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Recent studies have confirmed heart rate fall after treadmill exercise testing, or heart rate recovery, as a powerful predictor of mortality from
heart disease. Heart rate recovery depends on central reactivation of vagal tone and decreased vagal activity is a risk factor for death. If heart
rate recovery is defined as the fall in heart rate after 1 minute following peak exercise, then a heart rate recovery value of 12 beats per minute
(bpm) or lower has been shown to be a good prognostic threshold for identifying patients at high risk. Although this finding establishes
a simple, useful relationship between heart recovery and mortality, a working understanding of how heart rate recovery interacts with
other characteristics of a patient in determining risk of death is still largely unexplored. Such knowledge, addressed in this article, could
improve the prognostic value of the exercise test. Our analysis is based on over 23,000 patients who underwent exercise testing. A rich
assortment of data was collected on these patients, including clinical and physiological information, heart rate recovery, and other exercise
test performance measures. Our approach was to grow relative risk forests, a novel method that combines random forest methodology with
survival trees grown using Poisson likelihoods. Our analysis reveals a complex relationship between peak heart rate, age, level of fitness,
heart rate recovery, and risk of death.
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1. INTRODUCTION

Exercise stress testing is commonly used to assess patients
with known or suspected coronary artery disease (Lauer 2001).
During exercise testing, exercise capacity, heart rate changes,
and changes on the electrocardiogram are recorded. Although
exercise testing has classically been considered as a diagnos-
tic test to identify patients likely to have important coronary
artery disease, recent work has focused on its powerful prognos-
tic value (Gibbons et al. 1997, 2002a,b; Lauer 2001; Williams,
Fihn, and Gibbons 2001).

During exercise, the heart rate rises due to regulatory ef-
fects of the autonomic nervous system. Autonomic nervous
system function is determined by the balance of activity of
its sympathetic and parasympathetic components: Sympathetic
function results in increased heart rate and blood pressure;
parasympathetic function results in their decrease. Heart rate
rise during exercise is largely due to rapid withdrawal of
parasympathetic tone (also known as vagal tone) as well as in-
creased sympathetic tone (Hammond and Froelicher 1985; Arai
et al. 1989). Failure of heart rate to rise appropriately during
exercise, known as chronotropic incompetence (Lauer, Okin,
Larson, Evans and Levy 1996; Lauer et al. 1999), is a predictor
of all-cause mortality and coronary heart disease events (Lauer
et al. 1996; 1999; Lauer 2001).

Recently we have focused on fall in heart rate immediately
after exercise, or heart rate recovery (Imai et al. 1994), as
a potential predictor of morality (Cole, Blackstone, Pashkow,
Snader and Lauer 1999; and Cole, Foody, Blackstone, and
Lauer 2000; Nishime, Cole, Blackstone, Pashkow, and Lauer
2000; Shetler et al. 2001). Decrease in heart rate during the
first minute after exercise is largely a function of reactiva-
tion of parasympathetic function (Imai et al. 1994). Depressed
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parasympathetic function is associated with increased risk of
death in a wide spectrum of patients (Schwartz, La Rovere, and
Vanoli 1992; La Rovere, Bigger, Marcus, Mortara and Schwartz
1998; La Rovere et al. 2001). Thus we hypothesize that attenu-
ated heart rate recovery immediately after exercise is associated
with increased risk of death (Cole et al. 1999).

1.1 Heart Rate Recovery as a Predictor of Death

The hypothesis that heart rate recovery is an independent
predictor of mortality has been tested and validated in a num-
ber of cohorts. Our initial effort involved over 2,000 patients
(Cole et al. 1999) for which heart rate recovery was defined
as the heart rate at peak exercise minus the heart rate mea-
sured 1 minute later. We defined a cut-off value for an abnormal
heart rate recovery based on maximization of a log-rank statis-
tic. Based on this, patients with heart rate recoveries less than
or equal to 12 beats per minute (bpm) were found to be at sub-
stantially increased risk of death compared to those who had a
normal heart rate recovery (greater than 12 bpm).

Figure 1(a) provides confirmation of these findings in con-
text to the dataset analyzed here. The figure records the score
test statistic from a Cox proportional hazards model using dif-
ferent heart rate recovery threshold values. For each threshold
value, the Cox model included a 0/1 dichotomized covariate
for heart rate recovery (equal to 1 if heart rate recovery was
less than or equal to the threshold value, otherwise 0). Included
in the Cox model were additive terms for additional covariates
identified as being important (see Remark 1 for details). The
score test statistic has a flat maximum between 8 and 12 bpm
and then drops off rapidly. The maximum seen at 12 bpm agrees
with the findings found in Cole et al. (1999). Our later analysis
also confirms 12 bpm as an optimal threshold for identifying
patients at high risk.

1.2 Patient Cohort

Not only is heart rate recovery an independent predictor of
mortality, it is also predictive of mortality after adjusting for
several factors (Snader et al. 1997; Cole et al. 1999, 2000; Diaz,
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(a) (b)

Figure 1. Score Text Statistic and Relative Risk. (a) Score test statistic as a function of heart rate recovery in a Cox regression with additive terms
(superimposed line is loess estimate). Heart rate recovery is dichotomized. Note the large score value at 12 bpm. (b) Relative risk versus heart rate
recovery from a Cox regression in which heart rate recovery was treated as a factor with 10 levels based on its deciles (no other covariates were
included in the model). Relative risks computed at each decile of heart rate recovery with last decile used as the baseline.

Brunken, Blackstone, Snader and Lauer 2001; Watanabe et al.
2001). Nonetheless, there are a number of important unan-
swered questions (Shetler et al. 2001). How does heart rate re-
covery interact with other clinical and physiological variables?
What is its prognostic behavior when considered as a con-
tinuous variable? Standard methods provide some insight, but
not detailed understanding. Consider, for example, Figure 1(b).
Relative risk values are shown from a Cox regression analysis
of heart rate recovery treated as a factor with 10 levels based
on its deciles. The figure shows that relative risk decreases as
heart rate recovery increases. However, it is not easy to extend
such an analysis to adjust for patient clinical variables and po-
tentially complex interactions. For example, standard methods
such as stepwise regression, which are often used to select mod-
els within a Cox regression framework, are often not only un-
reliable, but may simply be too adhoc to discover the complex
interactions.

To address these issues, we analyze a large database col-
lected from 23,701 patients referred to the Cleveland Clinic
between 1990 and 1999 for symptom-limited exercise testing.
Each patient underwent an upright cool-down period for the
first 2 minutes after recovery. All patients underwent a struc-
tured chart review and interview prior to testing (Snader et al.
1997; Cole et al. 1999; Lauer et al. 1999). Detailed data re-
garding reason for testing, symptoms, cardiac risk factors, other
medical diagnoses, prior cardiac and noncardiac procedures,
medications, resting electrocardiogram, resting heart rate, and
blood pressure were recorded prospectively prior to testing.
During each stage of exercise, and during the first 5 minutes
of recovery, data were recorded regarding heart rate, blood
pressure, ST-segment changes, symptoms, and arrhythmias.
Mean follow-up among survivors was 5.7 years (range .75 to
10.1 years) during which 1,617 patients died.

Remark 1. Over 90 variables were available in the database
for analysis. We choose 34 of these as follows. A Cox regres-
sion model was fit for each candidate variable which included
additionally an additive effect for heart rate recovery and an
interaction effect between the two variables. Only variables
whose interaction with heart rate recovery were significant at a
.05 level (two-sided test) were chosen. The purpose of this was
to select only covariates with a known involvement with heart
rate recovery. This fits with our general plan to understand how
heart rate recovery interacts with other covariates.

1.3 Organization of Paper

Our analysis is based on a new method we refer to as rela-
tive risk forests. This method combines the use of relative risk
trees (LeBlanc and Crowley 1992) with random forest method-
ology (Breiman 2001) as a way to estimate reliably relative risk
values. Relative risk forests circumvent some key difficulties
in implementing relative risk trees. For example, the problems
of when to stop growing a tree and how to optimally prune a
tree are avoided because we grow trees to full size. Risk val-
ues, or what we refer to as ensemble risk values, are computed
by aggregating across different risk trees. This reduces variance
and avoids the instability of working with a single relative risk
tree. On the other hand, relative risk forests take advantage of
key features of a risk tree. They exploit their rich structure and
retain the same simple relative risk interpretation. An impor-
tant feature of random forests is that they can be applied with
large numbers of variables (Amit and Geman 1997) and are es-
pecially useful in settings like ours where variables are heavily
correlated. Sections 2 and 3 lay out the details of the method.
Most of the analysis is given in Section 4. The article concludes
with a summary and discussion. Some alternative methods for
flexible inference in Cox regression models, such as adaptive
regression splines used by LeBlanc and Crowley (1999), will
be reviewed there.

2. POISSON TREE LIKELIHOODS

Random forests were grown using relative risk trees. A rel-
ative risk tree is a nonparametric technique introduced by
LeBlanc and Crowley (1992) for estimating risk in proportional
hazard survival analysis problems. A key feature in this ap-
proach is that a relative risk tree can be grown using the classi-
fication and regression tree (CART) methodology of Breiman,
Friedman, Olshen, and Stone (1984). This rests on an equiva-
lence between survival tree and Poisson tree likelihoods. In this
way, splits, and hence trees, are formed using well-known prin-
ciples of generalized linear models harnessed within the power
of CART.

The idea behind relative risk trees is as follows. Let ti de-
note the survival time for patient i and xi the patients’ covari-
ate information. The data are {(ti , δi,xi ) : i = 1, . . . , n}, where
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δi indicates right-censoring information: δi = 1 if ti is an ob-
served time of death; otherwise δi = 0 if i is censored. We as-
sume that censoring and survival times are independent. The
full likelihood LF for a tree T is

LF =
∏

h∈T∗

∏

i∈Ih

λh(ti)
δi exp

(−�h(ti)
)
,

where T∗ are the terminal nodes for T and Ih are the observa-
tion labels {i : xi ∈ Sh} for observations in the region Sh corre-
sponding to node h. Here λh(t) and �h(t) are the hazard and
cumulative hazard functions for h. Under the Cox proportional
hazards assumption (Cox 1972),

λh(t) = λ0(t) exp(βh),

where λ0(t) is the baseline hazard function and βh is the regres-
sion constant for node h. The likelihood LR for a relative risk
tree is (LeBlanc and Crowley 1992)

LR =
∏

h∈T∗

∏

i∈Ih

(
λ0(ti )θh

)δi exp
(−�0(ti)θh

)
,

where θh = exp(βh) and �0(t) is the baseline cumulative haz-
ard function.

Notice, however, that if �0 (and λ0) is known, then LR is
equivalent up to a multiplicative constant to the likelihood

LP =
∏

h∈T∗

∏

i∈Ih

(
�0(ti)θh

)δi exp
(−�0(ti)θh

)
,

which is the likelihood from a tree derived under a Poisson
model with response δi and mean µi = �0(ti)θh for i ∈ Ih.

2.1 Tree Splits

The equivalence between survival tree and Poisson tree like-
lihoods shows that if �0(t) is known then the relative risk tree
can be grown using a Poisson model. LeBlanc and Crowley
(1992) proposed using the Nelson–Aalen (1978) estimator for
�0(t). This is the Breslow (1972) estimator in a Cox model
without covariates. LeBlanc and Crowley (1992) referred to this
as their “one-step” estimator, which we shall denote by �̂1

0(t).
In the following section we will explain the meaning behind
this terminology. Using the one-step estimator �̂1

0(t), LeBlanc
and Crowley (1992) proposed growing a relative risk tree by
growing a Poisson tree with likelihood

L̂P =
∏

h∈T∗

∏

i∈Ih

(
�̂1

0(ti )θh

)δi exp
(−�̂1

0(ti)θh

)
.

In growing the tree, splits are made using the deviance residual

di = 2

[
δi log

(
δi

�̂1
0(ti)θ̂

1
h

)
− (

δi − �̂1
0(ti)θ̂

1
h

)]
,

where θ̂ 1
h is the estimate for a node h under the proposed split

(note that 0 × log 0 = 0). This is simply the maximum likeli-
hood estimate,

θ̂ 1
h =

∑
i∈Ih

δi
∑

i∈Ih
�̂1

0(ti )
.

The deviance for a node h is D(h) = ∑
i∈Ih

di , which is the
log-likelihood ratio test statistic when the null is the saturated

model at h. Improvement in the deviance for split s at a node h

into left and right daughter nodes ls(h) and rs(h) is

�D(s,h) = D(h) − [
D

(
ls(h)

) + D
(
rs(h)

)]
.

The tree is split by the variable at s whose split s leads to the
smallest value �D(s,h). Typically a tree is grown until some
criterion is met, then pruned. In our random forests implemen-
tation, we grow a tree to its full size without pruning (the only
restriction is that a node contain no fewer than N observations;
where N is typically some small number). A nice feature of a
random forests approach is it avoids two important problems
with trees: (a) when to stop growing a tree and (b) how to opti-
mally prune a tree.

2.2 Relative Risk Values

By fixing �0(t) at �̂1
0(t), a relative risk tree can be grown

by recursive partitioning applied to a Poisson model. The rele-
vant likelihood L̂P corresponds to the likelihood from a Pois-
son model with a log-link, where each i has an offset value of
log(�̂1

0(ti)). That is, if i ∈ Ih,

log(µi) = log
(
�̂1

0(ti)
) + βh,

where log(�̂1
0(ti )) is an offset value and βh is an unknown pa-

rameter (what we later define as the log relative risk).
The use of the offset can be applied in available software

to build relative risk trees and to derive relative risk values for
patients. Our analysis was implemented using the RPART algo-
rithm for Splus devised by Therneau and Atkinson (1997), but
can be implemented in any recursive partitioning software that
fits Poisson trees.

The estimate θ̂ 1
h computed using this method should be inter-

preted with caution though, because it is only an approximation.
This is because θ̂ 1

h is derived by estimating �0(t) by �̂1
0(t), but

�̂1
0(t) is only appropriate in a model without covariates. A more

appropriate estimate for �0(t) should reflect the values for θh

in the relative risk tree LR ; that is, it should take into account
the underlying covariates used in building the tree. LeBlanc and
Crowley (1992) discussed this issue. They suggested an itera-
tive procedure for more accurate estimation of θh that is applied
while growing the tree. However, implementing this method is
computationally impractical for a large dataset. Instead, we ap-
ply this iterative procedure after the tree is grown.

The method works as follows. Given the one-step estima-
tor θ̂ 1

h , an updated Breslow estimator �̂2
0(t) for the cumulative

hazard is computed from this:

�̂2
0(t) =

∑

{i : ti≤t}

δi∑
h∈T ∗ nh(ti)θ̂

1
h

,

where nh(ti) = #{j : j ∈ Ih, tj ≥ ti} is the number of individu-
als in node h who are at risk at time ti . Then, given �̂2

0(t), an
updated estimator θ̂ 2

h is computed,

θ̂ 2
h =

∑
i∈Ih

δi
∑

i∈Ih
�̂2

0(ti)
.

These two steps are repeated iteratively giving a sequence of es-
timators (�̂

j

0(ti), θ̂
j

h ) for j = 2, . . . , J . A similar idea was used
earlier by Aitkin and Clayton (1980) and Clayton and Cuzick
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(1985) as a method for fitting Cox regression models using gen-
eralized linear models.

The number of steps J used in the iterative scheme can
be fixed in advance, or a convergence criterion can be used.
We stopped when the log relative risk β̂

j

h = log(θ̂
j

h ) stabilized.
Specifically, the iterative scheme terminated at the first j ≥ 2 if

∑

h∈T ∗

nh

n

∣∣β̂j

h − β̂
j−1
h

∣∣ ≤ ε, (1)

where nh equals the number of individuals in a node h. We used
a value of ε = .05. This reflects the internal accuracy of our log
relative risk values: They are accurate up to 5%. We found that
three steps were usually enough to satisfy our stopping crite-
rion (1). At termination, the final estimator for θh and �0(t) is
θ̂

j
h and �̂

j
0(t) for some j ≥ 2. For notational convenience we

drop the use of a superscript and write these final estimators as
θ̂h and �̂0(t), respectively.

To summarize, the method to grow a relative risk tree is as
follows:

1. Compute the Nelson–Aalen estimator �̂1
0(t).

2. Grow a tree using recursive partitioning applied to a
Poisson model with a log-link where δi is the response,
log(�̂1

0(ti)) is an offset value, and xi are the covariates.
Note that by default RPART uses �D(s,h) as a splitting
rule.

3. The fitted tree yields one-step estimates θ̂ 1
h for each ter-

minal node h. Use the iterative scheme to compute a new
value θ̂h using the stopping criterion (1). Note that the it-
erative scheme provides an updated estimate �̂0(t) which
can be useful for inference (see Sec. 3.2).

4. To determine the relative risk for patient i , drop their co-
variate xi down the tree. If xi lands in Sh, define

Ri = λ̂0(ti)θ̂h

λ̂0(ti )
= θ̂h.

This is the relative risk for i when compared to the mean
unit in the study. We call Ri the relative risk for i , and we
call β̂h the log relative risk for i . Note that the mean unit
is automatically selected by the procedure.

3. RELATIVE RISK FORESTS

A relative risk tree produces a relative risk value Ri for each
patient i . More generally, for each covariate x in the covariate
space X there is some function H :X → �+ for the tree that
gives the relative risk value for x (simply drop x down the tree).
We grow many relative risk trees from our data by adapting
the random forests approach of Breiman (2001). This produces
different H functions which we aggregate to form an overall
estimate for the risk of a patient. The advantage in growing
many trees and using an aggregated risk estimate is that it is
a way to reduce variance (Breiman 2001). Prediction based on
individual trees can be poor because trees are considered to be
unstable procedures (Breiman 1996). Growing many trees and
aggregating is a way to fix this. It also leads to classifiers and
predictors that are drawn from a richer class of models.

The idea is to grow a tree by injecting two types of random-
ness into the process. To grow a tree:

1. Bootstrap the data. That is, select n values with re-
placement from {1, . . . , n}. The bootstrapped data are
{(tij , δij ,xij ) : j = 1, . . . , n}.

2. In addition to heart rate recovery, randomly select F addi-
tional covariates from the full input set. This gives a total
of F + 1 covariates.

3. Grow a relative risk tree to full size using the bootstrapped
data points and the covariates selected in step 2. To ensure
that nodes are not too small, only allow nodes with at least
N observations (we took N = 20).

Steps 1 and 2 introduce randomness. They produce a set
of instructions which can be encoded as a random vector, �,
which is used to grow the relative risk tree. The estimated
value for the relative risk for a covariate x is H(x,�). The
random forest estimate for risk is obtained by implement-
ing the procedure independently B times to get B iid values
�1, . . . ,�B and B corresponding trees. The relative risk forest
is {H(x,�b) :b = 1, . . . ,B}. The ensemble relative risk for a
covariate x is

Re(x) = 1

B

B∑

b=1

H(x,�b).

In a similar way one can define many other kinds of ensemble
values, such as ensemble log relative risks, which we denote
by 	Re(x). While the ensemble relative risk is preferred for its
simple interpretation, the log relative risk is a useful measure-
ment for prediction purposes. For example, in Section 4 we dis-
cuss a nonparametric regression of 	Re(x) on covariates as a
way for predicting log risk.

By construction, Re will likely have some functional rela-
tionship to heart rate recovery. This is because step 2 ensures
that heart rate recovery is always one of the variables consid-
ered for a split when growing a tree, and thus is likely to be in-
volved in the risk values produced by a tree. This can be thought
of as a form of weak supervision. Because one of the primary
goals of the analysis is to study how relative risk varies with
respect to heart rate recovery, it is important to ensure that each
tree can potentially be grown using its value. However, weak
supervision does not guarantee that heart recovery will always
be used for growing a tree, nor does it guarantee that ensemble
values will be directly related to it. Each of our other 34 co-
variates are known to be predictors for risk in combination with
heart rate recovery and offer some competition. If heart rate re-
covery is a key variable, then trees will naturally split on it. On
the other hand, trees will likely split on other variables, thus
leading to ensemble values that can depend on heart rate re-
covery, but also possibly other patient characteristics if they are
significant in predicting mortality.

3.1 Selecting the Number of Features, F

To ensure that random forests have good prediction proper-
ties, it is important to check that the correct amount of random-
ization has been introduced for �. This means that we need to
determine an appropriate number of randomly selected covari-
ates, F , to be used in step 2 of the procedure. If we select too
few covariates, the trees might be too sparse, and our ensem-
ble estimator Re will have suboptimal properties. Too many
covariates, and the trees will be highly correlated, which can
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also degrade performance. As discussed in Breiman (2001), one
method for assessing the accuracy of a forest is through its gen-
eralization error. This value depends on the correlation between
trees and the strength of a tree. For regression trees (Breiman
2001, thm. 11.2), if Y is the response, then the tree correlation is
measured by the correlation between the residuals Y −H(X,�)

and Y − H(X,�′), where � and �′ are independent, whereas
the strength of a tree is measured by its generalization error
E�EX,Y (Y − H(X,�))2 (the smaller this value, the stronger
a tree). The generalization error for a forest involves a trade-
off between these two values. As F increases, the strength of
a tree increases, which contributes to a lower forest generaliza-
tion error; at the same time, however, the correlation between
residuals increases, which increases error.

Our setup is, of course, different. Not only are we working
with a Poisson regression model, but more important we do
not have an observed Y response value. We do not know what
the relative risk is (our “Y value”), and, in fact, our goal is to
estimate its value by Re . However, given the large size of the
dataset, there is a way to honestly estimate the generalizabil-
ity of Re. To do so, we split the data randomly into two parts
of equal size. Trees and forests are then grown separately and
independently for each of the datasets, giving two sets of esti-
mates for Re(x) for each x in the combined dataset. By com-
paring these two sets of ensemble estimates, we can study how
generalizable Re is. Also, by varying the number of randomly
selected covariates, we can decide what the right amount of ran-
domization is.

Remark 2. Even with the relatively large number of deaths
(1,617), we still needed to be careful to ensure that there was
an even distribution of deaths when randomly splitting the data.
Therefore, when splitting the data, we used a two-stage proce-
dure by first evenly splitting censored cases and then splitting
cases due to death.

Figure 2 is the plot of the ensemble log relative risk, 	Re,
from forests grown using different choices for F (ranging
from 1 to 10). Values for the horizontal and vertical axes are
the values for 	Re computed from forests grown from the two
halves of the randomly split data. Forests were grown using the
strategy outlined earlier in this section. In each case, B = 35
trees were grown to full size with nodes restricted so they had
no fewer than N = 20 values. We experimented with larger
choices for B , even considering forests with up to B = 100
trees, but found that ensemble values stabilized rapidly with
usually 20–30 trees being more than enough to get accurate
values. Further evidence of this stabilization will be provided
shortly.

Embedded in each plot of Figure 2 is the R-squared value
from a linear regression obtained by regressing the vertical
value of 	Re on its horizontal value. The best fit in terms of
R-squared (.929) occurs for F = 1, which are forests grown
using heart rate recovery and one additionally randomly se-
lected covariate. However, while the overall fit measured by
R-squared is good, observe how the plot appears more gran-
ular compared to the others, and that the range of 	Re val-
ues is tighter. The next best fit occurs for the value F = 2
(R-squared of .926), but notice how the granularity has im-
proved. For F = 3, granularity has all but disappeared. This

Figure 2. Horizontal and Vertical Axes of Scatterplots Correspond
to Ensemble Log Relative Risk Values Estimated From Randomly Split
Datasets (triangular symbols in gray indicate censored values; circles in
black are deaths; thin dashed line is fitted regression line). Total number
of covariates are F + 1, where F = 1, 2, 3, 4, 5, 6, 7, 10 (left to right, and
top to bottom, respectively). Note how ensemble values are more reli-
ably estimated for deaths; however, as F increases the random forests
overtrain on these values.

pattern persists for higher values of F ; the R-squared stabilizes,
and the range of values for 	Re no longer increases, suggesting
that there is no change in performance as F increases and that
the forests have stabilized. However, a careful inspection of the
points corresponding to deaths in the plots indicates a differ-
ent story. Looking carefully at the band of death cases in the
center of the plots (circles highlighted in black), we see these
values begin to diverge from the regression line as F increases
(especially noticeable when F = 10). Clearly the forests be-
gin to overtrain when F becomes too large. To avoid this, it
seems wise to choose a smaller value for F . The value F = 5
appears the most appropriate. At this value we see no evidence
of overtraining and R-squared has stabilized. This is the value
we chose in our analysis.

Remark 3. Another way to proceed is through an out-of-
bootstrap analysis. As before, randomly split the data into
two parts of equal size and grow relative risk trees for each
of the two datasets. Use each tree to estimate the log rela-
tive risk over the combined out-of-bootstrap sample. This way
each out-of-bootstrap value has two estimated values; call them
	R1 and 	R2. Create B trees independently using the same
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(a)

Figure 3(a). Ensemble Relative Risk. Ensemble relative risk versus heart rate recovery as a function of number of trees b (thick dashed horizontal
line is the mean relative risk value when heart rate recovery equals 12 bpm; thin dashed horizontal line is relative risk of 1.0; smoothed curve is
loess estimate). Plot is based on F = 5 randomly selected features in addition to heart rate recovery.

process. If B is sufficiently large, every data point will have
been included in a combined out-of-bootstrap sample several
times. Let 	Re,1 and 	Re,2 be the ensemble values obtained
from 	R1 and 	R2. Plot 	Re,1 and 	Re,2 for every data point.
Choose F as before on the basis of the scatterplot.

3.2 Heart Rate Recovery versus Ensemble Values

Figures 3 and 4 illustrate forests grown from the complete
dataset using F = 5. We grew B = 35 trees using the strategy
outlined earlier in this section. Figure 3(a) shows how quickly
Re stabilizes. Even after growing only b = 5 trees, Re starts
to stabilize, and after about 20–30 trees there seems to be no
change. Figure 3(b) plots the final estimate for Re for each pa-
tient versus the heart rate recovery value. Figure 4 plots the
patient averaged 	Re versus heart rate recovery [compare the
detail in Figure 4 to Figure 1(b), based on a conventional Cox
analysis]. Notice in Figure 4(a) that the log relative risk drops
to a low value for heart recovery values of 25 bpm or higher.
This has prognostic implications because it identifies a group
of patients that can safely be classified as being at low risk.

Figure 4(b), a close-up of Figure 4(a), contains two sets of es-
timates for 	Re. The first (thick line) is a loess curve estimated
from the mean values of Figure 4(a). The second estimate is
the averaged predicted values from a quadratic linear regres-
sion model (thin dashed line). The quadratic model uses our top
seven variables as main effects (one of these being heart rate re-
covery) and all pairwise interactions between these seven vari-
ables (see Sec. 4 for details). Both estimates identify 13 bpm as
the point where the log relative risk is approximately 0, there-
fore identifying 12 bpm as the first heart recovery value that

puts patients at high risk relative to the baseline value. Note that
we prefer the use of the loess estimate and the predicted values
from our quadratic model over the patient-averaged mean val-
ues for 	Re. An analysis based solely on the mean value will
be less reliable than a smoothed version due to variability (note
the jumps seen at 12 and 13 bpm).

To investigate risk behavior more closely, we considered sur-
vival probabilities, comparing patients at 12 bpm to those with
higher values. Let Ri,b be the relative risk for patient i from a
tree b and �̂0,b(t) be the estimated baseline cumulative hazard
from the same tree. If Ti is survival time, the ensemble proba-

(b)

Figure 3(b). Final Estimate for Ensemble Relative Risk [horizontal
lines defined as in (a); vertical line is heart rate recovery of 12 bpm].
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(a) (b)

Figure 4. Ensemble Log Relative Risk. Mean ensemble log relative risk versus heart rate recovery obtained from Figure 3(b). Smoothed curve
is a loess estimate.Close-up plot. Thin dashed line is predicted value from a quadratic linear regression model. Thick line is loess estimate.

bility that i survives longer than time t is

Pr{Ti ≥ t} = 1

B

B∑

b=1

exp
(−Ri,b�̂0,b(t)

)
.

For concreteness, we used a value of t = 4.5 years, correspond-
ing to roughly the 60th percentile for the event times of all
deaths. Figure 5(a) depicts the density for the probability of
surviving 4.5 years stratified by the value of heart rate recovery
(12 through 16 bpm). This shows a clear difference in survival
behavior for patients whose heart recovery is 12 bpm and, on
the upper end, for patients with heart recoveries of 16 bpm. Pa-
tients with heart recoveries of 13 and 14 bpm, and to a lesser
extent 15 bpm, exhibit roughly similar behavior, and are in
between the two extremes. This matches up with the Kaplan–
Meier survival curves presented in Figure 5(b). Combined with
our analysis of Figure 4(b), this further establishes 12 bpm as
an optimal value for putting a patient at high risk.

4. VARIABLE SELECTION AND MULTIVARIATE
ADAPTIVE REGRESSION SPLINES

To gain a better understanding of the underlying factors in-
volved in patient mortality, we studied how the ensemble log
relative risk depended on covariates other than heart recovery.
Because our forests were grown using a wide range of variables,
it is quite likely that the estimated log relative risk will have a
complex relationship with many of the covariates. For example,
reconsider Figure 3(b). There we see patients with heart rate re-
covery values higher than 12 bpm, but whose relative risk is up

to two times higher than the mean unit. We also find patients
with heart recovery values near 10 bpm with half the relative
risk. It is clear that these kinds of behavior cannot be explained
solely on the basis of heart rate recovery. To study how the log
relative risk varies with respect to covariate information, we
relied on the multivariate adaptive regression splines (MARS)
method described in Friedman (1991).

Some thought, however, is first needed to decide what vari-
ables should be included in a MARS analysis. Because each of
our 34 covariates, including heart rate recovery, is known to be
potentially informative in predicting mortality, a naive applica-
tion of MARS to predict 	Re using the full set of covariates will
yield very large models that will be hard to translate into simple
clinical terms. Instead, our approach was to first reduce the set
of covariates to a smaller subset by performing a linear regres-
sion with 	Re as the response. We used the stochastic variable
selection (SVS) method developed in Ishwaran and Rao (2000,
2003). Variables were ranked and their absolute posterior means
computed. Posterior means were then translated into a relative
importance value from 0 to 100 by dividing by the largest value;
the value from the most informative covariate. The analysis was
restricted to data for which the heart recovery was in the range
of [5,25] bpm. Restricting values to be no smaller than 5 makes
sense as these are most meaningful from a clinical perspective.
The 5-bpm category represents roughly the 5th percentile from
the data. Also patients with values larger than 25 bpm are at low
risk and are of lesser interest (recall Fig. 4).

Not surprisingly, our SVS analysis identified heart rate
recovery as the most important variable. Following this, vari-

(a) (b)

Figure 5. (a) Probability of Surviving 4.5 Years Stratified by Heart Recovery Value (12–16 bpm). Depicted is the density for the value of this
probability for all patients. (b) Kaplan–Meier survival curves stratified by heart recovery.
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ables with a relative importance of more than 15 were, in order:
(2) PEAKHR, peak exercise heart rate; (3) AGE, age of a pa-
tient; (4) IMAGE, whether the patient was referred for image
testing; (5) FITNESS, overall fitness level of a patient (encoded
as 1–5, with 1 being best); (6) PRIORCAD, whether the patient
had a history of cardiopulmonary disease; and (7) LOWCRI,
whether the patient was chronotropic incompetent.

For the MARS analysis we used heart rate recovery and these
six covariates. This gave a total of seven covariates represent-
ing a parsimonious, but informative, list made up of key exer-
cise test measurements, patient demographic information, and
cardiac history. These were also the seven variables used in
our quadratic model of Figure 4(b). Just as in the SVS analy-
sis, we used 	Re for the Y value. We also restricted attention
to data for which heart recovery was in the range of [5,25].
Models were built using MARS’s forward stepwise procedure
with the total number of product truncated spline basis func-
tions restricted to 35 with no more than three terms allowed
for any basis function. All potential knots for each of the seven
covariates were investigated in growing the model. Lack of fit
for models were computed using the GCV (generalized cross-
validation) criterion of Friedman (1991, Sec. 3.6). This is an
adjusted mean square error, with a penalty adjustment for de-
grees of freedom using a cost complexity function. The cost
complexity was estimated using 10-fold cross-validation. The
model obtained from the forward stepwise procedure was then
trimmed back using MARS’s one-at-a-time backward stepwise
procedure. This gave several potential models. The one with
the smallest lack of fit (again computed using the GCV with the
cross-validated complexity function) was selected as our final
model.

4.1 Estimated Model

The final model contained 10 spline basis functions and
21 product spline basis functions representing an assortment of
main effects and interaction terms. For convenience, these are
listed below (mirrored basis functions are listed on the same
line):

BF1 = max(0,HRRECOV - 18.000) BF2 = max(0,18.000 - HRRECOV)
BF3 = max(0,PEAKHR - 129.000) BF4 = max(0,129.000 - PEAKHR)
BF5 = max(0,AGE - 45.000) BF6 = max(0,45.000 - AGE)
BF7 = max(0,FITNESS - 2.000) BF8 = max(0,2.000 - FITNESS)
BF9 = max(0,PRIORCAD + .322569E-07)
BF10 = max(0,HRRECOV - 12.000)*BF5 BF11 = max(0,12.000 - HRRECOV)*BF5
BF12 = max(0,IMAGE + .875696E-07)
BF13 = max(0,HRRECOV - 20.000)*BF9 BF14 = max(0,20.000 - HRRECOV)*BF9
BF15 = max(0,FITNESS - 4.000)*BF10 BF16 = max(0,4.000 - FITNESS)*BF10
BF17 = max(0,FITNESS - 3.000)*BF10
BF19 = max(0,PEAKHR - 135.000)*BF5 BF20 = max(0,135.000 - PEAKHR)*BF5
BF21 = max(0,HRRECOV - 19.000)*BF19 BF22 = max(0,19.000 - HRRECOV)*BF19
BF23 = max(0,HRRECOV - 7.000)*BF6 BF24 = max(0,7.000 - HRRECOV)*BF6
BF25 = max(0,HRRECOV - 9.000)*BF3 BF26 = max(0,9.000 - HRRECOV)*BF3
BF27 = max(0,HRRECOV - 13.000)*BF5
BF29 = max(0,HRRECOV - 14.000)*BF5
BF31 = max(0,HRRECOV - 11.000)*BF5
BF33 = max(0,HRRECOV - 7.000)*BF7 BF34 = max(0,7.000 - HRRECOV)*BF7
BF35 = max(0,FITNESS - 1.000)*BF23

Many of the spline functions are related to heart rate recov-
ery; in fact, of the 21 product spline interactions, 19 involve
heart recovery. These product terms show that MARS is using
different knot values for heart recovery in tandem with other
variables to estimate log relative risk. The variables primarily
involved are peak heart rate, age, and fitness. It is tricky, though,
to decipher from the basis functions exactly what the underly-
ing relationship is.

We used a Trellis conditional plot to gain better insight into
how 	Re depends on covariates. Values for 	Re were color
coded and displayed in a multipanel format. See Figure 6 in
gray scale. Each panel shows how 	Re varies as a function of
heart rate recovery and peak heart rate, conditioned on the value
of age and fitness. Age was broken into two groups correspond-
ing to patients less than or equal to 45 years and greater than 45

Figure 6. Multipanel Conditional Plot of Ensemble Log Relative Risk as a Function of Heart Rate Recovery, Peak Heart Rate, Age, and Fitness.
Age is conditioned into two groups corresponding to patients less than or equal to 45 years and greater than 45 years of age. Levels of fitness are
1–2, 2–3, 3–4, and 4–5. The gray scale key on right side indicates the ensemble log relative risk value.
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years of age. This choice was suggested by the basis functions
BF5 and BF6 and their product interactions with heart rate re-
covery BF23, BF24, BF27, BF29, and BF31. Levels of fitness
were conditioned into four overlapping groups: 1–2, 2–3, 3–4,
and 4–5.

Looking at the left- and right-hand plots, we see an age ef-
fect. Plots on the right, corresponding to older patients, exhibit
a tendency toward higher log relative risks. A fitness effect is
also discernible. From top to bottom there is an overall decrease
in logrelative risk, showing that fitness improves risk outlook
(a value of 1 indicates best overall fitness). Observe how this
trend is more noticeable on the right-hand plots, suggesting that
there is an age interaction effect at play as well (the functions
BF15, BF16, and BF17 from our MARS analysis also confirm
this). Also of special interest is the interaction between peak
heart rate and heart rate recovery. Peak heart rate is often mis-
takenly thought of as a surrogate of heart recovery; however,
Figure 6 dispels this belief. This can be seen most clearly on the
right-hand plots. As heart rate recovery increases, log-relative
risk decreases; however, the rate of decrease has a complex re-
lationship with peak heart rate. Notice that this effect is slightly
different across fitness levels. Thus fitness may also play a role
in this interaction.

5. SUMMARY AND DISCUSSION

Relative risk forests, a synthesis of random forests and rel-
ative risk trees, were introduced as a simple, but powerful,
method for estimating relative risk values. Our motivation for
introducing this method was to gain a better understanding of
the complex dynamics between mortality, heart rate recovery,
a known powerful predictor of mortality, and other clinical and
physiological characteristics of a patient collected during stress
testing. Among the more interesting findings from our analy-
sis was a fairly elaborate functional relationship between log
relative risk and heart rate recovery. From this relationship we
were able to determine a heart rate recovery threshold rule for
identifying patients with abnormal heart behavior which con-
firms previous work. Postprocessing estimated log relative risk
values showed that peak heart rate has a complex relationship
with heart rate recovery and mortality, dispelling a popularly
held belief that peak heart rate is a surrogate of heart recovery.
We also discovered an important interaction between level of
fitness, heart rate recovery, and age.

Methodologically, relative risk forests provide a simple,
automated way to develop nonparametric survival regression
models and should be especially useful in settings where com-
plex interactions may exist among variables. Relative risk
forests give interpretable risk assignments to a patient made rel-
ative to an automatically selected mean unit in the study. Such
a risk value is meaningful and correct under the assumption of
proportional hazards, an implicit assumption of the method. In
examples where the proportional hazards assumption is known
to be too simplistic, the method may not be appropriate, and
other nonparametric techniques should be used instead. For ex-
ample, the HARE method developed by Kooperberg, Stone,
and Truong (1995) applies to general hazard functions.

Outside the restriction to proportional hazards, relative risk
forests can be used generally. The method is easily imple-
mented in standard software and requires little tuning. In fact,

the only tuning parameter in the procedure involves selecting F ,
the number of randomly selected covariates used in growing a
tree. As we have shown, the value for F can be chosen using
a simple cross-validation method. We also note that although
our methods in this paper focused on growing supervised trees,
which always included heart rate recovery, the method can be
used in a completely unsupervised fashion, or for that matter,
it could be adapted to include more elaborate forms of supervi-
sion (we are currently experimenting with the idea of selecting
covariates according to an automated weighting scheme, with
covariates considered more interesting given higher weights of
being included in the tree building process). Such modifications
are straightforward.

Relative risk forests can also be used to predict relative risk
values. As was done in Section 4, ensemble log relative risk
values can be used as the response in a nonparametric regres-
sion and the resulting equation used for prediction; a similar
approach was also discussed in LeBlanc and Crowley (1999)
who fit adjusted dependent variables and martingale residuals
from Cox models using adaptive regression splines. The use of
a regression model has the advantage of a closed-form expres-
sion for the log relative risk in terms of predictors. However, in-
terpreting models in clinical terms can be problematic because
of the possibility of higher-order interactions. Graphical tools
such as multipanel conditional Trellis plots are a simple and ef-
fective method that can be used. Another graphical approach
that could be tried are the partial dependence plots discussed in
Hastie, Tibshirani, and Friedman (2001, chap. 10.13).

[Received January 2003. Revised January 2004.]
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