

a class of mixing distributions Q with support on N .

In the context of the semiparametric mixture problem, take the family of probability

measures P of Definition <2.3> to be the class of mixed distributions P(Θ,Q) described

in Definition <2.4>. Our interest is in estimation for the structural parameter so that the

functional of interest, κ, is defined by κ(Pθ,Q) = θ for Pθ,Q ∈ P .
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The general approach in the semiparametric mixture literature, at least for the pur-

pose of calculating information bounds, has been to consider estimation along sequences

generated from smooth paths. Rates of convergence for the structural parameter are

implicity set at a Op

(
n−1/2

)
rate and uniform estimators are required to perform well

over O
(
n−1/2

)
shrinking Hellinger neighborhoods where the mixing densities satisfy a

Hellinger differentiability property (Begun, Hall, Huang, and Wellner, 1984). We will not

require that the mixing densities be Hellinger differentiable (we will not even require that

the mixing distribution have a density), rather we investigate rates of convergence over

O (αn) shrinking neighborhoods of P0 without any additional constraints on the mixing

distribution other than those implied by our choice for Q.

The main differences, therefore, in this approach to uniform estimation is firstly that

we do not presume that rates of convergence are set at a Op

(
n−1/2

)
rate, and secondly

that we require uniform estimation to hold over classes of O (αn) shrinking neighborhoods,

for all αn sequences which decrease to zero. Another argument in favour of using different

shrinking neighborhoods can be made in the mixture problem, as follows. If F(Θ,N ) is a

parameteric family which is smooth in θ, then we would expect that v(P0, Pn) = O (δn) for

sequences Pn ∈ P which have parameters (θ0 + O (δn) , Q0) converging to the parameter

(θ0, Q0) for the distribution P0. If estimation for the structural parameter in such a

family is at a O (δn) rate, then it seems reasonable to require that the rate take into

account shrinking neighborhoods that contain such Pn sequences. Our definition takes

into account such neighborhoods.

By working with the total variation distance, the next lemma shows that the uniformity

of an estimator implies the existence of a good test for discriminating between models.

Indirectly, the existence of such a test will provide a method for determining lower bounds

for the rate of convergence of regular estimators. The lemma is a reformulation from

Le Cam (1973, Lemma 1). The same idea is also used effectively in Donoho and Liu (1987,

1991).

<2.5> Lemma: Let P , U , κ, and αn be as in Definition <2.3>. If estimators Tn for κ(P )

are regular at P0 ∈ P with rate of convergence δn, then for each ε > 0 there exists a finite

constantK(ε) such that for each sequence Pn ∈ U(P0, αn) with d(κ(P0), κ(Pn)) ≥ 2K(ε)δn,

v(Pn
0 , P

n
n ) ≥ 1 − 2ε, for n ≥ n0,

where n0 = n0(ε, αn) is an integer which depends upon both ε and the sequence αn.

The proof of this lemma is remarkably simple and is included for completeness.

Proof of Lemma <2.5>: By the regularity of Tn it is possible to choose, for a fixed
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ε > 0, a constant K(ε) such that for all P ∈ U(P0, αn)

Pn{d(Tn, κ(P )) < K(ε)δn} ≥ 1 − ε, for n ≥ n0,

where n0 = n0(ε, αn). In particular, because P0 ∈ U(P0, αn) we have Pn
0 An ≥ 1 − ε, for

n ≥ n0, where

An = {d(Tn, κ(P0)) < K(ε)δn}.

If d(κ(P0), κ(Pn)) ≥ 2K(ε)δn, then

Pn
nAn ≤ Pn

n {d(Tn, κ(Pn)) ≥ K(ε)δn}.

Therefore if Pn ∈ U(P0, αn), then the right-hand side is less than ε for n ≥ n0.

We have exhibited a set An so that Pn
0 An ≥ 1 − ε and Pn

nAn < ε for n ≥ n0. This

implies the lower bound

v(Pn
0 , P

n
n ) ≥ 1 − 2ε, for n ≥ n0.

Informally, Lemma <2.5> asserts that if an estimator Tn is regular with rate of conver-

gence δn, then there exists a test based on Tn which can discriminate between P0 and a

sequence Pn ∈ P with total variation distance v(P0, Pn) = O (αn) and whose functionals

are larger than 2Kδn away from κ(P0), for a large positive K.

We can exploit the lemma to establish lower bounds for rates of convergence by the

following contrapositive argument. Let δ be a fixed small positive number. For a given

suggested rate of convergence δn exhibit for each finite K > 0 a sequence Pn ∈ P such

that v(P0, Pn) = O (αn) and

|κ(P0) − κ(Pn)| ≥ 2Kδn,

but with product total variation distance bounded away from one:

v(Pn
0 , P

n
n ) < δ.

By Lemma <2.5> this construction shows that a regular estimator for κ(P0) cannot have

rate of convergence δn and establishes δn as a lower bound for the rate of convergence.

To be able to implement the Le Cam approach, it is necessary to calculate L1-distances

between product measures. To circumvent the difficulty of such a calculation, the usual

practise is to work with the Hellinger distance because of the convenient manner in which

the distance factorizes for product measures.

<2.6> Definition: Let P , Q be probability measures over (X ,A). The Hellinger dis-

tance between P and Q is defined as

H(P,Q) =

√
λ (

√
p−√

q )
2
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where p and q represent the density of P and Q with respect to a σ-finite measure λ on

(X ,A).

We work with densities

fτ (x) =

∫
f(x | θ + τ, η) dQτ (η),

and frequently will need to calculate the L1-distance between the product measure for

fτ , for τ > 0, and the product measure for f0, when τ = 0. In this setting it might be

inappropriate to work with square roots of densities and the Hellinger distance. Instead

we will find it more convenient to work with the squared L2-distance:

∫
f0

(
fτ

f0
− 1

)2

.

(The observant reader will recognize that in the discrete case this is the Pearson goodness

of fit value.)

The following lemma makes explicit the relationship between the “Pearson distance”

and the total variation distance. It is a slightly weaker result than the one used by Donoho

and Liu (1987, 1991) who work with the Hellinger distance.

<2.7> Lemma: Let Q � P be probability measures over (X ,A). Then for each δ > 0

there exists a γ > 0 such that,

v(Pn, Qn) < δ if P

(
dQ

dP
− 1

)2

<
γ

n
.

Proof of Lemma <2.7>: Let λ = P +Q and denote its n-fold product measure by λn.

Let p = dP/dλ, q = dQ/dλ, and denote their n-fold densities by pn and qn respectively.

From the Cauchy-Schwarz inequality:

v(P,Q) =
1

2
λ | √p−√

q || √p+
√
q |

≤ 1

2
H(P,Q)

√
4 −H(P,Q)2.

Rewrite this as,

v(P,Q)2 ≤ 1 − (1 − 1

2
H(P,Q)2)2.
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Use this inequality and the definition for the Hellinger distance to show:

v(Pn, Qn)2 ≤ 1 −
[
1 − 1

2
H(Pn, Qn)2

]2

= 1 − [λn√pnqn ] 2

= 1 − [λ
√
pq ] 2n

= 1 −
[
1 − 1

2
H(P,Q)2

]2n

.<2.8>

Use the fact that Q � P to bound the Hellinger distance (see for example: Le Cam,

1986, Chapter 4):

P

(
dQ

dP
− 1

)2

≥ λ

[
(
√
p−√

q)
2
(
√
p+

√
q)

2 1

p
{p 6= 0}

]

≥ λ
[
(
√
p−√

q)
2 {p 6= 0}

]

= H(P,Q)2.<2.9>

Use this inequality in <2.8> to show that v(Pn, Qn) < δ when

P

(
dQ

dP
− 1

)2

<
γ

n
,

for a suitably choosen γ > 0.

The next lemma puts together some of the previous ideas and states sufficient conditions

to infer lower bounds for rates of convergence. We refer to it frequently throughout the

thesis.

<2.10> Lemma: Suppose there exists a path Pτ ∈ P through P0 indexed by τ ≥ 0,

such that for a β > 0:

(i) |κ(Pτ ) − κ(P0)| ≥ βτ , for τ near zero

(ii) P0 (dPτ/dP0 − 1)2 = O
(
τd
)
.

Then the rate of convergence, in the sense of Definition <2.3>, cannot be faster than

O
(
n−1/d

)
.

Proof of Lemma <2.10>: Suppose δn = o
(
n−1/d

)
. Write Pn for Pτ at τ = 2Kδn/β,

so that |κ(Pn) − κ(P0)| ≥ 2Kδn and P0 (dPn/dP0 − 1)2 = o
(
n−1

)
. By Lemma <2.7>,

v(Pn
0 , P

n
n ) → 0.

No matter how large K is chosen, we cannot keep the total variation distance bounded

away from zero. Deduce the asserted lower bound by Lemma <2.5>.
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In certain cases, we will not be able to establish the conditions of Lemma <2.10> which

are sufficient to show explicit lower bounds for rates of convergence. However, it still may

be possible to obtain a lower bound. The next lemma describes how.

<2.11> Lemma: Suppose the conditions of Lemma <2.10> are replaced by: for each

ε > 0 there is a path satisfying (i), where β > 0 is independent of ε, such that

P0

(
dPτ

dP0
− 1

)2

< ετ2

for τ near zero. Then the rate of convergence, in the sense of Definition <2.3>, must be

slower than O
(
n−1/2

)
.

Proof of Lemma <2.11>: Fix K > 0 and let δ > 0 be a fixed small number. Choose

a path Pτ so that 4K2ε/(nβ2) is less than the γ in Lemma <2.7>. Let Pn denote Pτ at

τ = 2K/(
√
nβ), so that |κ(Pn) − κ(P0)| ≥ 2K/

√
n and

P0

(
dPτ

dP0
− 1

)2

<
4K2ε

nβ2
, eventually.

Then by Lemma <2.7>

v(Pn
0 , P

n
n ) < δ, eventually.

Because this holds for each K > 0, Lemma <2.5> shows that a regular estimator must

have rate of convergence slower than O
(
n−1/2

)
.

3. Two Motivating Examples This section presents motivating examples that indicate

how the inequalities and ideas of the previous section can be used to describe rates of

convergence in the mixture problem. Before proceeding we first need to consider the

problem of identifiability, for without some type of identifiability constraints it would be

futile to pursue the problem of determining rates of convergence.

For example, consider the normal mean-mixture model presented in Chapter 1. This

model is formed by integrating over the mean of a normal density with unknown standard

deviation. As previously observed the model has the convenient representation as a con-

volution θZ + Y , where Z has a N(0, 1) distribution, θ is the unknown positive standard

deviation, and Y has an unknown distribution independent of Z. Without any constraints

on the types of distributions that Y can take, the model as it stands is unidentifiable. For

example, there is no way to tell the mixture model (slightly abusing notation)

2N(0, 1) + 3N(0, 1)

from the mixture model

3N(0, 1) + 2N(0, 1),
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even though the structural parameters are different. Clearly then, it is necessary to require

identifiability in the model before pursuing the estimation problem. That is, we need to

assume that if Pθ1,Q1
= Pθ2,Q2

, then θ1 = θ2 and Q1 = Q2.

Assuming that we have identifiablity, consider the problem of estimating an unknown

location parameter in the mixture model formed by mixing over the scale of a scale-location

density. This model is described by the random variable

<2.12> X = Y Z + θ,

where Z has a known density f , and Y is noise with an unknown distribution Q indepen-

dent of Z. The problem is to estimate the unknown location parameter θ.

If Z has zero median, then the median for X equals the parameter of interest, θ.

Therefore, if the mixture model is identifiable and the mixing distribution Q suitably

restricted, we should expect the sample median to be a regular estimator for θ with

achievable rate of convergence Op

(
n−1/2

)
. The next example shows this to be true.

<2.13> Example (regularity of the median): Let F be the distribution function for

the random variable Y Z of <2.12>. Let Q be a class of mixing distributions composed of

distributions which satisfy

<2.14> |F (t) − F (0)| ≥ γ|t|,

for all t in a fixed neighborhood of zero, where γ > 0 is a fixed constant. (Notice that

because the median for Z is zero, F (0) = 1/2.) Let P(Θ,Q) be the class of mixed

distributions of the form <2.12>, where the unknown location parameter, θ, takes values

in Θ = IR. We will show that the median is a regular estimator for the structural parameter

of each P ∈ P(Θ,Q), and has achievable rate of convergence Op

(
n−1/2

)
.

Let Mn be the median of the sample obtained from n independent realizations of a

P ∈ P with structural parameter θ. We will show that by choosing K to be suitably large,

<2.15> Pn{|Mn − θ| ≥ Kn−1/2}

can be made arbitrarily small for large n, independent of the sampling scheme P . This

will be more than enough to demonstrate our assertion concerning the regularity of the

median.

For convenience assume that the sample size is even and that some method is used to

determine the sample median in the case of ties. Consider one side of the bound in <2.15>:

<2.16> Pn{Mn − θ ≥ Kn−1/2} = Pn{Mn ≥ θ +Kn−1/2}.
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If Mn ≥ C, then the number of observations which are greater than or equal to C must

be at least n/2. Thus,

Pn{Mn ≥ θ +Kn−1/2} = Pn
{ n∑

i=1

{Xi ≥ θ +Kn−1/2} ≥ n

2

}

= Pn
{
Bin (n, 1 − F (Kn−1/2)) ≥ n

2

}

≤ Pn
{
Bin (n,

1

2
− γKn−1/2) ≥ n

2

}
,<2.17>

where the last inequality is obtained from the constraint <2.14>, and Bin (n, p) is used to

denote a random variable with a binomial (n, p) distribution.

Use the inequality,

Pn{Bin (n, p) − np ≥ C
√
n} ≤ Pn|Bin (n, p) − np|2

nC2
, for C > 0

≤ 1

C2
,

in <2.17> with p = 1/2 − γKn−1/2 and C = γK, to show that

Pn{Mn ≥ θ +Kn−1/2} ≤ 1

(γK)2
.

Deduce that the inequality <2.17> can be made arbitrarily small by choosing K large

enough, independent of the sequence P . This takes care of one half of the inequality

in <2.15>. The other half is dealt with in the same fashion.

<2.18> Remarks: It is not hard to construct a class Q which satisfies condition <2.14>.

For example, assume that Q equals the class of distributions that have support on the

set [A,∞), where A is a fixed positive constant. Then, by interchanging the order of

integration, we can express F (t) as

F (t) =

∫ ∫ t

−∞
f

(
x

η

)
1

η
dx dQ(η).

A change of variables and the fact that the support of Q is a subset of [A,∞) allows us

to bound F (t) by ∫ −|t|/A

−∞
f(x) dx ≤ F (t) ≤

∫ |t|/A

−∞
f(x) dx.

Express each integral as F (0) plus a contribution over a range depending upon t to show

that <2.14> holds for all Q ∈ Q, for values of t in a small neigborhood of zero.

On the other hand, there are cases where mixing can pathologically affect rates of

convergence. Consider the normal mean-mixture model once again. As we previously
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observed, the model is unidentifiable if the mixing distribution is allowed to contain normal

components. Consequently no rate of convergence is attainable in the model with normal

components. We would like to find out if this is still the case even when the class of mixing

distributions is constrained to ensure identifiability.

The next example begins to answer this question by showing that the standard deviation

might not be estimable at any guaranteed rate of convergence if the model is only required

to be identifiable. The example shows how to construct two normal mixture models whose

standard deviations are of some distance apart, and yet whose densities can be made to be

as close as possible by an appropriate choice for the mixing distribution. The construction

takes advantage of the near lack of identifiability in the model created by allowing too

large a class of mixing distributions, and because of this the result is not of any practical

consequence. Rather we introduce it at this time to illustrate how the various inequalities

and ideas of the previous sections can be used in the mixture setting to derive rates of

convergence.

<2.19> Example (normal mean-mixture model): Let P(Θ,Q) equal the class of

normal mean-mixtures, where the unknown standard deviation takes values in Θ = (0,∞),

and the class of mixing distributions Q is composed of distributions that contain no normal

component. That is, no Q in Q can be expressed as a convolution of a nondegenerate

normal with another distribution.

We will show that P(Θ,Q) is identifiable and yet a regular estimator for the standard

deviation cannot have rate of convergence faster than Op

(
n−1/d

)
, for each d > 0 .

Establishing the identifiability of P(Θ,Q) involves a characteristic function argument

which utilizes the fact that the normal mean-mixture model can be expressed as a convo-

lution. Let γi = (θi, Qi) where θi ∈ Θ and Qi ∈ Q for i = 1, 2. Let Pγi
be the normal

mixture model corresponding to θiZ + Yi, where Z is normally distributed, and Yi has

distribution Qi independent of Z.

If Pγ1
and Pγ2

are equal, then their characteristic functions must also be equal. There-

fore, if we denote the characteristic function for Qi by ψQi

exp(− 1
2 (tθ1)

2)ψQ1
(t) = exp(− 1

2 (tθ2)
2)ψQ2

(t),

which implies that

ψQ1
(t) = exp(− 1

2 t
2(θ22 − θ21))ψQ2

(t).

Therefore, Q1 is the convolution of Q2 and a N(0, θ22 − θ21) distribution if θ22 > θ21 .

Consequently, P(Θ,Q) is identifiable if Q consists of distributions that contain no normal

components.
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Let P0 be the assumed true mixed distribution with standard deviation θ0 and mix-

ing distribution Q0 corresponding to the atomic distribution which puts all its mass at

zero. Without loss of generality assume that θ0 = 1. Then P0 is the standard N(0, 1)

distribution.

Let δn = n−1/d be a fixed sequence decreasing to zero and let K > 0 be a large fixed

constant. Let Zn denote the random variable with distribution N(0, 1−Kδn), and let Yn

be independent of Zn with distribution N(0,Kδn). Let Ỹn = Yn{|Yn| ≤ Mn}, where Mn

is a positive sequence converging to infinity. Denote the distribution for Yn and Ỹn by Qn

and Q̃n respectively.

Define the sequence of normal mean-mixture models, Pn, by the random variables

Zn + Ỹn.

That is, Pn ∈ P with standard deviation (1−Kδn)1/2 and mixing distribution Q̃n. We

will show that although the standard deviations for Pn and P0 are separated by more than

δn, the total variation distance, v(Pn
0 , P

n
n ), will be bounded away from one for each K > 0.

By Lemma <2.5> this will establish δn as a lower bound for the rate of convergence.

Notice that P0 can also be represented as

Zn + Yn.

Therefore, the problem of discriminating between a sample from P0 and Pn should be as

difficult as discriminating between a sample from Qn and Q̃n. In particular,

v(Pn
0 , P

n
n ) ≤ v(Qn

n, Q̃
n
n).

A proof of this fact follows by working with the product densities. Let hn denote the

density for Zn. By interchanging the order of integration:

v(Pn
0 , P

n
n ) =

1

2

∫ ∣∣∣∣
∫
hn(x1 − y1) · · ·hn(xn − yn)

(
dQn

n(y) − dQ̃n
n(y)

)∣∣∣∣ dx

≤
∫
hn(x1 − y1) · · ·hn(xn − yn) dx

1

2

∫ ∣∣∣ dQn
n(y) − dQ̃n

n(y)
∣∣∣

= v(Qn
n, Q̃

n
n).

By the definition for Ỹn,

dQ̃n(y)

dQn(y)
− 1 = {|y| ≤Mn} (Qn{|Y | ≤Mn})−1 − 1.

Expand the quadratic to obtain,

Qn

(
dQ̃n

dQn
− 1

)2

= (Qn{|Y | ≤Mn})−1 − 1.
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By choosing Mn to converge to infinity fast enough, the right-hand side can be made

less than γ/n for small γ > 0. Deduce by Lemma <2.7> that v(Qn
n, Q̃

n
n) can be made

arbitrarily small for each K > 0, and therefore conclude that the standard deviation is

not estimable at the rate of convergence δn. Because δn is arbitrary, this shows that the

standard deviation is not estimable at any rate.

<2.20> Remarks: We return to this example in Chapter 4 where we discuss different

methods for constraining the class of mixing distribution and show how lower bounds for

rates of convergence are related to these constraints.



Chapter 3

Techniques for Determining Rates of Convergence

1. Introduction Consider the parametric family of densities

<3.1> F(Θ,N ) = {f(· | θ, η) : (θ, η) ∈ Θ ×N ⊆ IRk × IR},

where the underlying densities f(x | θ, η) are taken with respect to a σ-finite measure, ν,

dominated by Lebesgue measure. As in Definition <2.4>, we assume that f(x | θ, η) is

measurable as a function of (x, η) and form the class of mixed distributions, P(Θ,Q), to

consist of distributions with ν-densities

f(x | θ,Q) =

∫
f(x | θ, η) dQ(η),

where Q is a class of mixing distributions with support on N .

Our objective is to determine lower bounds for rates of convergence for estimators of θ

assuming that Θ and Q are chosen so as to make P(Θ,Q) identifiable. Determining a lower

bound for a particular component of the vector θ is at least as difficult as determining the

rate when the remaining k − 1 components are known. Therefore, for simplicity we will

take Θ to be a one-dimensional parameter space.

Let P0 ∈ P(Θ,Q) have parameter (θ0, Q0). Let Pτ ∈ P(Θ,Q) be a path through P0

formed by perturbing θ0 by τ and by perturbing Q0 in some fashion. If F(Θ,N ) satisfies

mild regularity conditions and if the perturbation in Q0 is smooth enough, then we would

expect the likelihood ratio to be expressible as

<3.2>
dPτ

dP0
= 1 + τ∆ +R(·, τ),

where ∆ is an L2(P0)-function, and R(·, τ) has L2(P0)-norm of order o (τ) (see Pfanzagl,

1990 for a different example where a similar form for the likelihood is assumed).

The layout of the chapter is as follows. Section 2 presents sufficient conditions (Regu-

larity Conditions <3.6>) which ensure that the likelihood ratio for smooth Pτ paths can

be expressed in a form similar to <3.2>. There we consider families F(Θ,N ) which have

a specific exponential form, and show that when the class of mixing distributions is rich

enough, it is possible to construct for any positive ε, a smooth path Pτ ∈ P(Θ,Q) through

P0 ∈ P(Θ,Q) with likelihood ratio expressible as <3.2> such that P0∆
2 < ε. That is,

the path Pτ is constructed so that the component in ∆ attributable to the perturbation

in the mixing distribution nearly cancels the component due to the perturbation in the

structural parameter. This will imply that the structural parameter cannot be estimated

at the usual Op

(
n−1/2

)
rate.

– 23 –
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Section 3.3 describes a Fourier technique for constructing paths, Pτ , whose likelihood

ratio can be expressed in a form similar to <3.2>, but whose linear coefficient ∆ is an

L2(P0)-function depending upon τ . The rate of decrease of the L2(P0)-norm of these

tangents determines explicit lower bounds for rates of convergence. The technique is

applicable to location-mixture models with unknown scale parameter.

2. Checking for Zero Information Now to formalize the discussion of the previous

section. Let F(Θ,N ) be a parametric family of densities of the form <3.1> which can be

written as,

<3.3> f(x | θ, η) = exp (ηs(x, θ) + t(x, θ) + b(θ, η)) .

For fixed θ it defines an exponential family indexed by η, with natural parameter space

N (θ) =
{
η :

∫
exp (ηs(x, θ) + t(x, θ)) dx <∞

}
.

We assume that N (θ) = N for each θ ∈ Θ and that (0,∞) ⊆ N .

<3.4> Example (Weibull mixture model): Let F(Θ,N ) be the parametric family

of Weibull densities

f(x | θ, η) = θxθ−1η exp(−ηxθ),

with respect to Lebesgue measure on (0,∞), where Θ = (0,∞), and N = (0,∞). The

densities in this family conform to the parametric requirement <3.3> with s(x, θ) = −xθ,

t(x, θ) = (θ− 1) log x and b(θ, η) = log(θη). Notice that for each θ, the natural parameter

space is N = (0,∞).

Let Q0 ∈ Q and define L∞
0 (Q0) to be the set of functions which are bounded a.e.

[Q0] and which have zero Q0-expectation. For h ∈ L∞
0 (Q0), define the perturbed mixing

distribution Qτ,h by

<3.5> dQτ,h(η) = dQ0(η) (1 + τh(η)) ,

for small τ . In addition to assuming that Q is constrained to ensure that P(Θ,Q) is

identifiable, we also assume that Q contains all distributions Qτ,h for τ in a neighborhood

of zero depending upon h and Q0.

Let P0 ∈ P(Θ,Q) be the assumed true distribution with structural parameter θ0 ∈ Θ

and mixing distribution Q0 ∈ Q. Let fτ,h denote the perturbed mixed density

fτ,h(x) = f(x | θ0 + τ,Qτ,h)

=

∫
f(x | θ0 + τ, , η) dQτ,h(η).

Denote the density for P0 by f0. It is obtained by evaluating fτ,h at τ = 0.
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Using paths of the form <3.5>, we will show that if Q is a large enough class and

if F(Θ,N ) satisfies regularity conditions, then it is possible to find a Q0 ∈ Q and a

h ∈ L∞
0 (Q0) so that fτ,h ≈ f0. This in turn will show that the structural parameter

cannot be estimated at a Op

(
n−1/2

)
rate.

The heuristic for the argument is as follows. Assuming that it is possible to differentiate

densities:

fτ,h(x) =

∫
f(x | θ0 + τ, , η)[1 + τh(η)] dQτ,h(η)

≈
∫ [

f(x | θ0, η) + τ
∂

∂θ
f(x | θ0, η) + · · ·

]
[1 + τh(η)] dQτ,h(η)

= f0(x) + τ

∫ [
h(η)f(x | θ0, η) +

∂

∂θ
f(x | θ0, η)

]
dQ0(η) + · · · .

By dividing throughout by f0, obtain the approximation

fτ,h(x)

f0(x)
≈ 1 + τ [A(Q0, h)(x) + ρ(x)] ,

where

A(Q0, h)(x) =
1

f0(x)

∫
h(η)f(x | θ0, η) dQ0(η),

and

ρ(x) =
1

f0(x)

∫
∂

∂θ
f(x | θ0, η) dQ0(η).

To make fτ,h ≈ f0, the aim will be to find a Q0 and an h such that

ρ(x) ≈ −A(Q0, h)(x).

Here are the conditions that justify the formal differentiation:

<3.6> Regularity Conditions: Suppose P0 ∈ P(Θ,Q) with parameter (θ0, Q0). Say

that P0 satisfies regularity conditions, if for small τ

∆(x, η, τ) =
∂

∂θ
f(x | θ0 + τ, η)

exists for a.a. x [ν] and a.a. η [Q0], such that:

(i) ∆(x, η, τ) is continuous in τ ,

(ii) there exists a dominating function M such that

<3.7>
∆(x, η, τ)2

f(x | θ0, η)
≤M(x, η),

and Q0M(x, ·) ∈ L1(ν).

Define L2
0(P0) to be the equivalence class of P0 square integrable functions which have

zero P0-expectation. Under the previous conditions it is possible to show:
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<3.8> Lemma: Assume that Regularity Conditions <3.6> hold for P0 ∈ P(Θ,Q) with

parameter (θ0, Q0). Then for each h ∈ L∞
0 (Q0)

<3.9> P0

(
fτ,h

f0
− 1

)2

≤ τ2P0(A(Q0, h) + ρ)2,

for small τ , where ρ ∈ L2
0(P0) and A(Q0, ·) is the linear map from L∞

0 (Q0) into L2
0(P0).

The next lemma asserts the existence of a Q0 and an h ∈ L∞
0 (Q0) which makes the

right-hand side of <3.9> small.

<3.10> Lemma: Suppose Q0 ∈ Q is a discrete distribution with countably infinite many

atoms on N ∗ ⊂ N . Then the range of the linear operator A(Q0, ·) is dense in L2
0(P0).

Lemma <3.8> and Lemma <3.10> will establish the following theorem.

<3.11> Theorem: Assume that Regularity Conditions <3.6> hold for P0 ∈ P(Θ,Q)

with parameter (θ0, Q0), and that Q0 satisfies the conditions of Lemma <3.10>. Then a

regular estimator for θ0 at P0 must have rate of convergence slower than Op

(
n−1/2

)
.

Proof of Theorem <3.11>: The operator A(Q0, ·) is dense by Lemma <3.10>. There-

fore, for each ε > 0 there exists a function h0 ∈ L∞
0 (Q0) satisfying P0(A(Q0, h0)+ρ)2 < ε.

By Lemma <3.8>,

P0

(
fτ,h0

f0
− 1

)2

< ετ2, eventually.

The fact that ε is arbitrary proves the theorem by Lemma <2.11>.

<3.12> Example (Weibull mixture model, continued): Let Q be the class of mix-

ing distributions with support on the set N ∗ = (η0, η1), where 0 < η0 < η1 <∞. Because

N ∗ is bounded, each Q ∈ Q must have first moment bounded by η1. Chapter 5.1 shows

that this is a sufficient condition to ensure that P(Θ,Q) is identifiable. Notice, as well,

that if Q0 ∈ Q and h ∈ L∞
0 (Q0), then

∫
η dQτ,h(η) =

∫
η dQ0(η) + τ

∫
h(η) dQ0(η)

< η1 (1 + |τ | ‖h‖∞),

where ‖h‖∞ is the sup-norm for h. This implies that the left-hand side of the expression

must be less than or equal to η1 eventually, and therefore, that Q is rich enough to contain

all distributions of the form <3.5>, for small enough τ .

We show below that Regularity Conditions <3.6> holds for each P ∈ P(Θ,Q). There-

fore if P0 ∈ P(Θ,Q) with parameter (θ0, Q0), then Theorem <3.11> shows that it is not
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possible to estimate θ0 at a Op

(
n−1/2

)
rate when Q0 is discrete with countably infinite

many atoms.

Let us verify the regularity conditions. Differentiation with respect to θ gives

∂

∂θ
f(x | θ, η) = g(x, θ, η)f(x | θ, η),

where

g(x, θ, η) =
1

θ
+ log x− ηxθ log x.

To establish the regularity conditions we must show that the right-hand side of the

inequality

∆(x, η, τ)2

f(x | θ0, η)
= g(x, θ0 + τ, η)2

f(x | θ0 + τ, η)2

f(x | θ0, η)

≤ Cg(x, θ0 + τ, η)2x(θ0+2τ−1) exp

[
−ηxθ0 (2xτ − 1)

]
,<3.13>

can be bounded by a function independent of τ satisfying <3.7> (here C is a finite constant

depending upon θ0 for small τ).

By restricting τ to be positive, construct a dominating integrable function for <3.13>

over the separate regions 0 ≤ x ≤ 1 and x > 1 (for example, use the fact xs| log x |t is

integrable over 0 ≤ x ≤ 1, for s, t > −1). Use the boundedness of N ∗ to construct the

function independent of η to show that <3.7> holds. This verifies the regularity conditions.

Now to prove the two lemmas.

Proof of Lemma <3.8>: Use the mean value theorem to expand the perturbed density

as

<3.14> f(x | θ0 + τ, η) = f(x | θ0, η) + τ∆(x, η, 0) + r(x, η, τ),

where the remainder term is defined to be

<3.15> r(x, η, τ) = τ

[
∆(x, η, τ∗) − ∆(x, η, 0)

]
,

and τ∗ = τ∗(x, η, τ) is bounded by |τ |.

Square both sides of <3.15>, divide throughout by τ2f(· | θ0, η), and integrate with

respect to ν to write

1

τ2

∫
r(x, η, τ)2

f(x | θ0, η)
dν(x) =

∫
1

f(x | θ0, η)

[
∆(x, η, τ∗) − ∆(x, η, 0)

]2

dν(x).
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Take expectations with respect toQ0 on both sides of the expression. Use the dominated

convergence theorem with dominating function

4

∫
M(x, η) dν(x)

(which must be Q0 integrable by regularity condition <3.7> and Fubini’s Theorem), to

show by the continuity of ∆(x, η, τ) in τ that:

<3.16> Q0

∫
r(x, η, τ)2

f(x | θ0, η)
dν(x) = o

(
τ2
)
.

Divide <3.14> throughout by f0 on the set where it is nonzero (which has P0 measure

one), and take expectations with respect to Qτ,h to write

fτ,h(x)

f0(x)
=

1

f0(x)

∫
[f(x | θ0, η) + τ∆(x, η, 0) + r(x, η, τ)] [1 + τh(η)] dQ0(η).

Assume that a term by term expansion on the right side is justifiable, yielding

1 +
τ

f0(x)

[∫
h(η)f(x | θ0, η) dQ0(η) +

∫
∆(x, η, 0) dQ0(η)

]

+
τ2

f0(x)

∫
h(η)∆(x, η, 0) dQ0(η) +

1

f0(x)

∫
r(x, η, τ) dQτ,h(η).<3.17>

Recognize that the coefficient of τ equals A(Q0, h)+ ρ. Collect the remainder terms, to

write the likelihood ratio as

<3.18>
fτ,h(x)

f0(x)
− 1 = τ

(
A(Q0, h)(x) + ρ(x)

)
+R(x, h, τ),

for a.a. x [P0].

The lemma will be established by showing that A(Q0, h) and ρ are L2
0(P0)-functions,

and that R(·, h, τ) has squared L2(P0)-norm of order o
(
τ2
)
. Let us start with the last

term in <3.17>. Because we can bound h by its sup-norm, it is sufficient to consider

P0

(
1

f0

∫
r(·, η, τ) dQ0(η)

)2

=

∫
1

f0(x)

[∫
r(x, η, τ)

f(x | θ0, η)1/2
f(x | θ0, η)1/2 dQ0(η)

]2
{f0(x) 6= 0} dν(x).<3.19>

From the Cauchy-Schwarz inequality, bound <3.19> by
∫∫

r(x, η, τ)2

f(x | θ0, η)
dQ0(η) dν(x).

Interchange the order of integration to deduce by <3.16> that this term is of order o
(
τ2
)
.

This takes care of the last term in <3.17>. The other terms are dealt with in much

the same fashion. Notice also, that if T is a function such that Q0T (x, η) ∈ L2(P0),
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then T (x, ·) ∈ L1(Q0) a.a. x [P0]. Therefore, the term by term expansion leading to the

expression <3.17> is valid for a.a. x [P0].

Finally, choose h to equal zero. Take expectations of <3.18> with respect to P0, to

show that ρ has zero P0-expectation. Consequently, A(Q0, h) has zero P0-expectation.

To prove Lemma <3.10> we will have need of the following Fourier result.

<3.20> Lemma: Let λ be a σ-finite measure dominated by Lebesgue measure. If there

exists a sequence of distinct real numbers zn converging to z0 ∈ (α, β) such that
∫

|γ(x)| exp(zx) dλ(x) <∞ for α < z < β,

and ∫
γ(x) exp(znx) dλ(x) = 0,

then

γ = 0 a.e. [λ].

Proof of Lemma <3.20>: The integrability condition implies that

g(z) =

∫
γ(x) exp(zx) dλ(x)

is analytic on z ∈ Λ(α, β) = {z : α < Re(z) < β} (Lehmann, 1986: Theorem 9, Chapter

2.7). Because every neighborhood of z0 contains points of the sequence zn, the analytic

nature of g implies that it must equal zero in some neighborhood of z0. Therefore by

analytic continuation, g equals zero on Λ(α, β). Appeal to the uniqueness of the Fourier

transform (Rudin, 1987: Chapter 9) to establish the result.

Proof of Lemma <3.10>: Now to prove that the range of A(Q0, ·) is dense in L2
0(P0).

To do so, we will show that if ψ ∈ L2
0(P0) satisfies P0ψA(Q0, h) = 0 for all h ∈ L∞

0 (Q0),

then ψ = 0 a.e. [P0].

Suppose ψ ∈ L2
0(P0) such that P0ψA(Q0, h) = 0 for all h. Because both ψ and A(Q0, h)

are elements of L2(P0), we can interchange the order of integration to obtain

<3.21>

∫∫
h(η)ψ(x)

f(x | θ0, η)
f0(x)

dP0(x) dQ0(η) = 0.

Therefore, Q0hT = 0 for all h ∈ L∞
0 (Q0), where

T (η) =

∫
ψ(x)f(x | θ0, η) dν(x).

Define h0 = T − ξ, where ξ = Q0T . If T is bounded on N ∗ (which contains the support

of Q0), then h0 ∈ L∞
0 (Q0). For the moment assume that this is the case. From <3.21>, we
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have that Q0 h0T = 0. Because h0 has zeroQ0-expectation, Q0 h0(T−ξ) = 0. This implies

that Q0 h
2
0 = 0, and hence that T must equal ξ for all η in the support of [Q0] (recall that

Q0 is discrete). To determine what ξ equals, interchange the order of integration to show

ξ =

∫
ψ(x)

∫
f(x | θ0, η) dQ0(η) dν(x),

which equals P0ψ and is therefore zero.

Therefore, we have shown that

<3.22>

∫
ψ(x)f(x | θ0, η) dν(x) = 0,

for all η in the support of Q0.

Standard results about exponential families show that b(θ0, ·) is continuous on N (θ0).

Because N ∗ is a proper subset of N = N (θ0) we can find a compact subset [η0, η1] ⊂ N
which contains it. Thus, the continuity of b(θ0, ·) implies

<3.23> sup
η0≤η≤η1

exp(−b(θ0, η)) <∞.

This allows us to rewrite <3.22> as

<3.24>

∫
ψ(x) exp(ηs(x, θ0)) dν

∗(x) = 0,

for all η in the support of Q0, where dν∗(x) = exp(t(x, θ0))dv(x).

By assumption, Q0 puts positive mass on a sequence of atoms an ∈ N ∗ converging

to an interior point of N ∗. Thus, the integral in <3.24> equals zero when η equals an.

Therefore, if we can show that

<3.25>

∫
|ψ(x)| exp(ηs(x, θ0)) dν(x)

∗ <∞, for η0 < η < η1,

then a change of variables and an application of Lemma <3.20> will establish the desired

result.

The same argument which shows T to be bounded, will also show that <3.25> holds.

Let us first show that T is bounded. Write T as

<3.26> T (η) =

∫ (
ψ(x)f0(x)

1/2
)(f(x | θ0, η)

f0(x)1/2

)
dν(x).

If we can show that each expression in parenthesis is square integrable, uniformly in η,

then an application of the Cauchy-Schwarz inequality will establish the result. The first

expression is easily dealt with by our assumption that ψ ∈ L2(P0). To deal with the

second term, consider the inequality

f(x | θ0, η) ≥ f(x | θ0, η̃) {η = η̃} ,
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where η̃ is an atom of Q0. Take expectations with respect to Q0 on both sides of the

inequality to show that 1/f0 ≤ C/f(· | θ0, η̃), where C is a finite constant depending upon

η̃. Therefore,

<3.27>

∫
f(x | θ0, η)2

f0(x)
dν(x) ≤ C

∫
f(x | θ0, η)2
f(x | θ0, η̃)

dν(x).

The integrand on the right side can be written as

<3.28> exp

[
(2η − η̃)s(x, θ0) + t(x, θ0) + 2b(θ0, η) − b(θ0, η̃)

]
.

Use the continuity of b(θ0, ·) on N ∗ ⊂ [η0, η1] to bound the terms involving b(θ0, ·) by a

finite constant, B0. By considering whether s(·, θ0) is positive or negative, bound <3.28>

by

B0 exp(t(x, θ0))

[
exp[(2η1 − η0)s(x, θ0)] + exp[η0s(x, θ0)]

]
.

Because 2η1 − η0 and η0 are interior points of N = N (θ0), deduce that the expres-

sion <3.28> must be ν-integrable . Apply the Cauchy-Schwarz inequality in <3.26> to

deduce that

<3.29> |T (η)|2 ≤
∫
ψ(x)2f0(x) dν(x)

∫
f(x | θ0, η)2

f0(x)
dν(x)

is bounded uniformly for η ∈ N ∗.

To show that <3.25> holds, multiply the left side of the expression by exp(b(θ0, η)) and

use the previous argument to establish that ψf(· | θ0, η) is integrable for η0 < η < η1.

Now use <3.23> to conclude the proof.

<3.30> Remarks: It is worth pointing out an interesting connection to the paper of

Begun, Hall, Huang, and Wellner (1984) discussed in Chapter 1. By the inequality <2.9>,

Theorem <3.11> shows that it is possible to find a model P0, such that
∫ (√

fτ,h −
√
f0

)2

≤ τ2P0(A(Q0, h) + ρ)2

< ετ2,

for arbitrarily small ε. In the context of the Begun paper, this implies that the model has

zero information even for fairly smooth paths <3.5>.

<3.31> Remarks: In the proof of Lemma <3.8>, we show using Regularity condi-

tions <3.6> that r(·, τ)2/f(· | θ0, η) has L1(ν)-norm of order o
(
τ2
)
, for a.a. η [Q0]. The

same argument also implies that ∆(·, η, 0)2/f(· | θ0, η) is a ν-integrable function, for a.a.
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η [Q0]. Consequently, the likelihood ratio

f(· | θ0 + τ, η)

f(· | θ0, η)
is L2(f(· | θ0, η))-differentiable with first derivative ∆(·, η, 0)/f(· | θ0, η), for a.a. η [Q0] in

the following sense:

<3.32> Definition: Let g(·, τ) be a density, where τ is real. Define g0 = g(·, 0). Say

that g(·, τ)/g0 is L2(g0)-differentiable, with first derivative g1, if

g(x, τ)

g0(x)
= 1 + τg1(x) + r(x, τ),

where g1 ∈ L2(g0) and r(·, τ) has L2(g0)-norm of order o (τ).

This type of differentiabilty will become useful in the next section when we come to

work with L2-distances of convolutions (Lemma <3.38>).

3. A Fourier Technique for Scale Location-Mixtures Let us introduce a new tech-

nique for determining rates of convergence. Consider a random variable

X = θZ + Y,

where the random variable Z has a known density h0, the parameter θ is real, and Y

has an unknown distribution Q, independent of Z. The random variable X describes

a location-mixture model with unknown scale parameter θ. Let Θ be a real parameter

space and Q a class of mixing distributions that are absolutely continuous with respect

to Lebesgue measure. Take P(Θ,Q) to be the class of mixed distributions, induced by Θ

and Q, which can be described as convolutions like X . The problem will be to estimate

the structural parameter θ, assuming that enough constraints have been placed on Θ and

Q to make P(Θ,Q) identifiable.

Because the distribution for X is a convolution, we can write its characteristic function

as the product of the characteristic functions of the distributions for θZ and Y . The

interaction between the structural parameter and the mixing distribution in the real do-

main becomes in the complex domain a much simpler relationship involving products of

characteristic functions. The following heuristic argument takes advantage of this fact and

utilizes Fourier analysis for determining rates of convergence.

First some notation. Denote the Fourier transform of f ∈ L1(µ) by f̂ , where

f̂(t) =

∫ +∞

−∞
exp(itη)f(η) dη, t ∈ IR.
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Define the convolution between f and g ∈ L1(µ) as

[f ∗ g] (x) =

∫ +∞

−∞
f(x− y)g(y) dy, x ∈ IR.

For convenience let us assume that θ0 = 1 is an element of Θ. Let P0 ∈ P (Θ,Q)

equal the true mixed distribution with density f0, structural parameter θ0, and mixing

density q0. All densities are taken with respect to Lebesgue measure. Let Pτ ∈ P(Θ,Q)

be a perturbed distribution with density f(·, τ), structural parameter 1 + τ , and mixing

distribution Qτ . Assume that the density h(·, τ) for the random variable (1 + τ)Z can be

expressed as the Taylor series expansion

<3.33> h(x, τ) = h0(x) + τh1(x) + τ2h2(x) + · · · ,

where each term in the expansion is Lebesgue integrable.

Assume that Qτ has a density which can be expressed as

<3.34> q(y, τ) = q0(y) + τq1(y) + τ2q2(y) + · · · ,

where, again, all terms in the expansion are integrable. Then, the density for Pτ is

f(x, τ) = [h(·, τ) ∗ q(·, τ)] (x)
=
[(
h0 + τh1 + τ2h2 + · · ·

)
∗
(
q0 + τq1 + τ2q2 · · ·

)]
(x).

Expand by collecting coefficients in powers of τ . Recognize that f0 = h0 ∗ q0 to show

f(x, τ) − f0(x) = τ
(
[h0 ∗ q1] (x) + [h1 ∗ q0] (x)

)

+ τ2
(
[h0 ∗ q2] (x) + [h1 ∗ q1] (x) + [h2 ∗ q0] (x)

)
+ · · · .<3.35>

To make discrimination between P0 and Pτ difficult, we would like to make f(·, τ) as

close as possible to f0. Expression <3.35> indicates the first place of attack should be the

linear term and suggests we choose Qτ such that

<3.36> h0 ∗ q1 + h1 ∗ q0 = 0,

or so that the left-hand side can be made as close to zero as possible. It will be convenient

to recast this problem into one involving products of Fourier transforms. Shortly we will

see how to do this.

Let us assume that the left-hand side of <3.36> can be made to be exactly zero. Di-

vide <3.35> by f0 to obtain

<3.37>
f(x, τ)

f0(x)
− 1 = τ2

(
1

f0(x)
[h0 ∗ q2] (x) +

1

f0(x)
[h1 ∗ q1] (x) +

1

f0(x)
[h2 ∗ q0] (x)

)
+ · · · .
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By Lemma <2.10>, to be able to infer a lower bound of n−1/4 for the rate of convergence,

it is sufficient to show

P0

(
f(·, τ)
f0

− 1

)2

= O
(
τ4
)
.

This can be established by showing that the right-hand side of <3.37> has squared L2(P0)-

norm of order O
(
τ4
)
. The following lemma will be helpful in showing this.

<3.38> Lemma: For functions F1, F2, G1, and G2 in L2(µ)

<3.39>

∫
[(F1G1) ∗ (F2G2)]

2

F 2
1 ∗ F 2

2

≤
∫
G2

1

∫
G2

2.

Proof of Lemma <3.38>: By the Cauchy-Schwarz inequality

[(F1G1) ∗ (F2G2)]
2

=
(∫

F1(x− y)G1(x− y)F2(y)G2(y) dy
)2

≤
∫
F1(x − y)2F2(y)

2 dy

∫
G1(x− y)2G2(y)

2 dy.

The first integral on the right-hand side equals F 2
1 ∗F 2

2 , which is finite almost everywhere,

being a convolution of two integrable functions. When this factor is finite (and nonzero),

we deduce that the integrand on the left-hand side of <3.39> is bounded by

<3.40>

∫
G1(x− y)2G2(y)

2 dy.

(When F 2
1 ∗ F 2

2 equals zero, the left-hand side of <3.39> equals zero, so that the same

bound still holds.)

The integral over x of the expression <3.40> factorizes into the product on the right-

hand side of <3.39>.

For example, to show that the term τ2 [h1 ∗ q1] /f0 has squared L2(P0)-norm of order

O
(
τ4
)
, we need to show that [h1 ∗ q1]2 /f0 is Lebesgue integrable. This can be established

by applying the previous lemma with F1 =
√
h0, F2 =

√
q0, G1 = h1/

√
h0 and G2 =

q1/
√
q0 :

∫
[h1 ∗ q1]2

f0
=

∫ [(√
h0 h1/

√
h0

)
∗
(√
q0 q1/

√
q0
)]2

(√
h0

)2 ∗
(√
q0
)2

≤
∫
h2

1

h0

∫
q21
q0
.

The integrability of [h1 ∗ q1]2 /f0 can be established by showing that that both integrals

on the right-hand side are finite. The first integral can be made finite by assuming that

that the likelihood ratio h(·, τ)/h0 is L2(h0)-differentiable, while the second integral can

be dealt with by imposing constraints on the the mixing distribution Qτ .
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Now, let us describe a Fourier technique for solving <3.36>. The Fourier analog

of <3.36> is

<3.41> ĥ0(t)q̂1(t) + ĥ1(t)q̂0(t) = 0.

This problem can be formulated more simply by assuming that ĥ0(t) is expressible as

exp(l(t)). Assume, as well, that l(t) is smooth enough that a Taylor series expansion of

ĥ(t, τ) = exp
[
l(t+ τt)

]
about τ = 0 yields

<3.42> exp(l(t)) + τ exp(l(t))tl′(t) + · · · .

The Fourier transform of h(·, τ) should have an expansion analogous to <3.33>

ĥ(t, τ) = ĥ0(t) + τĥ1(t) + τ2ĥ2(t) + · · · .

Comparing this with <3.42>, gives

ĥ1(t) = ĥ0(t)tl
′(t).

Take out the common factor ĥ0 so as to reformulate the Fourier problem <3.41> more

simply as,

<3.43> q̂1(t) + tl′(t)q̂0(t) = 0.

The advantage of trying to satisfy the Fourier expression <3.43> over the analogous real

expression <3.36> is that the problem shifts from one involving convolutions of functions

to a simpler one involving products of functions. In particular, solving the Fourier problem

will involve choosing Q0 so that the density q0 and its Fourier transform q̂0 are easy to

work with, while at the same time choosing an appropriate Fourier perturbation q̂1.

It will not always be possible to choose q0 and q1 to satisfy all the constraints and

to make the left-hand side of <3.43> exactly zero, but it is possible to use <3.43> as a

starting point to choose q0 and q1 in such a way that the leading term on the right-hand

side of

f(x, τ)

f0(x)
− 1 =

τ

f0(x)

(
[h0 ∗ q1] (x) + [h1 ∗ q0] (x)

)

+
τ2

f0(x)

(
[h0 ∗ q2] (x) + [h1 ∗ q1] (x) + [h2 ∗ q0] (x)

)
+ · · ·

contributes only a term with squared L2(P0)-norm of order o
(
τ2
)

to the left-hand side.

A careful analysis will then involve consideration of the remainder terms, to ensure that

they not undo the work that goes into making the coefficient of τ small.



Chapter 4

Normal Mean-Mixture Model

1. Introduction The normal mean-mixture model is formed by mixing over the mean of

a normal density with unknown standard deviation. Interest in this chapter will focus on

the problem of estimation for the standard deviation in the presence of the nuisance mixing

distribution. More precisely, we have independent observations from θZ+Y , where Z has

a N(0, 1) distribution, θ is a unknown parameter in Θ = (0,∞), and Y has an unknown

distribution Q, independent of Z. The problem is to estimate the standard deviation, θ.

We showed earlier in Example <2.19> of Chapter 2, that the class of mixed distributions

P(Θ,Q) induced by Θ and a class of mixing distributions Q will not be identifiable if

Q contains distributions which have normal components. For example, if τ is a small

real number, then there is no way to discriminate between a N(0, 1 − τ) distribution

convolved with a N(0, 1 + τ) distribution, and a N(0, 1) distribution convolved with a

N(0, 1) distribution. Thus, for the estimation problem to be of any practical significance,

we need to place constraints on Θ and Q so as to make the model identifiable.

Example <2.19> makes it clear that the standard deviation might not be estimable at

any rate of convergence if the model is only required to be identifiable. The example takes

advantage of the near lack of identifiablity by considering mixing distributions which are

nearly normal. One wonders then, if the only examples which establish slow rates are

those which take advantage of the near lack of identifiability. We show that this is not the

case in sections 2 and 3 of the chapter.

Section 2 verifies the regularity conditions for Theorem<3.11> and shows that the model

has zero information even when the mixing distribution is constrained to be discrete with

finite support. Furthermore, the proof that the model has zero information follows from

considering smooth paths through the mixing space Q.

Section 3 uses the Fourier technique of Chapter 3.3 to deduce lower bounds for rates

of convergence. There Q is constrained in the frequency domain and rates are directly

related to the manner of constraint.

2. Zero Information Let F(Θ,N ) be the parametric family of normal densities of the

form

f(x | θ, η) =
1√

2πθ2
exp

[
− 1

2θ2
(x− η)2

]
,

where θ takes values in Θ = (0,∞), and η ranges over N = IR. Let Q be the class of

mixing distributions with support contained within the set N ∗ ⊂ N . Form the class of

– 36 –
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identifiable normal-mean mixture models P(Θ,Q) by mixing over the densities in F(Θ,N )

by distributions in Q.

We show that the model has zero information according to Theorem <3.11> of Chapter

3.2, by verifying Regularity Conditions <3.6> of the same chapter.

First verify that the densities satisfy the parametric form <3.3>. Check that this holds

with s(x, θ) = x/θ2, t(x, θ) = −x2/(2θ2) and b(θ, η) = −η2/(2θ2) − log(2πθ2)/2. Now

verify the remaining conditions. Observe that for small τ ,

<4.1>
f(x | θ0 + τ, η)2

f(x | θ0, η)
≤ C1 exp

[
− 1

4θ20
(x− η)2

]
,

where C1 is a fixed positive constant.

Differentiation yields

∂

∂θ
f(x | θ, η) = g(x, θ, η)f(x | θ, η),

where

g(x, θ, η) = −1

θ
+

1

θ3
(x− η)2.

Use <4.1> to obtain the bound

<4.2>
[∂f(x | θ0 + τ, η)/∂θ]

2

f(x | θ0, η)
≤ C2

[
1 + (x− η)2

]2
exp

[
− 1

4θ20
(x − η)2

]
,

for small τ , where C2 is a fixed constant. Integrate <4.2> over x to obtain a function inde-

pendent of η to show that <3.7> holds and consequently that Regularity Conditions <3.6>

hold.

Therefore, if P0 ∈ P(Θ,Q) with parameter (θ0, Q0), then Theorem <3.11> shows that

the rate of convergence for estimators of the standard deviation must be slower than

Op

(
n−1/2

)
when Q0 is discrete with countably infinite many atoms. In particular the

theorem shows, for such Q0, the existence of an h ∈ L∞
0 (Q0) which makes discrimina-

tion difficult between P0 and the model Pτ with structural parameter θ0 + τ and mixing

distribution

<4.3> dQτ,h = dQ0(1 + τh).

The next section extends this result. By working with a constrained class Q, we show

how to construct mixing paths, analogous to <4.3>, of the form

q(y, τ) = q0(y) + τq1(y) + · · · + τdqd(y),

to derive explicit lower bounds for rates of convergence which depend upon d and the

manner in which Q is constrained.
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3. Rates of Convergence Using Fourier Analysis In this section we rigorously apply

the Fourier argument of Chapter 3.3 to the problem of estimation for the standard devi-

ation in the normal mean-mixture model. Because we work with Fourier transforms, the

most natural way to ensure identifiability in the model will be to place Fourier constraints

on the class of mixing distributions, Q.

Assume that Q is absolutely continuous with respect to Lebesgue measure. To ensure

that Q contain no normal distributions, require that each Q ∈ Q have density q (with

respect to Lebesgue measure) such that

<4.4>

∫
q̂ (t)t2d+1 dt = ∞,

where d is a fixed positive integer.

By constraining the tail behavior for the Fourier transform, condition <4.4> limits the

amount of smoothness a distribution in Q might have. For example, consider the case

when d = 1. Let Q be the distribution for the convolution of four uniform distributions on

[−1,+1]. Then Q has Fourier transform (sin t)4/t4 which satisfies <4.4>. Notice, however,

that the distribution for five uniform [−1,+1] distributions would be too smooth in this

case. Its Fourier transform, (sin t)5/t5, decreases too rapidly to satisfy <4.4> when d = 1.

Let P(Θ,Q) be the class of identifiable normal-mean mixture models induced by Q
and Θ = (0,∞). We will show for this class of models, a lower bound of Op

(
n−1/(2d+2)

)

for the rate of convergence. The fact that the result depends upon d shows that rates

of convergence depend directly upon the amount of smoothness allowed in the mixing

densities: the smoother the mixing density, the slower the rates of convergence.

Let P0 ∈ P(Θ,Q) be the true model with structural parameter θ0 and mixing distribu-

tion Q0 with density q0. Without loss of generality, let θ0 = 1. Define Pτ as the perturbed

mixed distribution with structural parameter (1+τ)1/2 and mixing distribution Qτ . Then

Pτ corresponds to the random variable (1 + τ)1/2Z + Y , where Z is normally distributed,

and Y has distribution Qτ independent of Z. (Notice that the standard deviations for P0

and Pτ are separated rougly by τ . Therefore, the convenient parameterization that we

employ here will not affect the argument given in Chapter 3.3.)

Let h0 equal the standard normal density. Expand the density h(·, τ) for the random

variable (1 + τ)1/2Z to (d+ 2)-terms in a Taylor series expansion about τ = 0

<4.5> h(x, τ) = h0(x) + τh1(x) + · · · + τdhd(x) + τd+1hd+1(x, τ),

where hm(x) = h0(x)Pm(x) and hd+1(x, τ) = h(x, τ)Pd+1(x, τ), and where Pm(x) is a

polynomial in x of degree 2m, for m = 1, 2, · · · , d and Pd+1(x, τ) is a polynomialy in x of

degree 2d+ 2.
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Let Qτ have density which can be expressed as the sum of (d+ 1)-integrable functions

q(y, τ) = q0(y) + τq1(y) + · · · + τdqd(y).

We will construct Qτ by choosing q0 and the perturbations q1, · · · , qd so as make discrim-

ination between P0 and Pτ difficult.

The density for (1 + τ)1/2Z + Y equals,

f(x, τ) = [h(·, τ) ∗ q(·, τ)] (x)
=
[(
h0 + τh1 + · · · + τdhd + τd+1hd+1(x, τ)

)
∗
(
q0 + τq1 + · · · + τdqd

)]
(x).

The density for P0 can be written as f0 = h0 ∗ q0. Expand the previous expression by

collecting coefficients in powers of τ and use this identity to obtain

f(x, τ) − f0(x) = τ
(
[h0 ∗ q1] (x) + [h1 ∗ q0] (x)

)

+ · · · + τd
(
[h0 ∗ qd] (x) + [h1 ∗ qd−1] (x) + · · · + [hd ∗ q0] (x)

)

+ · · · + τ2d+1 [hd+1(·, τ) ∗ qd] (x).<4.6>

As discussed in the heuristic, estimation for θ is made difficult by making f(·, τ) as

close to f0 as possible, for a suitable choice q(·, τ). To establish the asserted lower bound

for the rate of convergence, we will construct q(·, τ) so that the first d coefficients in the

expansion <4.6> are zero. Each coefficient is made zero by requiring that q0 is smooth:

the higher the order of the coefficient, the more smoothness required to eliminate it.

Eventually the Fourier constraint imposed on Q hinders the construction from affecting

coefficients of higher order than d. This gives the required lower bound.

Let us start with the first coefficient on the right of <4.6>. Therefore, try to solve for

q1 so that

h0 ∗ q1 + h1 ∗ q0 = 0,

or equivalently, solve the Fourier analog

<4.7> ĥ0q̂1 + ĥ1q̂0 = 0.

Expand the Fourier transform for h(·, τ) as

ĥ(t, τ) = exp
(
− 1

2 t
2(1 + τ)

)

= ĥ0(t) + c1τt
2ĥ0(t) + · · · + cdτ

dt2dĥ0(t) + · · · ,

where ĥ0(t) = exp(−t2/2) and cm = (−1)m/(2mm!), for m ≥ 1. A careful analysis shows

that by comparing the Fourier expansion of <4.5> with the previous expansion,

<4.8> ĥm(t) = cmt
2mĥ0(t).
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In particular <4.8> asserts that ĥ1(t) = c1t
2ĥ0(t). Factor out the common term, ĥ0,

and reexpress <4.7> as

<4.9> q̂1(t) = −c1t2q̂0(t).

Solving this equation is simple by an application of the following standard result (see

for example, Feller Vol. II, 1971, Chapter XV.4)

<4.10> Lemma: Suppose a density q has integrable derivatives up to lth-order, and a

Fourier transform for which tlq̂ (t) is integrable. Then the Fourier transform for the mth

derivative, q(m), equals

q̂ (m)(t) = (−it)mq̂ (t), for m = 1, 2, · · · , l.

Therefore, if we assume that q0 has integrable second derivative, then Lemma <4.10>

asserts that

q1(y) = c1q
(2)
0 (y)

is a solution to <4.9>.

Let us require q0 to be even smoother. Assume that q0 has 2d integrable derivatives

and a Fourier transform such that t2dq̂0(t) is integrable. The recursive argument below

shows that not only can we eliminate the first coefficient in the expansion <4.6> of fτ ,

but we can eliminate each of the next d− 1 coefficients as well.

The dth coefficient in the expansion <4.6> equals

<4.11> h0 ∗ qd + h1 ∗ qd−1 + · · · + hd ∗ q0.

To make the expression zero, we will show that its Fourier transform equals zero:

<4.12> ĥ0q̂d + ĥ1q̂d−1 + · · · + ĥdq̂0 = 0.

By identity <4.8>, we can factor out the common term, ĥ0, to reexpress this dth Fourier

problem as

<4.13> q̂d(t) + c1t
2q̂d−1(t) + · · · + cdt

2dq̂0(t) = 0.

Assume that the first d− 1 Fourier problems are of the form

<4.14> q̂m(t) = γmt
2mq̂0(t),

for constants γm, and that each problem has the solution

<4.15> qm(y) = (−1)mγmq
(2m)
0 (y),
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where m ≤ d − 1. We have already shown this is true for m = 1 with γ1 = −c1. By

recursion we will show that the Fourier problem and its solution are of this form for all

m ≤ d.

The dth Fourier problem <4.13> upon substitution of <4.14> becomes

q̂d(t) = −c1t2q̂d−1(t) − · · · − cd−1t
2d−2q̂1(t) − cdt

2dq̂0(t)

= (−c1γd−1 − · · · − cd−1γ1 − cd) t
2dq̂0(t)

= γdt
2dq̂0(t).

By Lemma <4.10> the solution to this problem is of the form <4.15> when m = d. This

establishes our assertion as to the form and solution of each of the first d Fourier problems.

Reintroduce the factor ĥ0 to deduce that the dth term <4.12> and the preceding d− 1

terms all equal zero. By the uniqueness of the Fourier transform conclude that the the dth

coefficient <4.11> as well as the preceding d− 1 coefficients are all zero.

However, it is not enough to simply show that these coefficients are zero. We must

also show that the solutions <4.15> for qm satisfy the constraints required for Qτ to

be a member of Q. This amounts to showing that one can find a density q0 with 2d

integrable derivatives such that t2dq̂0(t) is integrable (but so that q̂0 satisfies the Fourier

constraint <4.4>) and such that the expression

<4.16> q(y, τ) = q0(y) − γ1τq
(2)
0 (y) + γ2τ

2q
(4)
0 (y) + · · · + (−1)dγdτ

dq
(2d)
0 (y)

is a density.

This is fairly easy to do. One such choice being the distribution Q0 formed by the

random variables

(E1 − E2) + (E3 − E4) + · · · + (E2d+1 − E2d+2),

where Em are independent standard exponentials, for m = 1, 2, · · · , 2d+ 2.

The Fourier transform for q0 equals

q̂0(t) = (1 + t2)−(d+1),

so that q̂0(t) has tails of order O
(
t−(2d+2)

)
. A later observation (Remark <4.19>) shows

that the density can be expressed as

<4.17> q0(y) = exp(−|y|)P (|y|, d),

where P (y, d) is a polynomial in y of order d. Deduce, therefore, that the derivatives

q
(2m)
0 for m = 1, · · · , d exist and can be expressed in a form similar to <4.17> (in fact the

polynomials will also be of order d). Hence, q0 has 2d integrable derivatives.
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To show that <4.16> is a density, we need to verify that the expression is non-negative

and integrates to one. The smoothness of q0 will imply that
∫
q
(2m)
0 = 0, for m = 1, · · · , d.

Thus, we need only establish the non-negativity of the function. This amounts to showing:

q(·, τ)
q0

= 1 − γ1τ
q
(2)
0

q0
+ γ2τ

2 q
(4)
0

q0
+ · · · + (−1)dγdτ

d q
(2d)
0

q0
≥ 0.

Remark <4.19> also shows that q0(y) is bounded away from zero for finite values of y.

Therefore, because the derivatives q
(2m)
0 are expressible in the same form as q0 deduce that

q
(m)
0 /q0 is bounded. This verifies the non-negativity requirement.

Now let us formally establish that our choice has led to the desired rate of convergence.

We have already shown that the first d coefficients in the expansion <4.6> equal zero

for our choice <4.16> for q(·, τ). Therefore, dividing throughout by f0 we are left with

f(x, τ)

f0(x)
− 1 =

τd+1

f0(x)

(
[h1 ∗ qd] (x) + · · · + [hd ∗ q1] (x) + [hd+1(·, τ) ∗ q0] (x)

)

+
τd+2

f0(x)

(
[h2 ∗ qd] (x) + · · · + [hd ∗ q2] (x) + [hd+1(·, τ) ∗ q1] (x)

)

+ · · · + τ2d+1

f0(x)
[hd+1(·, τ) ∗ qd] (x).<4.18>

We will show that

P0

(
f(·, τ)
f0

− 1

)2

= O
(
τ2d+2

)

by using Lemma <3.38> to show that each of the terms on the right-hand side of <4.18>

have squared L2(P0)-norms of the same order.

For example, a typical term on the right-hand side is of the form

hl ∗ qm
f0

= (−1)mγm
hl ∗ q(2m)

0

h0 ∗ q0
,

where 1 ≤ l,m ≤ d.

Use Lemma <3.38> with F1 =
√
h0, F2 =

√
q0, G1 = hl/

√
h0 and G2 = q

(2m)
0 /

√
q0, to

bound the squared L2(P0)-norm of this term by:

γ2
m

∫
[hl ∗ q(2m)

0 ]2

h0 ∗ q0
= γ2

m

∫
[(√

h0 hl/
√
h0

)
∗
(√

q0 q
(2m)
0 /

√
q0

)]2

(√
h0

)2 ∗
(√
q0
)2

≤ γ2
m

∫
h2

l

h0

∫
(
q
(2m)
0

)2

q0
.

We observed earlier that hl(x) = h0(x)Pl(x), where Pl(x) is a polynomial in x of degree

2l. This shows that the first integral on the right is finite (this is the same phenomenon
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that shows h(·, τ)/h0 to be L2(h0)-differentiable in the sense of Definition <3.32>). Our

previous observation that q
(2m)
0 has an expression similar to <4.17> shows that the second

term is also bounded.

This takes care of the majority of the terms on the right of <4.18>. The terms that

contain hd+1(·, τ) are dealt with in a similar fashion.

Therefore, all the terms on the right side of <4.18> have squared L2(P0)-norms of order

O
(
τ2d+2

)
. Hence,

P0

(
f(·, τ)
f0

− 1

)2

= O
(
τ2d+2

)
.

Appeal to Lemma <2.10> to infer that a regular estimator for the standard deviation has

rate of convergence no faster than Op

(
n−1/(2d+2)

)
.

<4.19> Remarks: One way to derive an explicit representation for q0 is to use a contour

integration argument. We know that q0 has Fourier transform

q̂0(t) = (1 + t2)−(d+1).

This transform is integrable so that q0 can be expressed as the inversion of its transform

q0(y) =
1

2π

∫ +∞

−∞
exp(−ity)(1 + t2)−(d+1) dt.

Define

v(z) = exp (−zy) (1 + z)
−(d+1)

(1 − z)
−(d+1)

.

Observe that the integrand in the expression for q0 equals the function v(it). The

function v is analytic expect for the (d + 1)-poles at z = 1 and z = −1. Let C equal

the positively oriented semi-circle contour, with large radius, centered at zero and which

lies in {z : Re(z) ≥ 0}. Integrate v over C for y ≥ 0. Apply the Cauchy Residue theorem

(Cartan, 1973, III.5.2) and let the radius of the contours go off to infinity, to obtain for

y ≥ 0

q0(y) =
1

d!
lim

z→−1

∂d

∂zd
exp (−zy) (1 − z)−(d+1).

This function can be written as exp(−y) multiplied by a polynomial in y of order d. The

representation for y < 0 is obtained by the symmetry of q0 about zero, which proves our

earlier assertion that

q0(y) = exp(−|y|)P (|y|, d),

where P (y, d) is a polynomial in y of order d.
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Finally, to show that q0(y) is bounded away from zero for finite y, recognize that it can

be written as d+ 1 convolutions of the double exponential density, exp(−|y|)/2. Because

each of these densities are strictly positive for finite y, deduce that q0 can be zero only for

infinite y values.



Chapter 5

Weibull Mixture Model

1. Introduction The Weibull density with unknown shape and scale parameter can be

written as

<5.1> f(x | θ, η) = θxθ−1η exp(−ηxθ),

where the density is taken with respect to Lebesgue measure on (0,∞). The shape pa-

rameter θ is assumed to lie in the set Θ = (0,∞), while the scale parameter η lies in the

set N = (0,∞). In Chapter 1, we presented the semiparametric Weibull mixture model

studied by Heckman and Singer (1984). A special case of this model is formed by integrat-

ing over the scale parameter of the density <5.1> with an unknown mixing distribution.

The chapter studies this model and investigates the problem of estimation for the shape

parameter, θ.

Let Q be the class of mixing distributions consisting of those distributions which have

support on N and whose first moment is less than a fixed positive constant. Heckman

and Singer (1984) show that for this Q the class of Weibull mixture models, P(Θ,Q), is

identifiable. Their proof, expressed in our notation, is as follows.

Let γi = (θi, Qi), where θi ∈ Θ and Qi ∈ Q for i = 1, 2. If the two distributions Pγ1
, Pγ2

are equal, then the continuity of the density <5.1> implies that fγ1
(x) = fγ2

(x) for all

positive x. Therefore,

1 =
fγ1

(x)

fγ2
(x)

=
θ1
θ2
xθ1−θ2

∫
η exp(−ηxθ1) dQ1(η)∫
η exp(−ηxθ2) dQ2(η)

, x > 0.

The monotone convergence theorem shows that the ratio of integrals tends to the finite

positive constant
∫
η dQ1(η)/

∫
η dQ2(η) as x → 0. Therefore, the right-hand side would

converge to either 0 or +∞ if θ1 6= θ2. That leaves
∫
η exp(−ηxθ1) dQ1(η) =

∫
η exp(−ηxθ1) dQ2(η),

for all x > 0. The uniqueness theorem for Laplace transforms (Feller Vol. II, 1971, Chapter

XIII.1) gives equality of Q1 and Q2. Therefore, the two parameters γ1 and γ2 must be

equal. Conclude that P(Θ,Q) is identifiable.

This chapter will consider the question of how well the shape parameter θ can be

estimated from a sample of independent realizations of an identifiable Weibull mixture

– 45 –
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model. We have already seen, by Example <3.12> of Chapter 3, that the model has zero

information and consequently that the shape parameter can only be estimated at a rate

slower than Op

(
n−1/2

)
. By applying a simple transformation, the model can be recast as

a location-mixture with unknown scale parameter. Section 5.2 takes advantage of this and

extends the result of Example <3.12> by showing an explicit lower bound of Op

(
n−1/4

)

for the rate of convergence.

2. Rates of Convergence Using Fourier Analysis The Weibull density <5.1> with

shape parameter 1/θ and scale parameter η is that of the random variable (E/η)θ, where

E has a standard exponential distribution. Form the Weibull mixture model by taking

η to be a random variable independent of E, with unknown distribution concentrated on

(0,∞). The problem is to determine the rate at which 1/θ, or equivalently θ, can be

estimated at given an independent sample of realizations from the model.

Transform the data by taking logs. The new data have the form

<5.2> X = θZ + Y,

where Z = logE, and Y = −θ log η has unknown distribution Q. By observing that Z

is independent of Y recognize that the transformation describes a location mixture model

with unknown shape parameter θ.

The following argument shows that it is difficult to discriminate between a mixture

model of the form <5.2> with structural parameter θ0 compared against models with

structural parameters smaller than θ0. Without loss of generality we take the true struc-

tural parameter to be θ0 = 1, and the parameter space as Θ = (1− ε,∞) for a fixed small

ε > 0. We show by using the Fourier technique of Chapter 3.3 that θ0 can be estimated

at a rate no faster than Op

(
n−1/4

)
. The result is obtained as a consequence of working

with the total variation distance. Therefore, because the log transformation is invertible

and measurable, the result can be readily translated back into the Weibull setting. Thus,

we prove that the shape parameter in a Weibull mixture model can be estimated at a rate

no faster than Op

(
n−1/4

)
.

We first need to introduce constraints which ensure identifiability of the model. Let

P(Θ,Q) be the collection of all distributions of the form <5.2> as θ ranges over the

parameter space Θ and Q ranges over a class of distributions Q. As discussed in the

introduction, identifiability in the Weibull model is ensured by assuming that the unknown

mixing distribution has finite moment bounded by a fixed constant,M . By the invertibility

of the transformation this requirement becomes Q exp(−Y/θ) < M . If 0 < ε < 1/2, then

1/θ < 1/(1 − ε) < 1 + 2ε for each θ ∈ Θ. Thus, a sufficient condition to satisfy the
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integrability constraint becomes

<5.3>

∫
exp
(
(1 + 2ε)|y|

)
dQ(y) < M.

Let Q be the class of mixing distributions that have support on IR and which satisfy

condition <5.3>. Then P(Θ,Q) is identifiable.

Let P0 ∈ P(Θ,Q) equal the true mixed distribution with structural parameter θ0 = 1

and mixing distributionQ0 ∈ Q. Let Q0 have density q0 with respect to Lebesgue measure.

Let Pτ ∈ P(Θ,Q) equal the perturbed mixed distribution with structural parameter 1− τ

and mixing distribution Qτ ∈ Q, for small τ ≥ 0.

Let h0 equal the density of Z and h(·, τ) the density for the random variable (1− τ)Z.

The density h0 is smooth enough to allow a Taylor series expansion of h(·, τ) about τ = 0

as the sum of integrable functions:

h(x, τ) =
1

1 − τ
exp
[
− exp

(
x

1 − τ

)
+

x

1 − τ

]

= h0(x) + τh1(x) + τ2h2(x) + · · · ,<5.4>

where, for example,

h1(x) =
∂

∂τ
h(x, 0)

= h0(x) [1 − exp(x) + x] .

Some calculus shows that when τ ≥ 0, the ratio h(·, τ)/h0 is L2(h0)-differentiable (in the

sense of Definition <3.32>) with first derivative h1/h0. This fact will become useful later.

Let Qτ have density

q(y, τ) = q0(y) + τq1(y).

To make estimation for the structural parameter difficult, we will try to construct Qτ so

that

<5.5> h0 ∗ q1 + h1 ∗ q0 = 0,

or at least so that the expression on the left-hand side is made close to zero.

The argument of Chapter 3.3 suggests it may easier to work with the Fourier analog

of <5.5>

<5.6> ĥ0q̂1 + ĥ1q̂0 = 0.

The same argument also indicates that it may be easier to satisfy the expression <5.6> if

ĥ0(t) is expressible as exp(l(t)) for a smooth function l.
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Let us show that ĥ0 can be expressed in such a form. The Fourier transform for h0

equals:

ĥ0(t) = P exp(it logE)

=

∫ +∞

0

exp(−x) exp(it log x) dx

=

∫ +∞

0

exp(−x)x(it+1)−1 dx

= Γ(it+ 1),

where Γ is the Gamma function. On the domain {z : Re(z) > 0}, where it is analytic, the

Gamma function has an infinite product expansion (Ahlfors, 1979, Chapter 5.2.4)

Γ(z) =
1

z
exp(−γz)

∏

j≥1

exp

(
z

j

)(
1 +

z

j

)−1

,

where γ is Euler’s constant with approximate value 0.57722. This expansion and the

property Γ(z + 1) = zΓ(z) enables us to express ĥ0 as

<5.7> ĥ0(t) = exp(−γit)
∏

j≥1

exp

(
it

j

)(
1 +

it

j

)−1

,

which can also be written as ĥ0(t) = exp(l(t)), where l(t) = −γit + S(it) and S is the

analytic function on {z : Re(z) > −1} defined by

S(z) =
∑

j≥1

(
z

j
− log

(
1 +

z

j

))
.

(For definiteness, we take the principal branch for each log in the expression for S.)

The analytic nature of l enables us to write

ĥ(t, τ) = exp
(
l(t− τt)

)

= ĥ0(t) − τĥ0(t)tl
′(t) + · · · ,<5.8>

where

tl′(t) = −γit− t2
∑

j≥1

1

j2
m̂j(t),

and

m̂j(t) =

(
1 +

it

j

)−1

.

Notice that m̂j is the Fourier transform for the distribution of the random variable −E/j,
where E has a standard exponential distribution. It has density j exp(−j|y|){y ≤ 0}.
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By comparing the expansion <5.8> for ĥ(·, τ) with the corresponding Fourier expansion

for <5.4>, we show later (Remark <5.26>) that

<5.9> ĥ1(t) = −ĥ0(t)tl
′(t).

Factor out the common term ĥ0 in the Fourier expression <5.6>. We should try to

solve for q1 in

q̂1(t) = tl′(t)q̂0(t)

= −γitq̂0(t) − t2
∑

j≥1

1

j2
m̂j(t) q̂0(t),<5.10>

subject to the constraints of the model.

The next lemma shows that if q0 is smooth enough, then an exact solution to the

unconstrained problem exists. (First some notation: let L1
0(µ) be the set of Lebesgue

integrable functions which integrate to zero.)

<5.11> Lemma: Assume that the density q0 has first two derivatives q
(1)
0 , q

(2)
0 ∈ L1

0(µ),

and a Fourier transform for which t2q̂0(t) is integrable. Then,

<5.12> q1(y) = γq
(1)
0 (y) +

∑

j≥1

1

j2

[
mj ∗ q(2)0

]
(y)

is an element of L1
0(µ) with Fourier transform

−γitq̂0(t) − t2
∑

j≥1

1

j2
m̂j(t) q̂0(t).

Proof of Lemma <5.11>: Let us first prove that q1 is integrable. Interchange the

order of integration, by the assumption that q
(2)
0 is integrable, to show

∫∫
mj(z − y)|q(2)0 (y)| dy dz =

∫
|q(2)0 (y)| dy.

The integrability of q1 follows by:

∫
|q1(y)| dy ≤ γ

∫
|q(1)0 (y)| dy +

∞∑

j=1

1

j2

∫ ∣∣∣
[
mj ∗ q(2)0

]
(y)
∣∣∣ dy

≤ γ

∫
|q(1)0 (y)| dy +

∫
|q(2)0 (y)| dy

∑

j≥1

1

j2

<∞.<5.13>

Use the fact that q
(2)
0 integrates to zero to infer that

∫
mj ∗ q(2)0 = 0. Because q

(1)
0 also

integrates to zero, deduce that q1 ∈ L1
0(µ).
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The integrability of t2q̂0(t) and the integrability of the first two derivatives for q0 shows

by Lemma <4.10>, that

<5.14> q̂
(1)
0 (t) = −itq̂0(t)

and

<5.15> q̂
(2)
0 (t) = −t2q̂0(t).

Expression <5.13> shows that q1 can be bounded by an integrable function. Use this

dominating function coupled with identities <5.14> and <5.15> to deduce by the domi-

nated convergence theorem that q1 has the desired Fourier transform.

Therefore to solve the unconstrained problem <5.10>, choose Q0 to be a distribution

satisfying the conditions of the lemma and take q1 to be the function <5.12> defined by

Q0.

However, to be able to solve the constrained problem, we also need to show that

q(y, τ) = q0(y) + τq1(y)

satisfies, at least for τ near zero, the constraints necessary for q(·, τ) to be a density

(C1)
∫
q(y, τ) dy = 1,

(C2) q(y, τ) ≥ 0,

and the constraint

(C3)
∫

exp ((1 + 2ε)|y|) q(y, τ) dy < M , for Qτ to be a member of Q.

To satisfy the constraints we will perturb the solution q0(y)+τq1(y) to q0(y)+τq1(y, τ),

with q1(y, τ) ≈ q1(y). We will then no longer have an exact solution to <5.10>, but it will

still be possible to prove the asserted Op

(
n−1/4

)
lower bound for the rate of convergence.

First let us consider the effect that each constraint has on the possible solutions <5.12>

for q1. Condition (C1) will not present an obstacle, for we know that q1 must integrate

to zero by Lemma <5.11>. For condition (C2) to hold, we would need to show for small

values of τ

1

q0
(q0 + τq1) = 1 + γτ

q
(1)
0

q0
+ τ

∑

j≥1

[
mj ∗ q(2)0

]

j2q0

≥ 0.<5.16>

If q0 were convex in the tails, the second derivative, q
(2)
0 (y), would be positive for large

absolute values of y. In addition, if q0(y) were bounded away from zero for finite y, then
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for small positive τ the expression involving mj ∗ q(2)0 in <5.16> should be positive. If

in addition q
(1)
0 decreases more rapidly than q0, then the left-side of <5.16> should be

positive, and condition (C2) should hold.

The constraint (C3) is the most difficult to satisfy. The density

mj(y) = j exp(−j|y|){y ≤ 0}

has tails decreasing faster than exp(−(1 + 2ε)|y|) except when j = 1. Therefore, we seek

a q0 for which q
(1)
0 and mj ∗ q(2)0 decrease faster than exp(−(1 + 2ε)|y|), for j ≥ 1.

Here is one way to construct an approximate solution to <5.10>. Let Q0 be the distribu-

tion for the random variable β−1(L1 +L2), where Lj are independent double exponential

random variables, for j = 1, 2, and β is chosen larger than 1 + 2ε so that the density

q0(y) =
β

4
exp
(
−β|y|

)(
1 + β|y|

)

satisfies the integrability constraint <5.3> needed to ensure that Q0 ∈ Q.

The density for Q0 has first derivative

<5.17> q
(1)
0 (y) =

−β3

4
exp(−β|y|)y,

second derivative

<5.18> q
(2)
0 (y) =

β3

4
exp(−β|y|)(β|y| − 1),

and Fourier transform

q̂0(t) =

(
1 +

(
t

β

)2
)−2

.

The integrability of t2q̂0(t) and the smoothness of q0 shows that Q0 satisfies the conditions

of Lemma <5.11> (it is fairly easy to check that the derivatives have zero expectation).

To be able to satisfy the constraint (C3), we need that both q
(1)
0 and mj ∗ q(2)0 decrease

faster than exp(−(1 + 2ε)|y|), for j ≥ 1. Use the expression <5.17> for the first derivative

q
(1)
0 to see that the presence of this term will not violate the constraint. A little bit of

work shows
[
mj ∗ q(2)0

]
(y) = {y < 0}

(
C1(j, β) exp(−j|y|) + C2(j, β, y) exp(−β|y|)

)

+ {y ≥ 0}C3(j, β, y) exp(−β|y|),<5.19>

where C1(j, β) is a constant which is uniformly bounded in j and C2(j, β, y), C3(j, β, y)

are functions which are uniformly bounded in j by a function of y which is of order O (|y|),
for large y.
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Therefore, the tails for <5.19> are of order o (exp(−(1 + 2ε)|y|)) when j ≥ 2. To ensure

that condition (C3) not be violated when j = 1, define Qτ to be the distribution with

density

q(y, τ) = q0(y) + τq1(y, τ),

where q1(y, τ) is an approximate solution for <5.10> defined by:

q1(y, τ) =q1(y) +
[(
m1(y, τ) −m1

)
∗ q(2)0

]
(y)

=γq
(1)
0 (y) +

[
m1(y, τ) ∗ q(2)0

]
(y) +

∑

j≥2

1

j2

[
mj ∗ q(2)0

]
(y),<5.20>

where the truncated function m(y, τ) is defined as

m1(y, τ) = m1(y)

{
δ

2ε
log τ ≤ y

}

= exp(y)

{
δ

2ε
log τ ≤ y ≤ 0

}
,

for a fixed small 0 < δ < 1.

Condition (C3) is now no longer a problem, for
∣∣∣ τ
∫

exp
(
(1 + 2ε)|y|

) [
m1(·, τ) ∗ q(2)0

]
(y) dy

∣∣∣ = O
(
τ1−δ

)

will be small enough, eventually, to guarantee that the integrability constraint<5.3> holds.

This combined with our previoius observations concerning the tail behavior of mj ∗ q(2)0 ,

for j ≥ 2, and the tail behavior of q
(1)
0 shows that (C2) holds.

Condition (C1) must also hold for this choice, for q1(·, τ) must integrate to one by

Lemma <5.11> and the fact that∫∫
m1(z, τ)q

(2)
0 (y − z) dy dz = 0.

To verify the nonnegativity constraint implied by condition (C2), it is sufficient to observe

that the ratio q
(1)
0 /q0 is bounded and that the second derivative q

(2)
0 (y) is positive for large

absolute values of y. Therefore, deduce that Qτ ∈ Q.

Notice that we can choose δ and ε as we wish subject to the constraints of their range.

Later we will need δ/2ε ≥ 2; therefore assume that the two values are chosen accordingly.

Now let us rigorously show that our choice for Qτ , and its density, have led to the

desired rate of convergence. Expand h(·, τ) to three terms in the Taylor series expansion

h(x, τ) = h0(x) + τh1(x) + τ2h2(x, τ).

Let f0 and f(·, τ) be the mixed densities for P0 and Pτ . Then

f(x, τ) =
[(
h0 + τh1 + τ2h2(·, τ)

)
∗
(
q0 + τq1(·, τ)

)]
(x).
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We can expand this expression term by term, since all terms are integrable. Collect

coefficients in powers of τ , and use the identity f0 = h0 ∗ q0 to find by dividing throughout

by f0:

f(x, τ)

f0(x)
− 1 =

τ

f0(x)

(
[h0 ∗ q1(·, τ)] (x) + [h1 ∗ q0] (x)

)
+

τ2

f0(x)
[h1 ∗ q1(·, τ)] (x)

+
τ2

f0(x)
[h2(·, τ) ∗ q0] (x) +

τ3

f0(x)
[h2(·, τ) ∗ q1(·, τ)] (x).<5.21>

We will show that

P0

(
f(·, τ)
f0

− 1

)2

= O
(
τ4
)

by using Lemma <3.38> to show that each of the four terms on the right side of <5.21>

have squared L2(P0)-norms of order O
(
τ4
)
.

Let us start with the first term. We have already established that Q0 satisfies the

conditions of Lemma <5.11>. Therefore by the conclusion of the same lemma and the

identity <5.9>, deduce that the Fourier transform for h0 ∗ q1(·, τ) equals

−ĥ1(t)q̂0(t) + ĥ0(t)
(
m̂1(t, τ) − m̂1(t)

)
q̂

(2)
0 (t).

Remark <5.26> shows that ĥ0 and ĥ1 are integrable. Thus, by the uniqueness of the

Fourier transform deduce that the first term on the right side of <5.21> equals

τ

f0(x)

[
h0 ∗

(
m1(·, τ) −m1

)
∗ q(2)0

]
(x).

Use Lemma <3.38> with F1 =
√
h0, F2 =

√
q0, G1 = h0 ∗ (m1(·, τ) −m1) /

√
h0 and

G2 = q
(2)
0 /

√
q0, to bound the squared L2(P0)-norm of this term by:

τ2

∫
[
h0 ∗ (m1(·, τ) −m1) ∗ q(2)0

]2

h0 ∗ q0

= τ2

∫
[(√

h0 h0 ∗ (m1(·, τ) −m1) /
√
h0

)
∗
(√

q0 q
(2)
0 /

√
q0

)]2

(√
h0

)2 ∗
(√
q0
)2

≤ τ2

∫
[h0 ∗ (m1(·, τ) −m1)]

2

h0

∫
(q

(2)
0 )2

q0
.

Deduce from the expression <5.18> that the second integral on the right is finite. To deal

with the first integral, observe that the density

h0(x) = exp(− exp(x) + x)

has tails of the order exp(x) for large negative x and tails of the order exp(− exp(x)) for

large positive x. This tail behavior remains unaffected when h0 is convolved with the
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density mj . In fact a direct calculation shows that for j ≥ 2

<5.22> [h0 ∗mj ] (x) ≤ Ch0(x),

for a finite constant, C, not depending upon j. In particular, it is possible to show

<5.23>

∫
[h0 ∗ (m1(·, τ) −m1)]

2

h0
= O

(
τδ/2ε

)
,

which is of order O
(
τ2
)

by our choice for δ and ε. Conclude that the first term on the

right side of <5.21> has squared L2(P0)-norm of order O
(
τ4
)
.

To show that the squared L2(P0)-norm of the third term on the right side of <5.21> is

of order O
(
τ4
)
, use Lemma <3.38> with F1 =

√
h0, F2 =

√
q0, G1 = h2(·, τ)/

√
h0 and

G2 = q0/
√
q0, to bound the squared L2(P0)-norm of this term by:

τ4

∫
[h2(·, τ) ∗ q0]2

f0
= τ4

∫ [(√
h0 h2(·, τ)/

√
h0

)
∗ q0

]2
(√
h0

)2 ∗
(√
q0
)2

≤ τ4

∫
h2(·, τ)2
h0

.

The L2(h0)-differentiability of h(·, τ)/h0 shows that the right-hand side is finite.

The remaining two terms on the right side of <5.21> are dealt with by a similar argu-

ment. To illustrate the method, consider the squared L2(P0)-norm of the second term

<5.24> τ4

∫
[h1 ∗ q1(·, τ)]2

h0 ∗ q0
.

From the expression <5.20> for q1(·, τ),

<5.25> h1 ∗ q1(·, τ) = γ
(
h1 ∗ q(1)0

)
+ h1 ∗m1(·, τ) ∗ q(2)0 +

∑

j≥2

1

j2

(
h1 ∗mj ∗ q(2)0

)
.

To show that <5.24> is of order O
(
τ4
)

divide each of the terms on the right side of <5.25>

by f0 and bound their squared L2(P0)-norms by Lemma <3.38>. For example
∫

[h1 ∗mj ∗ q(2)0 ]2

h0 ∗ q0
≤
∫

[h1 ∗mj ]
2

h0

∫
(q

(2)
0 )2

q0
.

We have already observed that the second integral on the right side is finite. The first

integral can be shown to be finite by an argument similar to the one which led to inequali-

ties <5.22> and <5.23>. The other terms in <5.24> are dealt with by using Lemma <3.38>

and the fact that h2
1/h0 and (q

(1)
0 )2/q0 are integrable (see <5.17>). Deduce that <5.24>

is of order O
(
τ4
)
. A similar argument takes care of the remaining term in <5.21>

All the terms on the right side of <5.21> have squared L2(P0)-norms of order O
(
τ4
)
.

We find that

P0

(
fτ

f0
− 1

)2

= O
(
τ4
)
.
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Invoke Lemma <2.10> to deduce that a regular estimator for the shape parameter in an

identifiable Weibull mixture model cannot have rate of convergence faster than Op

(
n−1/4

)
.

<5.26> Remarks: To verify that<5.9> is a valid identity, first establish the integrability

of ĥ0 by using the representation <5.7> to bound the modulus:

|ĥ0(t)| =
∏

j≥1

(
1 +

(
t

j

)2
)−1/2

≤
(

1 +

(
t

k

)2
)−k/2

,<5.27>

for any positive integer, k. The terms in the expansion <5.4> and the expansion <5.8>

are both obtained by differentiation with respect to τ . In particular, h1(x) = ∂h(x, 0)/∂τ

and

−ĥ0(t)tl
′(t) =

∂ĥ(t, 0)

∂τ
.

The bound <5.27> implies that ĥ(·, τ) is integrable and enables us to express h(·, τ) as an

integral representing the Fourier inverse of its transform. Differentiation applied to the

outside of the integral, with respect to τ , can be taken inside the integral by appealing to

the dominated convergence theorem and the fact that it is possible to find an integrable

function which dominates ∂ĥ(·, τ)/∂τ for small τ (use the bound <5.27> and the expression

for l). Therefore, h1 can be evaluated by differentiating the Fourier transform ĥ(·, τ) and

computing the Fourier inverse of the resulting function as τ goes to zero. By the uniqueness

of the Fourier transform, deduce that <5.9> is a valid identity.
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Hájek, J. (1972). Local asymptotic minimax and admissibility in estimation. In Proc.

Sixth Berkeley Symp. Math. Statist. Probab. 1 175-194. University of California

Press, Berkeley.

Hall, P. (1989). On convergence rates in nonparametric problems. International Statist.

Review 57 45-58.

– 56 –



57

Heckman, J. and Singer, B. (1984). A method for minimizing the impact of distributional

assumptions in econometric models for duration data. Econometrica 52 271-320.

Heckman, J. and Singer, B. (1984). Econometric duration analysis. J. Econometrics 24

63-132.

Jewell, N. P. (1982). Mixtures of exponential distributions. Ann. Statist. 10 479-484.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in

the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27

887-906.

Koshevnik, Y. A. and Levit, B. Ya. (1976). On a non-parametric analogue of the information

matrix. Theory Probab. Appl. 21 738-753.

Lambert, D. and Tierney, L. (1984). Asymptotic properties of maximum likelihood estimates

in the mixed poisson model. Ann. Statist. 12 1388-1399.

Le Cam, L. (1972). Limits of experiments. In Proc. Sixth Berkeley Symp. Math. Statist.

Probab. 1 245-261. University of California Press, Berkeley.

Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions. Ann.

Statist. 1 38-53.

Le Cam, L. (1986). Asymptotic methods in statistical decision theory. Springer-Verlag,

New York.

Le Cam, L. and Yang, G. (1990). Asymptotics in statistics: some basic concepts.

Springer-Verlag, New York.

Levit, B. Ya. (1975). On the efficiency of a class of non-parametric estimates. Theory

Probab. Appl. 20 723-740.

Lindsay, B. G. (1980). Nuisance parameters, mixture models, and the efficiency of partial

likelihood estimators. Philos. Trans. Roy. Soc. London 296 639-665.

Lindsay, B. G. (1983). The geometry of mixture likelihoods: a general theory. Ann. Statist.

11 86-94.

Lindsay, B. G. (1983). Efficiency of the conditional score in a mixture setting. Ann. Statist.

11 486-497.

Millar, P. W. (1981). The minimax principle in asymptotic statistical theory. Ecole d’eté
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