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We develop computational procedures for a class of Bayesian nonparametric and semiparametric multiplicative intensity models incor-
porating kernel mixtures of spatial weighted gamma measures. A key feature of our approach is that explicit expressions for posterior
distributions of these models share many common structural features with the posterior distributions of Bayesian hierarchical models using
the Dirichlet process. Using this fact, along with an approximation for the weighted gamma process, we show that with some care, one can
adapt ef� cient algorithms used for the Dirichlet process to this setting. We discuss blocked Gibbs sampling procedures and Pólya urn Gibbs
samplers. We illustrate our methods with applications to proportional hazard models, Poisson spatial regression models, recurrent events,
and panel count data.
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1. INTRODUCTION

Aalen (1975, 1978) developed a uni� ed theory for nonpara-
metric inference in multiplicative intensity models from a fre-
quentist perspective. This treatment included, for example, the
life-testing model, the multiple decrement model, birth and
death processes, and branching processes. A Bayesian treat-
ment for the real line was given by Lo and Weng (1989), who
modeled hazard rates in the multiplicative intensity model as
mixtures of a known kernel k with a � nite measure ¹ modeled
as a weighted gamma measure on the real line. That is, a hazard
r is modeled as

r.xj¹/ D
Z

<
k.x; º/¹.dº/: (1)

Lo and Weng (1989) showed that using arbitrary kernels pro-
vides the user with a great deal of � exibility; for instance,
the choice of the kernel k.x; º/ D I fº · xg gives monotone-
increasing hazards as considered by Dykstra and Laud (1981),
whereas kernels k.x; º/ D I fjx ¡ aj ¸ ºg and k.x; º/ D I fjx ¡
aj · ºg give U-shaped hazards (with minimum and maximum
at a) similar to those of Glaser (1980), and normal density ker-
nels k.x; º/ D exp.¡:5.x ¡ º/2=¿ 2/=

p
2¼¿ 2 can be used to es-

timate hazards without shape restriction.
In this article we develop a general approach to Bayesian

inference for hazard (intensity) rates in nonparametric and
semiparametric multiplicative intensity models by incorporat-
ing kernel mixtures of spatial weighted gamma process pri-
ors. This approach extends the work of Lo and Weng (1989)
and Dykstra and Laud (1981) from a nonparametric setting on
the real line to the nonparametric and semiparametric settings
over general spaces and applies to the nonparametric multi-
plicative intensity models considered by Aalen (1975, 1978)
and their semiparametric extensions developed by Andersen,
Borgan, Gill, and Keiding (1993, chap. III). Models that fall
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within this framework that have been considered using gamma
and weighted gamma processes from a Bayesian perspective
include Markov models used in survival analysis subject to
certain types of censoring, � ltering, and truncation (Arjas and
Gasbarra 1994; Laud, Smith, and Damien 1996; Gasbarra and
Karia 2000), as well as Poisson point process models used in
reliability (Kuo and Ghosh 1997), forest ecology (Wolpert and
Ickstadt 1998a), and health exposure analysis (Best, Ickstadt,
and Wolpert 2000). Another related application was given by
Ibrahim, Chen, and MacEachern (1999) who used a weighted
gamma process to select variables in Cox proportional hazards
models.

A major contribution of this article is to develop a uni� ed
computational treatment of these problems from a Bayesian
perspective. As was shown by Lo and Weng (1989) (see
also Lo, Brunner, and Chan 1996) the posterior for multi-
plicative intensity models under weighted gamma processes
share common structural features with posterior distributions
for models subject to the Dirichlet process (i.e., Dirichlet
process mixture models). (See Lo 1984 for background and
posterior descriptions of Dirichlet process mixture models.)
Recently, James (2003) extended these results to an abstract
semiparametric setting (see Sec. 3), thus providing explicit
calculus for relating posteriors for spatial semiparametric in-
tensity models to posteriors for Dirichlet process mixture
models. This equivalence, in combination with our use of a
weighted gamma process approximation (Sec. 3), allows us to
use ef� cient Dirichlet process computationalprocedures and to
approximate the laws for general functionals of interest. An
important aspect is that we avoid ad hoc methods used to ap-
proximate likelihoods. For example, in survival analysis prob-
lems we do not discretize time, as is often done to simplify
computations. Another nice bene� t of using Dirichlet process
methods is that they are well understood and have a rich litera-
ture that can be drawn on. For example, the number of iterations
and burn-in iterations suggested for Gibbs sampling Dirichlet
process mixture models, and other such practical experience,
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can all be applied here. Moreover, computationalstrategies that
have been developed to handle problems such as nonconju-
gacy and slow Markov chain mixing all have natural analogs
in our setting. Handling nonconjugacy is especially relevant,
because it will allow us to deal with complicated terms that
can appear in our posteriors. Slow mixing is also an important
consideration. Here we deal with it by adapting acceleration
steps used to improve mixing in Dirichlet process problems.
Computational methods that we consider include Pólya urn
Gibbs samplers (Escobar 1988, 1994; Escobar and West 1995)
and blocked Gibbs sampling methods (Ishwaran and Zarepour
2000; Ishwaran and James 2001).

The article is organized as follows. Section 2 presents the
multiplicative intensity likelihood and de� nes the weighted
gamma process. Applications to proportional hazards, nonho-
mogeneous Poisson process and marked processes used in spa-
tial regression models are discussed. Sections 3 and 4 present
the details of our Pólya urn Gibbs sampler and blocked Gibbs
sampler. The methods are illustrated by applications to a long-
term follow-up study of heart rate recovery and mortality
(Sec. 3) and to simulations from a nonhomogeneous Poisson
spatial process (Sec. 4). Section 2 also discusses applications
to recurrent event data arising from conditionally indepen-
dent nonhomogeneousPoisson processes. Section 5 illustrates
this extension to the panel count data problem (Kalb� eish and
Lawless 1985; Sun and Kalb� eish 1995), a generalization of
the interval-censoringproblem. Using a Poisson process model
discussed by Wellner and Zhang (2000), we show how one can
obtain smoothed kernel estimates for the intensity, thus provid-
ing a novel Bayesian nonparametric approach complementary
to the iterative convex minorant algorithm used by frequen-
tists (Wellner and Zhang 2000).

2. SEMIPARAMETRIC MULTIPLICATIVE
INTENSITY LIKELIHOODS

Throughout, we work with a multiplicative intensity likeli-
hood of the form

L .¹; µ /

D exp

(

¡
nCmX

iD1

Z

S

µZ

X
Yi.x/ki.x; º; µ/´.dx/

¶
¹.dº/

)

£

nY

iD1

Z

S
ki.Xi ; ºi; µ/¹.dºi/; (2)

where ¹ is a � nite measure over a measurable space .S; A/, the
value µ is a Euclidean parameter with parameter space 2 (in the
applications considered here, 2 D <d ), and X is the sample
space for the data X1; : : : ; XnCm. (In right-censoring survival
analysis problems, n and m denote the sample sizes for the fail-
ure and censored times; however, the values for n and m vary
dependingon the speci� c application.)The functionski.x; º; µ/

in (2) are known nonnegative kernels that are jointly measur-
able in .x; º; µ/ and integrable with respect to ¹ and ´, where
´ is some � xed ¾ -� nite measure. Their role will be to smooth
the unknown hazard (intensity) function via a mixing approach
similar to (1).

Censoring and more general types of � ltration are cap-
tured by the functions Yi.x/ appearing in (2), which in the

counting process literature are usually called predictable func-
tions. In many applications in event history analysis, Yi.x/

records whether an individual is still at risk just before time x .
A key point is that using predictable functions allows the like-
lihood (2) to retain the same structure under different types
of � ltration, thus presenting a uni� ed approach for studying
the multiplicative intensity model (see Andersen et al. 1993,
chap. III). In right censoring (see Sec. 2.2), X1; : : : ;Xn de-
note observed failure times and XnC1; : : : ;XnCm denote cen-
sored times. In the case of Poisson spatial processes, considered
in Section 2.3, all observations are observed, so that m D 0.
Setting Yi.x/ D 1=n yields a likelihood (2) for a nonhomo-
geneous Poisson spatial process based on a single realization.
More complex marked processes are also possible, as discussed
in Section 2.3. Our methods can also be extended to more gen-
eral likelihoods that arise from conditionally independent non-
homogeneous Poisson processes. We motivate this idea brie� y
in Section 2.4 for recurrent event data, and in Section 5 we il-
lustrate the approach in depth for panel count data.

2.1 Missing Spatial Data and Weighted
Gamma Processes

Let v D .º1; : : : ; ºn/. Note that the integrals on the right side
of (2) index º by a subscript of i , even though this is notation-
ally redundant. This is done to emphasize that v is thought of
as missing spatial data. The idea is to augment the parameter
space and the likelihood function (2) to include these missing
data. Placing a prior on the parameters µ , v, and ¹ induces a
posterior, which we can then use to compute various quanti-
ties, including estimates for the smoothed intensity function.
The key is the prior for .v; ¹/, which is assumed to have a joint
product measure such that º1; : : : ; ºn , given ¹, represent n con-
ditionally independentrealizations from the random � nite mea-
sure ¹, where ¹ has a weighted gamma process law. Let ¼.dµ/

denote our prior for µ . We assume a prior on .µ; v;¹/ with the
joint product measure

¼.dµ/

nY

iD1

¹.dºi/ G .d¹j®; ¯/:

The expression G .¢j®;¯/ denotes a weighted gamma process
law with shape parameter ® (a � nite measure over S) and scale
parameter ¯ (a positive integrable function over S). That is,
for each Borel-measurable set A 2 A, the random measure ¹,
de� ned by

¹.A/ D
Z

A

¯.s/°®.ds/;

is said to have a G .¢j®; ¯/ law, where °® is a gamma process
over S with shape measure ®. We call °® a gamma process
with shape ® if °®.A/ is a gamma.®.A// random variable with
mean ®.A/ and variance ®.A/.

Remark 1. The gamma process was described in an early
paper by Moran (1956). A more complete description was
given by Ferguson and Klass (1972), who discussed gamma
processes over <, and Kingman (1975), who provided a de-
scription over arbitrary measurable spaces. Lo (1982) described
weighted gamma processes over Polish spaces, and Dykstra and
Laud (1981) provided a description over <.
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It is important to keep in mind that ¹ is an arbitrary � nite
measure and thus is not necessarily a probability measure. Be-
cause of this, what the resultingposterior for (2) will look like is
not at all obvious. For example, it is not even clear whether the
posterior values for º1; : : : ; ºn can be associated with a proper
probability distribution, which is something we would need if
we wanted to use Monte Carlo methods to approximate poste-
rior quantities related to v. In familiar Dirichlet process mix-
ture models, these kinds of connections follow automatically
because we always work with proper probability measures. It
might be guessed, though, that these same features apply here,
due to the intimate connection between the gamma process and
the Dirichlet process. It is well known that if P.¢j®/ is a Dirich-
let process law with a � nite measure parameter ® (Ferguson
1973, 1974), then P.¢j®/ can be expressed as a normalized
gamma process, that is, the random probability measure

P .¢/ D
°®.¢/
°®.S/

(3)

has a P.¢j®/ law. Thus it stands to reason that there must be an
intimate connection between Dirichlet process mixture models
and multiplicative intensity posteriors derived from weighted
gamma process priors. This is, of course, only an informal argu-
ment. The exact details are more subtle, as we spell out speci� -
cally in Section 3. Before going into these details, however, we
provide some motivating examples.

2.2 Proportional Hazards

The Cox regression model (Cox 1972) is an important exam-
ple of a multiplicative intensity model of the form (2). Under
independentright censoring, the Cox proportionalhazards like-
lihood may be written as

nCmY

iD1

¡
r0.Tij¹/ exp.µT Zi/

¢1i

£ exp

»
¡

Z

<
Yi.t/r0.tj¹/ exp.µT Zi/´.dt/

¼
; (4)

where Ti are failure times, 1i D I fTi · Cig is a 0–1 indicator
function indicating whether censoring occurred at times Ci , the
Zi ’s are covariate vectors with parameter vector µ , and Yi.t/ D
I fTi ¸ tg is the predictable function. To produce a smoothed
estimate for the hazard, we model the unknown baseline hazard
function r0.tj¹/ as a mixture of the form

r0.tj¹/ D
Z

S
k0.t; º/¹.dº/; (5)

where k0.t; º/ is some prespeci� ed kernel. Typically, S µ <C,
with the exact choice depending on the selected kernel and the
speci� c problem. Now to express (4) in the form of (2), let
Xi D Ti , for i D 1; : : : ; n C m, and set X D <. If T1; : : : ; Tn

are the uncensored observed failure times, then (4) can be ex-
pressed in the form of (2) if

ki.t; º; µ/ D exp.µT Zi/k0.t; º/: (6)

Observe that the underlying hazard is modeled so that it is a
kernel mixture,

r.tjZ; µ; ¹/ D exp.µT Z/

Z

S
k0.t; º/¹.dº/:

Kalb� eisch (1978) presented one of the earliest Bayesian
approaches for estimating the Cox model based on a gamma
process. In this method the baseline cumulative hazard func-
tion is modeled as a gamma process. Time is then discretized
by chopping the time axis into a collection of nonoverlapping
intervals, which, due to the use of a gamma process, results
in a cumulative hazard function that can then be modeled as
a collection of independent gamma random variables (see also
Burridge 1981). In more recent work, Ibrahim et al. (1999) took
a different approach and modeled the baseline hazard function
as a mixture (5), where ¹ has a weighted gamma process prior.
This method applies to kernels of the form

k0.t; º/ D I fº · tg (7)

and leads to smoothed increasing hazard functions similar to
those of Dykstra and Laud (1981). To sample the posterior,
Ibrahim et al. (1999) constructed a re� ned partition of the
time axis and worked with the resulting approximate likelihood
of (4) (see also Laud et al. 1996).

However, in Section 3 we take a different approach, showing,
by exploiting an equivalence to Dirichlet process mixture mod-
els, that the Cox posterior under a weighted gamma process
can be sampled using a Pólya urn Gibbs sampler without re-
quiring any approximation to the likelihood or the prior. This
is especially advantageous with large datasets containing, say,
thousands of observations (see the example of Sec. 3.3), where
with a discretized approach it becomes tricky to select a suitably
re� ned partition of the time axis while keeping computations
manageable. Moreover, this approach also applies to more gen-
eral kernels, and allows us to estimate smoothed hazard func-
tions with or without imposed shape restrictions.

2.3 Poisson Process Spatial Regression Models

Lo and Weng (1989) discussed the use of a weighted gamma
process for estimating the intensity of a nonhomogeneous Pois-
son process (see also Kuo and Ghosh 1997). This approach also
falls within our framework. Suppose that X1; : : : ; Xn are the
observed points from one realization of a Poisson random mea-
sure, PRM.3/, with mean intensity 3. Assume that the deriva-
tive of 3 exists, that is,

3.dxjµ;¹/ D ´.dx/

Z

S
k0.x; º/¹.dº/;

where k0 is some positive integrable kernel but ¹ is unknown.
The likelihood function is

L .¹/ D exp

»
¡

Z

S

µZ

X
k0.x;º/´.dx/

¶
¹.dº/

¼

£
nY

iD1

Z

S
k0.Xi ;º i/¹.dº i/:

This is equivalent to (2) after setting ki.x;º; µ / D k0.x;º/,
Yi.x/ D 1=n, and m D 0. (See Snyder and Miller 1991,
chap. 2.5, for background on multidimensional Poisson
processes and their likelihoods.)

In many statistical settings, in addition to the locations
X1; : : : ;Xn of the observed points from the point process, co-
variate information Z1; : : : ;Zn is also observed. In such studies
the goals are to discover the underlying mechanism producing
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the spatial counts and to explore its dependence on covariates.
Such problems can be naturally subsumed within our multi-
plicative intensity framework, providingan important extension
to the method of Lo and Weng (1989) and leading to what can
broadly be considered a class of semiparametric Poisson spatial
regression models.

A good situation illustrating the potential of such models is a
spatial setting in which spatial count data has been aggregated
at a macroregional level. Disease mapping or aggregate spatial
epidemiology studies that analyze count data are good illustra-
tive examples. In such studies the data comprise the observed
counts Ni of a rare event, such as an incident of a rare disease
or a death, within a particular � xed geographical region Ri for
i D 1; : : : ; m. There may also be covariate information Zi spe-
ci� c to the region Ri . Standard models take the form

Ni » Poisson
¡
¸iEi exp.µT Zi/

¢
; i D 1; : : : ; m; (8)

where Ei is the expected number of events based on the re-
gion size and ¸i is a region-speci� c intensity rate. The counts
Ni are typically the aggregated counts Ni;j over different sub-
strata Ri;j of the region Ri . Often the covariates Zi are also
aggregated; for example, they may be averaged populationval-
ues for Ri (Prentice and Sheppard 1995).

One serious limitation with a model like (8) is that it does
not account for potential spatial correlation in counts. Another
problem is that using covariate information aggregated at the
regional level can often lead to serious bias. One way of min-
imizing the potential bias is to use covariate values averaged
over random samples (Prentice and Sheppard 1995). Corre-
lation in counts also can be addressed, for example, Green
and Richardson (2002) discussed a Potts model formulation
for ¸i to model dependence. However, if instead of aggregated
data suppose data are available at the substratum level, then
both problems can be addressed more naturally within a point
process framework by treating the spatial locationsof the events
as points from a Poisson process. That is, if the spatial loca-
tion Xi;j of each event and correspondingcovariate information
Zi;j are recorded at the substratum level, then a more powerful
analysis using a marked Poisson process approach can be used,
which eliminates the dependence on � xed regions Ri . In such
an analysis, covariates Zi;j become what are called the marks
of the process. (See Daley and Vere-Jones 2002, chap. 6.4, for
backgroundon marked processes.) The marks can record either
spatial covariate information or information speci� c to the unit.
At the micro level, the analog to (8) is the “proportional inten-
sity model” (Svensson 1990)

3.dx; dzjµ; ¹/ D w.dx; dz/ exp.µT z/

Z

S
k0.x;º/¹.dº/; (9)

where k0 is some prespeci� ed kernel. This corresponds to the
intensity for a marked point process PRM.3/, where w.dx; dz/

is the dominating measure for the points and covariates. Typi-
cally,

w.dx; dz/ D ´.dx/Pn.dz/;

where Pn.¢/ D
P

i;j ±Zi;j
.¢/=n is the empirical distribution for

the covariates (we use ±z to denote a discrete measure concen-
trated at z). This ensures that the likelihood can be written in
the form of (2).

An important feature of (9) is that it provides a smoothed
nonparametric estimate for the intensity through the mixed ker-
nel

R
k0.¢; º/¹.dº/. Using ¹ is a way of accounting for hetero-

geneity, and hence it models potential spatial correlation. Thus
the marked Poisson process approach handles the issue of spa-
tial dependencebut also adjusts for covariatesat the micro level.
The idea can be applied quite generally to other problems as
well. Other examples of marked process applicationsare in for-
est ecology (Wolpert and Ickstadt 1998a) and spatial regression
models for analysis of health exposure data (Best et al. 2000).
These examples are based on more complex nonproportional
intensity models. In Section 4 we discuss how to handle all of
these models. For example, in Section 4.2, we look at kernels
of the form

ki.x; º; µ/ D k0.x; º; µ 1/ exp.µT
2 Zi/ (10)

and discuss how these can be computed using a blocked Gibbs
sampling method.

2.4 Poisson Process Regression Models
for Recurrent Events

With only slight modi� cation, the methods can be extended
to problems involving n conditionally independent Poisson
processes. For example, a general problem of interest are stud-
ies involving n independent individuals, each experiencing re-
current events, where the data comprise the number of events
and times of events for each individual. Covariate information
on individuals may also be included. The goal is to estimate
the intensity of the underlying counting process. One method
for handling such situations was discussed by Lawless (1987),
who considered semiparametric proportional intensity models
based on Poisson processes. Using our Bayesian approach, this
idea can be expanded to handle nonproportionality and provide
smoothed estimates for the intensity. More precisely, suppose
that individual i is observed over the time interval .0; Ti] and
has repeated events occurring according to a nonhomogeneous
Poisson process with a smooth intensity function

3i.dt jµ/ D dt

Z

S
ki.t; º; µ/¹.dº/:

The choice for the kernel ki can be quite general, accommodat-
ing either proportionality or nonproportionality assumptions.
The subscript i is used to indicate that ki depends on covariate
information.As in our previous examples, µ denotes the covari-
ate parameter. For each individual i , suppose that ni events are
observed to occur at times Ti;1 < ¢ ¢ ¢< Ti;ni . The likelihood for
the data is

L .¹; µ/ D exp

(

¡
nX

iD1

Z

S

Z 1

0
Yi.t/ki.t; º; µ/ dt ¹.dº/

)

£
nY

iD1

niY

jD1

Z

S
ki.Ti;j ; ºi;j ; µ/¹.dºi;j /; (11)

where Yi.t/ D I f0 < t · Tig. Although (11) is slightly different
than the likelihood (2), by introducing hidden variables as be-
fore, we can show that the posterior for (11) under a weighted
gamma process prior has similar features to a Dirichlet process
mixture model. Note that the augmented variables here are ºi;j

for i D 1; : : : ; n and j D 1; : : : ; ni .
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In Section 5 we discuss these kinds of details for posteriors
arising in connection with panel count data. This is a slightly
more complex setup than (11), because the actual times at
which events occur are not observed. However, with only slight
modi� cations, those methods automaticallyaddress the class of
problems of (11).

3. POSTERIOR EXPRESSIONS AND WEIGHTED
GAMMA APPROXIMATIONS

Fundamental to our exposition is the following posterior
representation given by James (2003, thm. 3) for semipara-
metric intensity models subject to weighted gamma process
priors. (Also see Lo and Weng 1989 for related work.) Write
X D .X1; : : : ;XnCm/ for the vector of data values, and let
g.v;¹; µ/ be an integrable function. It follows from James
(2003) that the posterior for .V; ¹; µ/ from (2) under a G .¢j®;¯/

process is characterized by
Z

g.v;¹; µ/¼.dv; d¹;dµ jX/

D
Z Z

g.v; ¹; µ /

£ G

Á

d¹j® C
nX

iD1

±ºi
;¯¤

!
¼.dv; dµ jX/; (12)

where we write ¯¤ for the function ¯¤.º; µ/ D ¯.º/=[1 C
¯.º/f .º; µ/], where

f .º; µ/ D
nCmX

iD1

Z

X
Yi.x/ki.x; º; µ/´.dx/:

The expression ¼.dv; dµ jX/, a key quantity in (12), denotes the
conditionaldensity for V and µ . It is de� ned by

¼.dv; dµ jX/

/ m.dv/¼.dµ/D.µ /B¤.v; µ/

nY

iD1

ki.Xi ; ºi ; µ/; (13)

where

B¤.v; µ/ D
nY

iD1

¯¤.ºi ; µ/;

D.µ / D exp

»
¡

Z

S
log

¡
1 C ¯.º/f .º; µ/

¢
®.dº/

¼
; (14)

and

m.dv/ D
Z nY

iD1

¹.dºi/G .d¹j®;1/

D
nY

iD1

Á

® C
i¡1X

jD1

±ºj

!

.dºi/ (15)

is the joint marginal density from a gamma process with
shape ®.

3.1 The General Procedure

A key point underlying our computational algorithms is
that the joint marginal density m.dv/ is the nonnormalized
Blackwell and MacQueen (1973) Pólya urn density. That is,
m.dv/ is proportional to

m0.dv/ D
Z nY

iD1

P .dºi /P.dP j®/

D
Qn

iD1.® C
Pi¡1

jD1 ±ºj
/.dºi/Qn

iD1.®.S/ C i ¡ 1/
;

the Pólya urn density for a Dirichlet process P.¢j®/. This is, of
course, an immediate consequenceof the relationship(3). Thus,
because m.dv/ is proportional to m0.dv/, the measure (13), ex-
cept for the expression D.µ/B¤.v; µ/, has the same structural
features as a semiparametric Dirichlet process mixture model.
In such cases ki are kernel densities, µ is typically a regression
coef� cient, and ¼.dµ/ is the prior for µ . Thus it stands to reason
that simulating values from (13) can, with some modi� cation,
be implemented similarly to Dirichlet process mixture models.

This general principle can be used to derive various Gibbs
sampling procedures. The technique for obtaining a posterior
draw for V and µ is as follows:

1. Draw V from its joint conditional distribution,

¼.dvjµ;X/ / m.dv/B¤.v; µ/

nY

iD1

ki.Xi ; ºi; µ/:

2. Draw µ from its conditional distribution,

¼.dµ jv; X/ / ¼.dµ/D.µ /B¤.v; µ/

nY

iD1

ki.Xi ; ºi ; µ/:

Drawing µ is straightforward using standard parametric
methods, whereas drawing V is based on various Dirichlet
process Monte Carlo algorithms. The resulting values V and µ

usually will be more than adequate for computing various pos-
terior quantities. For example, these values can be used to esti-
mate the posterior mean of the intensity in a Poisson regression
model or the posterior mean hazard in a survival analysis. In
some settings, however, we may need to compute more compli-
cated functionals, or we also may want to produce con� dence
intervals. In such cases, a third step is required involvinga draw
from the posterior random measure ¹ (see Sec. 3.3 for details):

3. Draw ¹ from the conditional law G .¢j® C
Pn

iD1 ±ºi
;¯¤/:

3.2 Cox Regression via Pólya Urns

To illustrate,we return to the proportionalhazards model dis-
cussed in Section 2.2. Substituting the Cox kernels (6) into the
posterior (12), and using the previous notation from Section 2.2
(e.g., setting Xi D Ti ), we have

¼.dv; dµ jX/

/ m0.dv/¼.dµ/D0.µ/B¤.v; µ/

nY

iD1

k0.Ti ; ºi/; (16)
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where

D0.µ/ D D.µ / exp

Á
µT

nX

iD1

Zi

!

and D.µ / is de� ned by (14) with

f .º; µ/ D
nCmX

iD1

exp.µT Zi/

Z Ti

0
k0.t; º/´.dt/:

To simulate values for V from (16), we use a modi� cation
of the Pólya urn Gibbs sampler of Escobar (1988, 1994). Ab-
sorb the effect of ¯¤ from B¤.v; µ / into the kernel by de� ning
k¤

0.t; º; µ / D ¯¤.º; µ /k0.t; º/. Let v¡i denote the subvectorof v
with the ith coordinate removed. Write H .¢/ for the distribution
®.¢/=®.S/.

To simulate .V; µ/ from (16), run the following Pólya urn
Gibbs sampler:

1. Draw .ºijµ ;v¡i ;X/ for i D 1; : : : ; n. The required condi-
tional densities are

¼.dºijµ; v¡i;X/ D `0;i¸i.dºi/ C
n0;iX

j D1

`j;i±º¤
j
.dºi/;

where ¸i.dº/ / k¤
0.Ti; º; µ /H .dº/, and

`0;i D ®.S/

ci

Z

S
k¤

0.Ti ; º; µ /H .dº/;

`j;i D
ej;i

ci
k¤

0.Ti ; º¤
j ; µ/:

The value ci is a normalizing constant chosen so thatPn0;i

j D0 `j;i D 1, and fº¤
1 ; : : : ; º¤

n0;i
g represents the set of

n0;i unique values of v¡i , with each value º¤
j occurring

with frequency ej;i.
2. Draw .µ jv; X/ from the density proportional to ¼.dµ/ £

D0.µ /B¤.v; µ/.

The sampled values can be used to compute various poste-
rior quantities. Thus if .v.b/; µ .b//, b D 1; : : : ; B , are simulated
values from the Gibbs sampler, then we can, for example, ap-
proximate the posterior mean of a function g.V; µ / by

E
¡
g.V; µ /jX

¢
¼ 1

B

BX

bD1

g
¡
v.b/; µ .b/

¢
:

For example, given a suitable choice for g, this can be used to
estimate the posterior mean of the hazard. That is, by (12), the
baseline hazard r0.tj¹/ D

R
S k0.t; º/¹.dº/ has posterior ex-

pectation

E
¡
r0.tj¹/jX

¢

D
Z Z Z

k0.t; º/¹.dº/G
Á

d¹j® C
nX

iD1

±ºi
;¯¤

!

£ ¼.dv; dµ jX/

D
Z Z

k¤
0.t; º; µ/

Á

®.dº/ C
nX

iD1

±ºi
.dº/

!

¼.dv; dµ jX/

D E
¡
g.V; µ /jX

¢
;

where

g.v; µ/ D ®.S/

Z

S
k¤

0.t; º; µ /H .dº/ C
nX

jD1

k¤
0.t; ºj ; µ /:

Remark 2. An acceleration step can be added to enhance
mixing for the Markov chain using a technique discussed by
West, Müller, and Escobar (1994) for Dirichlet process mixture
models. This requires adding the following simple step after
completing step 1:

1(a). Let p be the partition of f1; : : : ; ng of sets C1; : : : ;Cn0 ,
where Cj consists of all i where ºi D º¤

j . Draw inde-
pendent values for .º¤

j jp; µ; X/ from

¼.dº¤
j jp; µ; X/ / H .dº¤

j /
Y

i2Cj

k¤
0.Ti ; º¤

j ; µ /;

for j D 1; : : : ; n0: (17)

Use the newly sampled º¤
j values and the partition p to

determine a new updated vector v.

3.3 Weighted Gamma Process Approximations

Let U1; : : : ; UN be iid from the distribution H .¢/ D ®.¢/=
®.S/. Let U D .U1; : : : ; UN /, and let H N denote its joint distri-
bution.The following theorem providesa method for accurately
approximating a weighted gamma process that can be used for
drawing values for ¹ from the posterior (12). The proof is given
in Appendix A.

Theorem 1. For the mixture of weighted gamma processes

G N;¯ .¢/ D
Z

G .¢j®N ; ¯/H N .du/;

where ®N .¢/ D ®.S/
PN

kD1 ±Uk
.¢/=N , it follows that

(a) G N;¯ is the law for the random measure de� ned by

¹.A/ D
Z

A

¯.º/°N .dº/; A 2 A;

where °N .¢/ D
PN

kD1 Gk;N ±Uk
.¢/ and Gk;N are iid

gamma.®.S/=N/ random variables independentof Uk .

(b) G N;¯.¢/ d) G .¢j®;¯/, where “
d)” indicates weak conver-

gence.

Part (a) of Theorem 1 indicates a method for drawing ¹ ap-
proximately from a weighted gamma process, and part (b) jus-
ti� es such an approximation. In particular, Theorem 1 suggests
the following method for an approximate draw of ¹ from the
posterior in the Cox model: Draw v and µ from (16) and then
draw a random ¹ from

Z
G

Á

¢j®N C
nX

iD1

±ºi
;¯¤

!

H N .du/:

For a suitably large value of N , this should provide an accurate
approximation to G .d¹j® C

Pn
iD1 ±ºi

; ¯¤/. Thus to get an ap-
proximate draw for ¹, include the following additional step in
the Pólya urn Gibbs algorithm:
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3. Using the current values for v and µ , draw a value
for ¹ from the weighted gamma approximation G .¢j®N CPn

iD1 ±ºi
;¯¤/. That is, if fº¤

1 ; : : : ; º¤
n0

g represents the set
of n0 unique values of v, with each value º¤

j occurring
with frequency ej , then draw ¹ according to

¹.¢/ D
NX

kD1

Gk¯¤.Uk; µ/±Uk
.¢/

C
n0X

jD1

G¤
j ¯¤.º¤

j ; µ /±º¤
j
.¢/; (18)

where Gk are iid gamma.®.S/=N/ variables and Uk are
iid H and G¤

j are independent gamma.ej/ variables. All
variables are mutually independent.

Remark 3. As an example, to simulate posterior values for
the baseline hazard r0.tj¹/, draw ¹ from (18) and compute

r0.tj¹/ D
NX

kD1

Gkk¤
0.t; Uk; µ / C

n0X

jD1

G¤
j k¤

0.t; º¤
j ; µ /:

Averaging this is another way to obtain an estimate for the
posterior baseline hazard E.r0.tj¹/jX/, but typically the draw
would be used to estimate quantities like the survival function
or the cumulative hazard function.

Remark 4. It is important to note that the second sum in the
approximation (18) is exact. Moreover, this value is the domi-
nant term in the expression,making the accuracy of the � rst sum
noncritical. In practice, a value of N D 50 works quite well.

Remark 5. Another method for approximating the draw
for ¹ can be based on the inverse Lévy measure algorithm of
Wolpert and Ickstadt (1998b),which applies to spatial weighted
gamma processes. Another potential technique is the method of
Laud et al. (1996), which applies to weighted gamma processes
over <.

3.4 Heart Rate Recovery and Mortality

In this section we apply the Bayesian Cox regression model
to a long-term follow-up study of heart rate recovery. The
data that we consider were collected from patients who under-
went exercise testing at the Cleveland Clinic Foundation be-
tween 1990 and 2001. In all, our database contained more than
20;000 patients, all of whom were referred to our institution for
symptom-limited exercise testing. Various exercise test mea-
surements were recorded for each patient, including heart rate
during and after exercise. An assortment of clinical measure-
ments was all recorded. All patients were followed-up for sur-
vival, with a mean follow-up time of 5.6 years (mean survival
of 3.8 years for uncensored data) and a range of .01 to 10.1
years. A key variable of interest is the heart rate recovery value,
de� ned as the difference between the heart rate at peak exercise
(measured in beats per minute) and heart rate 1 minute after
cessation of exercise. As noted recently (see Cole, Blackstone,
Pashkow, Snader, and Lauer 1999), heart rate recovery is a pow-
erful independent predictor of mortality, with patients exhibit-
ing abnormal heart rate recovery values considered to be at high
risk. An abnormal recovery value is de� ned as a reduction of
12 beats per minute or less. Here we analyze data for the subset

of patients considered at high risk as de� ned by these crite-
ria. This yields a total of 5;658 patients with 803 failure events
(deaths) and 4;855 censored events (86% censoring rate).

Because we have no prior information regarding the shape
of the hazard function, we use a uniform rectangular kernel to
estimate the hazard without shape restriction. Thus we use

k0.t; º/ D I fjt ¡ ºj · ¿ g; (19)

where the value for ¿ > 0 is a bandwidth value. The use of a
rectangular kernel here is analogous to its use in kernel den-
sity estimation. As in density estimation, the choice of ker-
nel is essentially a matter of taste and convenience, and thus,
for example, we could have used a normal kernel, k0.t; º/ D
exp.¡:5.t ¡º/2=¿ 2/=

p
2¼¿ 2, to estimate the hazard. We prefer

to use a rectangular kernel, because it will lead to some helpful
simpli� cations.

We can assume that all survival times lie in an interval [0; T ]
for some � nite value T . If we rescale time by dividing by T

so that time lies in the unit interval [0;1], then the resulting
hazard function r¤ will be related to the unscaled time hazard
function r by T r.t/ D r¤.t=T /. Thus, because we can always
recover r from r¤ (transforming back after computing the pos-
terior), we can assume that T D 1 without loss of generality.
Thus we assume that 0 · t and º · 1. For the weighted gamma
process prior, we take ¯.º/ D ¯0 and ®.dº/ D ®0H.dº/, where
H.dº/ D I f0 · dº · 1g is a uniform distribution. The value
for ®0 > 0 in this speci� cation controls the amount of smooth-
ing, and thus its role is similar to the bandwidth value ¿ used in
our kernel. Because its role is redundant,we set ®0 D 1 and vary
the value for ¿ in controlling overall smoothness. The value
for ¯0 > 0 can be used to re� ect prior strength. Large values
induce a noninformativeprior.

Usually, the tricky aspect in implementing the Pólya urn
Gibbs sampler is the draw º from the density ¸i.dº/. Here
¸i.dº/ is proportional to

k¤
0.Ti; º; µ/H .dº/ D ¯¤.º; µ /k0.Ti ; º/H .dº/

D
k0.Ti; º/ dº

¯¡1
0 C f .º; µ/

: (20)

It turns out that this draw can be implemented fairly easily
thanks to the simpli� cations for f .º; µ / that occur by using
a rectangular kernel. Appendix B gives the necessary details.
The Gibbs algorithm also requires drawing µ in step 2. For this
draw, it is important to easily compute

D.µ / D exp

»
¡®0

Z 1

0
log

¡
1 C ¯0f .º; µ /

¢
dº

¼
: (21)

Again, using a rectangular kernel greatly simpli� es this calcu-
lation; see Appendix B for the details.

Figure 1 and Table 1 present the results of our analysis. Es-
timates are based on 3;000 sampled values from our Pólya
urn Gibbs sampler after an initial 2;000-iteration burn-in.
The method used the acceleration step outlined in Remark 2
(also see App. B). For the draw for µ , we used random-walk
Metropolis–Hastings with a multivariate normal transition ker-
nel, where µ was assumed to have a � at multivariate normal
prior N.0;104I/. For the weighted gamma process, we used
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(a)

(b)

(c)

Figure 1. Posterior Baseline Hazard Function r0 From Heart Rate Recovery Data (left) and Posterior Survival Function Evaluated at Mean
Covariate Values (right) for Smoothing Parameters of (a) ¿ D 1.5, (b) ¿ D 2, (c) ¿ D 2.5. The superimposed rug corresponds to observed failure
times. The thick lines represent posterior mean values; the dashed lines given for survival functions represent a 95% probability band.

the priors discussed earlier with ®0 D 1 and ¯0 D 105. When
drawing posterior values for ¹, we used a truncation value

Table 1. Parameter Estimates From Heart Recovery Data

Maximum likelihood Weighted gamma process,
estimation ¿ D 2.5

Parameter (MLE § standard error) (mean § standard deviation)

Asthma ¡.640 § .26 ¡.726 § .28
Bronch .212 § .16 .213 § .16
Betablock ¡.479 § .09 ¡.498 § .11
Lung .861 § .12 .869 § .11
Fitness .120 § .03 .119 § .03
Hrrecov ¡.031 § .01 ¡.031 § .01
Diabetes .514 § .12 .499 § .12
Peakhr ¡.020 § .002 ¡.021 § .002
Vascular .337 § .12 .340 § .12
Smoking .037 § .08 .043 § .08

NOTE: Parameters are asthma (no/yes), use of bronchodilators (no/yes), use of beta blockers
(no/yes), history of chronic lung disease (no/yes), measure of � tness (1, 2, 3, or 4), heart rate
recovery (beats per minute), diabetes (no/yes), peak heart rate (beats per minute), peripheral
vascular disease (no/yes), smoking within past year (no/yes).

of N D 50. (We also tried larger values for N , but found lit-
tle difference in � nal estimates.)

Figure 1 presents the posterior mean baseline hazard func-
tion r0 (and corresponding survival function) estimated under
various choices for the bandwidth value ¿ (we used ¿ D 1:5,
2, and 2.5 years). Although it is possible to include ¿ in the
Gibbs sampling scheme, we � nd that we can more clearly as-
sess the shape of r0 by manually adjusting the bandwidth value.
Varying ¿ affects the posterior estimates for µ very little, be-
cause the baseline hazard function is a nuisance parameter. (For
concreteness, Table 1 is given for posterior estimates based on
¿ D 2:5.) The plots for r0 reveal that the hazard has a roughly
linear shape, increasing slowly for the � rst 2 years and then
� attening off until about 3 years, then increasing rapidly until
approximately 8 years, and leveling off again. We � nd these
plots for the hazard function quite useful for directly under-
standing the survival behavior. Survival functions shown on the
right side of Figure 1 are also useful, but are more dif� cult to
interpret. With respect to µ , Table 1 shows that the Bayes es-
timates agree closely with the maximum likelihood estimator
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(MLE) based on the usual partial likelihood approach. (This is
to be expected, because the partial likelihood approach gives
valid inference for µ without knowing the baseline hazard; the
difference, of course, is our ability to nonparametrically esti-
mate the baseline and the insight that we gain from this.) All
variables except for the bronchodilatoruse and whether the pa-
tient smoked in the past year were signi� cant at a 5% level. The
heart recovery value is highly signi� cant, as was anticipated,
with a (posterior) relative risk of 1.03 with each decrease of
1 beat per minute recovery.

4. BLOCKED GIBBS SAMPLING

The rectangular kernel (19) used in the previous section pro-
vides a simple and � exiblemethod for unrestrictedhazard shape
estimation in Cox regression settings. For shape-restricted haz-
ards, convenient algorithms can be based on the 0–1 kernel (7).
Thus the class of kernels based on indicator functions is suf-
� ciently rich for Cox models. However, in extensions to the
Cox model, as well as in extensions to more general multivari-
ate counting processes, such as the Poisson spatial processes
discussed shortly (see Sec. 4.2), we often need a wider col-
lection of available kernels for modeling. With more complex
kernels, however, posterior computations will become more
tricky, because we will not always be able to rely on conjugacy
and the kinds of simpli� cations seen in the previous example.
Thus more general Monte Carlo method is needed to address
these issues. Here we discuss a Gibbs sampling technique—
the blocked Gibbs sampler—that can be used in general. (For a
systematic comparison of Pólya urn Gibbs sampling to blocked
Gibbs sampling, see Ishwaran and James 2001.)

The trick is to apply the weighted gamma process approx-
imation G .¢j®N ; ¯/ (see Thm. 1) to the prior G .¢j®; ¯/ rather
than the posterior, as was done earlier. This will replace inte-
grals with sums if we use a form of data augmentation, thus
greatly simplifying matters. Note that this method does not in-
volve approximating the likelihood (2) and involves only the
approximation to the prior.

Hereafter, we take G .¢j®N ;¯/ for the prior for ¹. Similar to
Section 3, it follows that for any integrable function g.v;¹; µ/,
the posterior ¼N .dv; d¹; dµ jX/ under a G .¢j®N ; ¯/ prior is
characterized by

Z
g.v; ¹; µ/¼N .dv; d¹;dµ jX/

D
Z Z

g.v;¹; µ/ G
Á

d¹j®N C
nX

iD1

±ºi
;¯¤

!

£ ¼N .dv; du; dµjX/;

where

¼N .dv; du; dµ jX/ / m0;N .dvju/H N .du/¼.dµ/

£ DN .u; µ/

nY

iD1

k¤
i .Xi ; ºi ; µ/; (22)

k¤
i .x; º; µ/ D ¯¤.º; µ/ki.x; º; µ/;

DN .u; µ/ D exp

(

¡
®.S/

N

NX

kD1

log
¡
1 C ¯.uk/f .uk ; µ/

¢
)

;

and m0;N.dvju/ is the Pólya urn density for P.¢j®N /, a Dirich-
let process with parameter ®N . The functions ¯¤.º; µ / and
f .º; µ / are de� ned as in Section 3. Note how using the approxi-
mate prior has led to several simpli� cations by replacing poten-
tially complex integrals with more manageable sums [compare
the expression DN .u; µ / to D.µ / de� ned by (14)].

To estimate posterior quantities, we need to draw .V; U; µ /

from (22). As in the Cox regression, the appearance of a
Pólya urn distribution is a signal to try a Dirichlet process
approach. However, the presence of the augmented variables
u1; : : : ; un presents an additional wrinkle, making it no longer
feasible to implement a Pólya urn Gibbs sampler. Instead, we
use a blocked Gibbs sampling method, adapting a method
discussed by Ishwaran and Zarepour (2000) and Ishwaran
and James (2001) for Dirichlet process mixture models. This
method works by augmenting the parameter space to include
the underlying random measure.

Rewrite (22) by rexpressing m0;N.dvju/ as the marginalized
law obtained from integrating over P.¢j®N /,

¼N .dv; du; dµ jX/

/
ÁZ nY

iD1

P .dºi /P.dP j®N /

!
H N .du/¼.dµ/

£ DN .u; µ/

nY

iD1

k¤
i .Xi ; ºi ; µ /:

Now, rather than sampling (22), we draw values from the aug-
mented distribution

nY

iD1

P .dºi/P.dP j®N /H N .du/¼.dµ/DN .u; µ/

£
nY

iD1

k¤
i .Xi ; ºi ; µ/: (23)

Notice that P can be constructively de� ned as

P .¢/ D
NX

kD1

Wk±Uk .¢/; (24)

where W D .W1; : : : ; WN / has the Dirichlet distribution,
Dirichlet.®.S/=N; : : : ; ®.S/=N/, independently of Uk . If
º1; : : : ; ºn is a sample obtained from P , then each ºi can be
expressed in terms of a classi� cation variable that identi� es its
Uk value. In particular, let K D .K1; : : : ; Kn/, where

PrfKi 2 ¢jWg D
NX

kD1

Wk±k.¢/: (25)

Then ºi D UKi . Now using K, the identity ºi D UKi , and the
construction for P , we can reexpress (23) in terms of .K;W;

U; µ/. Thus we end up with augmented variables .K; W; U; µ /

with conditionaldensity proportional to

nY

iD1

Á
NX

kD1

Wk±k .dKi/

!

¼w.dW/H N .du/¼.dµ/

£ DN .u; µ /

nY

iD1

k¤
i

¡
Xi;uKi

; µ
¢
;
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which is relatively simple to sample from. This gives us an ef-
� cient method for drawing .V;U; µ/.

4.1 Blocked Gibbs Algorithm

To approximate the posterior law for a function g.V;¹; µ/,
cycle through the following steps:

1. Conditionaldraw for K. Independentlysample Ki accord-
ing to

PrfKi 2 ¢jW;U; µ;Xg D
NX

kD1

Wk;i±k.¢/;

for i D 1; : : : ; n;

where .W1;i ; : : : ; WN;i/ / .W1k¤
i .Xi ;U1; µ/; : : : ;WN £

k¤
i .Xi ;UN ; µ //.

2. Conditionaldraw for W. Draw W from a Dirichlet.®.S/=

N C e1; : : : ; ®.S/=N C eN /, where ek is the number of
Ki variables equal to k.

3. Conditional draw for U. Let fK¤
1 ; : : : ;K¤

n0
g denote the

unique set of Ki values. For each k =2 fK¤
1 ; : : : ; K¤

n0
g,

draw Uk from the density proportional to

H .du/ exp

»
¡

®.S/

N
log

¡
1 C ¯.u/f .u; µ/

¢¼
:

Draw UK¤
j
, for j D 1; : : : ; n0 , from the density propor-

tional to

H .du/ exp

»
¡

®.S/

N
log

¡
1 C ¯.u/f .u; µ/

¢¼

£
Y

fi : KiDK¤
j
g
k¤

i .Xi ;u; µ/:

4. Conditional draw for µ . Draw µ from the density propor-
tional to

¼.dµ/DN .u; µ/

nY

iD1

k¤
i

¡
Xi ; uKi

; µ
¢
:

5. Conditional draw for ¹. Setting ºi D UKi gives the draw
for .V; U; µ /. Now to get a draw for g.V;¹; µ /, draw ¹

according to

¹.¢/ D
NX

kD1

Gk¯¤.Uk ; µ/±Uk
.¢/;

where Gk are independent gamma.®.S/=N C ek/ vari-
ables. Note that this draw is exact due to the use of the
weighted gamma approximation for the prior.

4.2 Computations for Spatial Poisson Processes

To illustrate the blocked Gibbs sampler, we look at a sim-
ulation study with spatial data drawn from a Poisson process
PRM.3/ of the type discussed in Section 2.3. The method can
be applied to proportional intensity models like (9) and also to
more complex forms, such as the nonproportional models as-
sociated with kernels of the form (10). We consider a spatial
model with an intensity of the form (10) de� ned by

3.dxj¹; µ/ D ´.dx/

Z

S
k0.x; º; µ/¹.dº/:

For brevity, we consider a setting without covariates. Adding a
regression parameter, however, poses no dif� culty and in fact
proceeds in the same way as the draw for µ .

We simulated one realization from a bivariate Poisson
process. We took X D S D <2. For the kernel, we used a scaled
bivariate normal density,

k0.x; º; µ/ D 1
2¼µ2

exp

³
µ1 ¡ 1

2µ2
.x ¡ º/T .x ¡ º/

´
;

where ´.dx/, the dominating measure for k0.¢;º; µ /, is
Lebesgue measure on <2. Here µ D .µ1; µ2/ 2 < £< C, with
µ1 representing a scaling term and µ2 representing a positive
bandwidth value, or dispersion parameter. The parameter µ1 is
in fact related to the number of values obtained in the Poisson
process realization. A similar scaling effect could also be ob-
tained by using a weighted gamma process prior with a shape
parameter ¯µ depending on µ1. It is a matter of convenience
how one speci� es this.

We took the true measure ¹0 to be a three-pointbivariate nor-
mal mixture distribution, ¹0.dº/ D

P3
j D1 pj Á.º; Mj ; ¿j / dº,

where

Á.º; M; µ2/ D 1
2¼µ2

exp

³
¡ 1

2µ2
.º ¡ M/T .º ¡ M/

´
;

for º;M 2 <2

(see Fig. 2 for details).
For priors, we used ®.¢/ D H .¢/, where H is a bivariate

N.0; ¿®I/ distribution with ¿® D 104. For the scale parame-
ter ¯ , we took ¯.º/ D C¯Á.º; 0; ¿¯/, a bivariate N.0; ¿¯I/
density scaled by its normalizing constant C¯ D 2¼¿¯ , where
¿¯ D 104 is selected to be large to make ¯ � at. For µ1, we used
a � at N.0; 10/ prior, and for 1=µ2, we used a noninformative
gamma.:01; :01/ prior. For these choices, we have

DN .u; µ/ D
NY

kD1

¡
1 C exp.µ1/C¯ Á.uk;0; ¿¯/

¢¡1=N

and

k¤
i .Xi;º i; µ / D ¯¤.º i ; µ/k0.Xi ;ºi ; µ/

D
exp.µ1/C¯Á.º i ;0; ¿¯/

1 C exp.µ1/C¯Á.º i ;0; ¿¯/
Á.Xi ;º i; µ2/:

Each draw in the blocked Gibbs sampler can be done exactly
in this setting except for the draws for U and µ , which were im-
plemented using Metropolis–Hastings. For example, the condi-
tional draw for µ has density

¼.dµ1/ exp.nµ1/

£

NY

kD1

¡
1 C exp.µ1/C¯Á.uk;0; ¿¯/

¢¡.nkC1=N/

£ ¼.dµ2/

nY

iD1

Á
¡
Xi ;uKi

; µ2
¢
:

Note that µ2 has a gamma prior, so it can be drawn exactly,

µ¡1
2 » gamma

Á
:01 C n; :01 C 1

2

nX

iD1

¡
Xi ¡ uKi

¢T ¡
Xi ¡ uKi

¢
!

:

For the draw for µ1, we used random-walk Metropolis–Hastings.
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(a) (b)

Figure 2. (a) Perspective Plot and (b) Contour Plot for Simulated Poisson Spatial Data X1, : : :, Xn (n D 144). For the measure ¹0, we used a
three-point bivariate normal mixture with means M1 D (0, 0) 0, M 2 D (4, 4) 0, and M3 D (¡3, 3) 0 and covariance matrices ¿ jI, where ¿ 1 D 1, ¿ 2 D .5,
and ¿ 3 D .5. The three components were weighted by p1 D .2, p2 D .4, and p3 D .4. We took µ1 D 5 and µ2 D 1 for the scale and bandwidth
parameters. Note that the dots superimposed on the contour plot are values for the data.

The results are given in Figures 3 and 4. Estimates are based
on 5;000 sampled values after a 2;500-iteration burn-in. We
used an approximation level of N D 50 in specifying the ap-
proximate weighted gamma prior. (We also tried larger values,
with little difference.) Figure 3 shows the estimated posterior
mean for ¹0, computed by averaging the measure

¹.¢/ D
NX

kD1

Gk¯¤.Uk ; µ/±Uk
.¢/

obtained in step 5 of the blocked Gibbs algorithm. The � gure
shows that the posterior is accurately recovering ¹0. The pos-
terior values for µ in Figure 4 also show that both µ1 and µ2 are
well estimated.

5. PANEL COUNT DATA

As mentioned in Section 2.4, only some slight modi� cations
are needed to handle problems involvingconditionallyindepen-
dent nonhomogeneous Poisson processes. In Section 2.4 we
discussed recurrent event data. In this section we consider a
slightly more complex data setting in which exact times for
events are unobserved. In this setup, we have n independent
subjects, each observed several times during a study. The num-
ber of observations and observation times can vary for each in-
dividual. At an observation time, only the number of events up
to that time is recorded for a subject, with the exact times for
events unknown. This is slightly different than the setting dis-
cussed in Section 2.4, although the goal is similar in that we
wish to estimate the underlying counting process. These kinds

(a) (b)

Figure 3. (a) Perspective Plot and (b) Contour Plot for the posterior Mean of ¹. Estimate based on the blocked Gibbs sampler using 5,000 values
after a 2,500-iteration burn-in. Dots in the contour plot are observed data values.
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(a) (b)

Figure 4. Posterior Values for (a) µ1 and (b) µ2 From the Blocked Gibbs Sampler. The thin-dashed lines indicate median values; the thick-dashed
lines are true values used in simulation of the data.

of data are often called “panel count” data and are found in
many scienti� c settings. Data where only one event is recorded
per subject are commonly called “interval censored” data. (See
Kalb� eish and Lawless 1985 and Sun and Kalb� eish 1995 for
more background.)

Let Xi;j represent the data, where i D 1; : : : ; n is the index
for subjects and j D 1; : : : ; Ji indexes the observation times
Ti;j for subject i . The data comprise the observation times Ti;j

as well as the number of events Ni;j up to time Ti;j . Thus
Xi;j D .Ti;j ;Ni;j /. Wellner and Zhang (2000) discussed the use
of a nonhomogeneous Poisson process for modeling such data.
If 3.t/ is the cumulative mean intensity of the process, then the
complete likelihood that they considered is

nY

iD1

JiY

jD1

¡
3.Ti;j / ¡ 3.Ti;j¡1/

¢ni;j

£ exp
©
¡

¡
3.Ti;j / ¡ 3.Ti;j¡1/

¢ª
;

where ni;j D Ni;j ¡ Ni;j¡1 . (Note that Ti;0 D Ni;0 D 0.)
We use a kernel-smoothed version of this model, which will

allow us to recover 3 as well as the intensity (a unique feature
not addressed by Wellner and Zhang). In our smoothed version
we model the cumulative intensity as the mixture

3.t j¹/ D
Z

S

Z t

0
k0.s; º/ ds ¹.dº/;

for some prespeci� ed kernel k0. De� ne F by F .Ajº/ DR
A k0.s; º/ ds for each Borel-measurable set A. Let Ai;j D

.Ti;j¡1; Ti;j ] and Ai D .0; Ti;Ji ]. The likelihood is

L .¹/ D exp

(

¡
nX

iD1

Z

S

Z 1

0
Yi.t/F .dt jº/ ¹.dº/

)

£

nY

iD1

JiY

j D1

ni;jY

lD1

Z

S
F .Ai;j jºi;j;l/¹.dºi;j;l/; (26)

where Yi.t/ D I ft 2 Aig.

5.1 Posterior Characterization for Panel Count Data

Write v for the vector of missing values fvi;j;lg. The posterior
for the likelihood (26) under a G .¢j®;¯/ prior can be addressed
using theorem 3 of James (2003). For any integrable function
g.v;¹/, the posterior for (26) is characterized by
Z

g.v; ¹/¼.dv; d¹jX/

D
Z Z

g.v; ¹/ G .d¹j® C
X

i;j;l

±ºi;j;l
;¯¤/¼.dvjX/; (27)

where

¼.dvjX/ / m0.dv/

nY

iD1

JiY

jD1

ni;jY

lD1

¯¤.ºi;j;l/F .Ai;j jºi;j;l/ (28)

and

¯¤.º/ D ¯.º/
.Á

1 C ¯.º/

nX

iD1

F .Aijº/

!
:

5.2 Panel Count Data via Pólya Urns

The appearance of the Pólya urn density

m0.dv/ D
Z nY

iD1

JiY

jD1

ni;jY

lD1

P.dºi;j;l /P.dP j®/

in (28) is again our signal that we can use a Dirichlet process
approach to compute the posterior. Here we describe a Pólya
urn Gibbs sampler, similar to that in Section 3. Let v¡ij l denote
the subvector of v with the value for ºi;j;l removed. Write H .¢/
for the distribution ®.¢/=®.S/.

1. To draw V from (28), cycle throughdraws for ºi;j;l , where
ºi;j;l has conditionaldensity

¼.dºi;j;ljv¡ij l; X/ D `0¸i;j;l.dºi;j;l/ C
mX

kD1

`k±º¤
k
.dºi;j;l/;
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where ¸i;j;l.dº/ / ¯¤.º/F .Ai;j jº/H .dº/,

`0 D
®.S/

C

Z

S
¯¤.º/F .Ai;j jº/H .dº/;

and

`k D
ek

C
¯¤.º¤

k /F .Ai;j jº¤
k /:

Here C is a normalizing constant chosen to ensure thatPm
kD0 `k D 1 and fº¤

1 ; : : : ; º¤
mg represents the set of m

unique values of v¡ij l , with each value º¤
k occurring with

frequency ek .

Remark 6. The draws for V from the Pólya urn Gibbs sam-
pler can be used to estimate the intensity. For example, the pos-
terior mean E.3.t j¹/jX/ equals E.g.V/jX/, where

g.v/ D ®.S/

Z

S
¯¤.º/F .[0; t]jº/H .dº/

C
mX

kD1

ek¯¤.º¤
k /F .[0; t]jº¤

k /;

and fº¤
1 ; : : : ; º¤

mg represents the set of m unique values of v.
Thus, averaging g.V/ over different draws for V provides an
estimate for E.3.t j¹/jX/.

5.3 Blocked Gibbs Sampling

The blocked Gibbs sampler of Section 4 can also be applied
to this problem with suitable modi� cation. In problems like this
involving large numbers of missing variables, we tend to prefer
its use over the Pólya urn sampler. This is because the counting
needed to keep track of the different uniquevalues and frequen-
cies of all of the missing variables becomes quite challenging
when using the Pólya urn approach.The blocked Gibbs sampler
avoids these problems.

As before, let ®N .¢/ D ®.S/
PN

kD1 ±Uk
.¢/=N , where Uk are

iid from H .¢/ D ®.¢/=®.S/. Approximate (27) by
Z

g.v; ¹/¼.dv; d¹jX/

¼
Z Z

g.v; ¹/ G
³

d¹j®N C
X

i;j;l

±ºi;j;l
;¯¤

´
¼N .dv; dujX/;

¼N .dv; dujX/ / m0;N.dvju/H N .du/

£

nY

iD1

JiY

j D1

ni;jY

lD1

¯¤.ºi;j;l/F .Ai;j jºi;j;l/; (29)

where m0;N.dvju/ is the Pólya urn density for P.¢j®N /.
Now augment the parameter space by using the construc-

tion (24) for P and using classi� cation variables Ki;j;l simi-
lar to (25) such that ºi;j;l D UKi;j;l . Thus, instead of drawing
from (29), we draw .K; W; U/ from the density proportional to

¼w.dW/H N .dU/

nY

iD1

JiY

jD1

ni;jY

lD1

Á
NX

kD1

Wk±k .dKi;j;l/

!

£ ¯¤¡
UKi;j;l

¢
F

¡
Ai;j jUKi;j;l

¢
: (30)

Sampling from this follows the same strategy discussed in Sec-
tion 4.1.

Remark 7. Another way to approximate (27) is by using
a stick-breaking approximation to the Dirichlet process. It is
well known that there exists an in� nite sequence of stick-
breaking random weights fWkg, independent of fUkg, such that
P .¢/ D

P1
kD1 Wk±Uk

.¢/ has a Dirichlet process law P.¢j®/.
(See Ishwaran and James 2001 for more background on stick-
breaking constructions.) Now it follows that if one takes T to
be a gamma.®.S// random variable, such that T is indepen-
dent of fUk;Wkg, then T £ P .¢/ is a gamma process, °®.¢/.
This follows from work of McCloskey (1965) as stated in the-
orem 1.1 of Perman, Pitman, and Yor (1992). As was shown
by Ishwaran and James (2001, sec. 3.2), the Dirichlet process
can be accurately approximated by a truncation approximation
PN .¢/ D

PN
kD1 Wk±Uk .¢/. [The total variation distance between

the two processes is order exp.¡.N ¡ 1/=®/, an exponentially
decreasing value in N .] Thus it follows that T £ PN .¢/ is an
approximation to a gamma process °®.¢/. This is a new type
of approximation for the gamma process that has not been dis-
cussed in the literature.

We apply this approximation to (27) in two ways. In the
� rst approximation, we replace G .d¹j® C

P
i;j;l ±ºi;j;l

;¯¤/

by its stick-breaking approximation. A draw from G .d¹j® CP
i;j;l ±ºi;j;l

;¯¤/ is of the form

¹.¢/ C
mX

kD1

G¤
k¯¤.º¤

k /±º¤
k
.¢/;

where G¤
k are independent gamma.ek/ variables and ¹ is a

weighted gamma process characterized by

¹.A/ D
Z

A

¯.º/°®.dº/:

The approximation simply replaces °® , which is T £ P , with
T £ PN . As mentioned earlier, replacing P with PN is ex-
ponentially accurate. Consequently, to draw an approximate
value from G .d¹j® C

P
i;j;l ±ºi;j;l

;¯¤/, we simulate T and
fUk;Wk :k D 1; : : : ; Ng and fG¤

k :k D 1; : : : ;mg independently
and draw a value from

T

NX

kD1

Wk¯¤.Uk/±Uk
.¢/ C

mX

kD1

G¤
k¯¤.º¤

k /±º¤
k
.¢/:

The second approximation to (27) involves approximating
¼.dvjX/ by

¼N .dvjX/ / mN .dv/

nY

iD1

JiY

jD1

ni;jY

lD1

¯¤.ºi;j;l/F .Ai;j jºi;j;l/;

where

mN .dv/ D
Z Y

i;j;l

PN .dºi;j;l/P.dPN /:

Justi� cation for this again follows because PN is an exponen-
tially accurate approximation to P.¢j®/. Augmenting the para-
meter space to include the stick-breaking construction for PN

will lead to a blocked Gibbs sampling method similar to (30),
but now based on stick-breaking weights.
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5.4 Multiple Tumor Recurrence

To illustrate our Bayesian approach, we reanalyze data from
a bladder tumor study consideredby Wellner and Zhang (2000).
This dataset was originally used by Andrews and Herzberg
(1985, table 45.1) and was collected from a randomized clinical
trial comprising patients with super� cial bladder tumors. Pa-
tients were randomized to three treatments: placebo, treatment
by pyridoxine, and treatment by a chemotherapeutic agent,
thiotepa.Patients in the study were followed up. At each follow-
up visit, any tumors noticed were counted and removed, the
follow-up time was recorded, and treatment was then contin-
ued. Follow-up times and the number of follow-up visits varied
among the patients.

As was done by Wellner and Zhang (2000), we focused on
the analysis of tumor counts, which we modeled using the dis-
cussed nonhomogeneous Poisson process method. The poste-
rior was sampled using the blocked Gibbs sampler outlined in
the previous section. For a kernel, we used k0.t; º/ D I fº · tg,
although other kernels can be used with little modi� cation. We
set S D [0; T ], where T D maxfT1;J1 ; : : : ; Tn;Jn

g. We used a
� at prior by setting ¯.v/ D ¯0 with ¯0 D 105. We also took
®.¢/ D ®0H.¢/, for H a uniform distribution on S and ®0 > 0.

(a)

(b)

Figure 5. Posterior Means for (a) Cumulative Intensity 3(t|¹) From
Tumor Recurrence Data Using ®0 D 1 and (b) 3(t|¹) Using ®0 D 10
(— placebo; ¢ ¢ ¢ ¢ ¢pyridoxine; - - - thiotepa). Error bars superimposed on
plots are mean values plus or minus 1 standard deviation.

With these choices, the draws for K; W, and U are all straight-
forward.

We can estimate the posterior intensity 3.t j¹/ from the sam-
pled values similar to Remark 6. For example, the posterior
mean E.3.t j¹/jX/ can be estimated by averaging

g.v/ D
®0

N

NX

kD1

¯¤.Uk/F .[0; t]jUk/ C
mX

kD1

ek¯¤.º¤
k /F .[0; t]jº¤

k /

over V and U, where fº¤
1 ; : : : ; º¤

mg represents the set of m unique
valuesof V and Uk are iid H . Observe that ¯¤.º/F .[0; t]jº/ has
a fairly simple expression,

¯¤.º/F .[0; t]jº/ D .t ¡ º/I fº · tg
¯¡1

0 C
Pn

iD1.Ti;Ji
¡ º/I fº · Ti;Ji

g
:

Estimates for the posterior mean and standard deviation
of 3.t j¹/ using this method are shown in Figure 5. These are
based on a weighted gamma prior approximationwith N D 50.
The plots are calculated from 3;000 sampled values after a
2;500-iteration burn-in. Figure 5(a) was calculated based on a
value of ®0 D 1, whereas Figure 5(b) used ®0 D 10. Both plots
clearly show that the thiotepa treatment is the most effective in
reducing tumor recurrence. The pyridoxine treatment seems to
offer only a slight improvement over placebo, although there
is substantially higher variability. Note that varying ®0 (which
acts as a smoothing parameter) had little effect on estimates
excepting for pyridoxine. The slight difference seen for pyri-
doxine might be due to its larger variability.

APPENDIX A: PROOF OF THEOREM 1

Proof of part (a) follows by noting that for a � xed u D .u1; : : : ; uN /,
G .¢j®N ;¯/ is a weighted gamma process with shape ®N and scale ¯ .
Thus G .¢j®N ;¯/ is characterized by

¹.A/ D
Z

A
¯.º/»N .dº/;

where »N is a gamma process with shape parameter ®N . Now allow u
to be random to obtain (a). To prove part (b), observe that the Laplace
functional of G .¢j®; ¯/ is

L.g/ D
Z

exp

»
¡

Z
g.º/¹.dº/

¼
G .d¹j®; ¯/

D exp

»
¡

Z
log

¡
1 C ¯.º/g.º/

¢
®.dº/

¼
;

for g > 0 a bounded continuous function (see, e.g., Lo 1982). Mean-
while, for a � xed u, the Laplace functional for G N;¯ is

LN .g/ D exp

(
¡®.S/

N

NX

kD1

log
¡
1 C ¯.uk/g.uk /

¢
)

:

By the law of large numbers, LN .g/ converges to L.g/ for al-
most all u sequences. Thus, by the dominated convergence theo-

rem, E.LN .g// ! L.g/, which implies G N;¯ .¢/ d) G .¢j®;¯/ as the
Laplace functional uniquely characterizes the law.
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APPENDIX B: COX PÓLYA URN DETAILS

Using a rectangularkernel leads to several simpli� cations when im-
plementing the Cox Pólya urn Gibbs sampler. First, consider the draw

from the density ¸i .dº/. Let fi .º/ D
R Ti

0 k0.t ; º/ dt . Then

fi .º/ D
¡
º C ¿ ¡ max.0; º ¡ ¿ /

¢
I fº < Ti ¡ ¿g

C
¡
Ti ¡ max.0; º ¡ ¿/

¢
k0.Ti ; º/; 0 · º · 1:

Although fi .º/ may look complicated, it is in fact a simple piece-
wise function with a maximum of three in� ection points occurring at
f¿;Ti ¡ ¿; Ti C ¿ g. Consequently,

f .º; µ/ D
nCmX

iD1

exp.µT Zi /

Z Ti

0
k0.t; º/ dt D

nCmX

iD1

exp.µT Zi /fi .º/

is a piecewise linear function in º, so we can write f .º;µ / DPK
jD1 Ãj;µ .º/ as a sum of piecewise linear functions. Each func-

tion Ãj;µ has a slope bj;µ and is equal to 0 except over the interval
Ij D [tj;L; tj;U ], where the fIj g’s are constructed to form a partition
of [0; 1]. An important point here is that the intervals fIj g depend only
on the values f¿; Ti ¡ ¿; Ti C ¿g. Thus Ãj;µ and f .º;µ / can be easily
computed for different values of º and µ .

Now to draw from ¸i .dº/ in (20), we need merely draw a value
from the density proportional to

k0.Ti ; º/ dº

¯¡1
0 C f .º;µ /

D
X

j2I.i/

I fjTi ¡ ºj · ¿g dº

¯¡1
0 C Ãj;µ .º/

;

where I.i/ corresponds to the indices j for intervals Ij that inter-
sect Ai D fº : jTi ¡ ºj · ¿g. It is straightforward to sample exactly
from this. Suppose that I.i/ D fi1; : : : ; img. Draw an ik from I.i/ with
probability °ik =

Pm
jD1 °ij , where

°ik D
Z

Iik

k0.Ti ; º/ dº

¯¡1
0 C f .º;µ /

D
Z

I fº 2 Iik \ Ai gdº

¯¡1
0 C Ãik ;µ .º/

:

Note that because Ãik ;µ is linear, this can be computed in closed form.
To complete the draw for º, sample º from °

¡1
ik

I fº 2 Iik \ Ai g=
.¯¡1

0 C Ãik ;µ .º//.
Meanwhile, the value for D.µ/ needed to draw µ can be computed

explicitly. In particular, deduce that (21) equals

exp

(
¡®0

KX

jD1

Z tj;U

tj;L

log
¡
1 C ¯0Ãj;µ .º/

¢
dº

)

D exp

(

®0
¡
1 ¡ log.¯0/

¢

¡ ®0

KX

jD1

µ
.¯¡1

0 C Ãj;µ .º//

bj;µ
log

¡
¯¡1

0 C Ãj;µ .º/
¢¶tj;U

tj;L

)

:

Remark B.1. A more ef� cient method for drawing º from ¸i.dº/

uses the fact that 1=.¯¡1
0 CÃj;µ .º// is convex and has a very tight lin-

ear envelope function, say gj;µ . Each gj;µ is a linear function over an
interval Ij with slope cj;µ and intercept aj;µ . From this, it is straight-
forward to develop an ef� cient rejection sampling scheme to simulate
values from ¸i .dº/.

Remark B.2. Recall that to accelerate the Pólya Gibbs sampler, we
need to resample the unique values for v according to (17). So, for
example, to draw º¤

j , we must draw from the density proportional to

1

.¯¡1
0 C f .º¤

j ; µ//ej

Y

i2Cj

I fTi ¡ ¿ · º¤
j · Ti C ¿g:

If I¤ is the set of indices of the intervals for the indicator func-
tions on the right side, then the density of interest is proportional toP

k2I¤.¯
¡1
0 C Ãk;µ .º¤

j //¡ej . This can be sampled using the same
methods just outlined.

[Received September 2002. Revised October 2003.]
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