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Discussion
Hemant ISHWARAN and J. Sunil RAO

In reading the two articles written by Hjort and Claeskens,
readers will � nd several important and fundamental topics in
statistics discussed, including model selection, inference af-
ter model selection (post–model selection), and the notion of
model averaging (from both frequentist and Bayesian perspec-
tives). Without a doubt the authors have selected a wide range
of ambitious topics to study in their work, and ones, we should
add, that are very likely to create a lively set of discussions! We
thank the editor, Francisco Samaniego, and the other members
of the editorial staff for giving us the opportunity to comment
on these interesting papers.

At the heart of Claeskens and Hjort’s approach is the clever
idea of a local asymptotic misspeci� cation framework. The au-
thors ask the following question: If we have a parametric model
involving a parameter of interest µ 2 <p and a “nuisance” pa-
rameter ° 2 <q , what is the effect on inference for µ when ° is
subjected to some kind of selection procedure? To study this
question, the authors look at the asymptotic limiting distribu-
tion for restricted maximum likelihood estimators (or model-
averaged estimators) under a changing sequence of alternative
models for ° (the local misspeci� cation framework). These
limits are then used to determine asymptotic mean squared er-
ror performance, which can then be used to decide between es-
timators. Lower mean squared error performance translates into
a form of robustness to misspeci� cation. This whole approach
is not restricted to just estimating .µ ;° / but is more generally
discussed in terms of some functional¹.µ; ° /, the so-called fo-
cused parameter.

1. DOES THE LOCAL MISSPECIFICATION
FRAMEWORK REALLY ADDRESS VARIABLE

SELECTION PROBLEMS?

One way to view the local asymptotic framework is that it
is a method for mimicking the effects of model uncertainty.
Model uncertainty here represents the excess variance incurred
when choosing among a set of parameters whose values are not
known a priori. The local asymptotics framework is certainly
well poised to address this issue. However, although we feel
that the method is well motivated in most examples considered
in the two articles, our concern is that the method is not being
appropriately applied in the examples concerned with variable
selection.As we will argue, these examplesonly look at settings
when all the true nonzero regression parameters have been in-
cluded in the model and when model selection is restricted to
the zero coef� cients. To us this is not a realistic subset selection
problem.

A concrete example will illustrate our point. Suppose we
have the usual linear regression setup where we are given n
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independent responses Yi , with corresponding K-dimensional
covariates xi . The problem is to � nd the subset of covariate pa-
rameters from ¯ D .¯1; : : : ; ¯K/t that are nonzero where it is
assumed that

Yi D xt
i¯ C ²i; i D 1; : : : ; n; (1)

and ²i are independent random variables such that E.²i / D 0
and E.²i/ D ¾ 2. For our later discussion we will not need to
make any distributionalassumptions for ²i , but for the moment
let us suppose that ²i are normally distributed. Then, due to
the assumption of normality, the maximum likelihoodestimator
is the OLS (ordinary least squares) estimator. Thus, restricted
maximum likelihood estimation corresponds to restricted OLS.
That is, the general submodel estimator O¹S D ¹. OµS ; O° S;° 0;Sc/

will depend on the restricted OLS estimator for ¯ . Conse-
quently, to understand how the theory applies, we can consider
how it applies to the OLS and restricted OLS.

Let us identify what .µ; ° / and .µ 0;° 0/ are in this problem
and what the misspeci� cation framework is (we will ignore the
parameter ¾ 2 as it plays a limited role in this argument). First
notice that the true value ° 0 of ° must be some � xed known
value (otherwise one could not compute O¹S , as this requires
knowing the value ° 0;Sc ). A nonzero value would be associated
with some kind of offset value, which is of limited interest in
a variable selection setting, which leaves the only other pos-
sibility, ° 0 D 0q , where 0q is the q-dimensional vector whose
coordinates all equal 0 (we will show shortly that there is an-
other important reason ° 0 must be zero). So because ° 0 D 0q ,
this means that µ0 , the true value for µ , contains all the nonzero
coef� cients of the model (and possibly some that are 0). As the
misspeci� cation framework looks at models whose ° parame-
ters are perturbed around ° 0, this means that we are interested
in the asymptotics of the restricted OLS estimator under mis-
speci� ed models of the form

fi;true.yjxi/ D Á.Yi jxt
i¯n; ¾ 2/;

where Á.¢jm;¾ 2/ denotes a normal density with mean m and
variance ¾ 2 and

¯n D .µ t
n;° t

n/t D .µ t
0; ±t =

p
n /t ; where ± 2 <q :

Observe that because we are perturbing ° around ° 0 D 0q and
because µ 0 contains all the nonzero coef� cients of ¯ , the mis-
speci� cation framework implies we are studying the effect of
model uncertainty when we have speci�ed a model that in-
cludes all the nonzero coef� cients in the model and subset se-
lection is over the zero coef� cients. This seems unnatural for
the following reasons: (a) Why should subset selection be re-
stricted to coef� cients known to be 0? (b) It requires that one is
lucky enough to have not underestimated the model.
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2. THE ASYMPTOTICS CAN BREAK DOWN

Why does the misspeci� cation framework require that
° 0 D 0q ? The answer turns out to be quite simple. If one mis-
speci� es the model by excluding a nonzero coef� cient of ¯ ,
then one cannot obtain a proper limiting distribution in general,
and thus the whole idea of looking at the limiting distribution to
quantify the effect of model uncertaintywill fail. Note that these
problems are not at all speci� c to the linear regression setup.
They apply to generalized linear models, such as the Poisson
and logistic regression models illustrated in the articles, for all
the same reasons.

Here is a more formal way to see this in the context of our lin-
ear regression example. Let ¯ D .µ t

0;° t
0/t . To keep the notation

simple, we will consider only nested subsets S of the form

?; f1g; f1; 2g; : : :; f1;2; : : :; qg:

By the notation S D f1;2; : : : ; lg we mean that the restricted
estimator Ō

S is computed from the restricted OLS based on the
� rst k D p C l coef� cients, where l D 0; 1; : : : ; q (the null set ?
corresponds to l D 0 and k D p). More formally, rewrite (1)
as Y D X¯ C ² , where X is the n £ K design matrix (K D
p C q) and Y D .Y1; : : : ; Yn/t and ² D .²1; : : : ; ²n/t . Then the
restricted estimator based on S D f1; 2; : : : ; lg is

Ō
S D

¡ Ō [k]t ;0t
q¡l

¢t
; (2)

where Ō [k] D .X[k]tX[k]/¡1X[k]t Y and X[k] is the n £ k ma-
trix composed of the � rst k columns of X. The estimator (2) as-
sumes that ° 0 D 0q . In general, if ° 0 is nonzero, the restricted
estimator is

Ō
S D

¡ Ō [k]t ;° 0[¡l]t
¢t

;

where ° 0[¡l] D .°0;lC1; : : : ; °0;q/t .
Now we show why it is necessary to assume that ° 0 is zero.

Let ¯[k] D .¯1; : : : ; ¯k/t and ¯[¡k] D .¯kC1; : : : ; ¯K /t . Some
simple algebra shows that

Ō [k] D ¯[k] C .X[k]t X[k]/¡1X[k]tX[¡k]¯[¡k]

C .X[k]tX[k]/¡1X[k]t ²;

where X[¡k] refers to the n £ .K ¡ k/ matrix formed by ex-
cluding the � rst k columns of X. So far we have assumed that
²i are normally distributed. However, the following argument
will hold without this condition.Hereafter we will assume only
that ²i are independent random variables such that E.²i/ D 0,
E.²i/ D ¾ 2 , and E.²4

i / · M for some M < 1. We also need
the following mild conditions for the covariates:

max
1·i·n

kxik=
p

n ! 0 and Xt X=n ! Q;

where Q is positivede� nite and k¢ k denotes the `2 norm. Under
these conditionsone can show that

Ō [k] D ¯[k] C Q¡1[k : k]Q[k : ¡k]¯[¡k]

C o.1/ C Op.n¡1=2/; (3)

where Q has been partitioned according to

Q D
³

Q[k : k] Q[k : ¡k]
Q[¡k : k] Q[¡k : ¡k]

´
:

(For example, Q[k : k] is the upper left k £ k submatrix of Q.)
The second term in (3), highlighted by the rectangular box, is
the culprit. It represents a bias term that in general does not
vanish. In fact, because Q is positive de� nite this term can
be zero only if Q D I or if Q[k : ¡k]¯[¡k] D 0k . Consider
the misspeci� ed model associated with ¯n D .µ t

n;° t
n/t , where

° n D ° 0 C ±=
p

n. Suppose that S D f1;2; : : : ; lg. Then, unless
Q D I or Q[k : ¡k]¯n[¡k] D O.1=

p
n /,

k
p

n. Ō
S ¡ ¯n/k ¸ k

p
n. Ō [k] ¡ ¯n[k]/k

p! 1:

Thus, the asymptotics will break down. Because ¯n[¡k] D
° n[¡l] one way to avoid this problem is to assume that
° n[¡l] D O.1=

p
n /, which implies that ° 0[¡l] D 0q¡l . Be-

cause l is arbitrary this implies that ° 0 D 0q .

Remark 1. Our argument shows this problem exists even if
µ is perturbed as suggested in Remark 4.1 of the “Frequentist
Model Average Estimators” article. Moreover, the same prob-
lems apply to the model-averaged estimators discussed in both
articles.

3. WHAT IS BETTER: FORWARD OR BACKWARD
STEPWISE REGRESSION?

The previous discussion does indicate, however, that the
local asymptotics framework may be applicable in the orthog-
onal linear regression setup without resorting to the assump-
tion that ° 0 D 0q . Perhaps the authors could comment on this
point? We will also consider the orthogonal case; however, we
will take a different approach by using a method introduced
by Pötscher (1991). This method is quite different from the
local asymptotics setup. Rather than looking at well-behavedp

n-asymptotic distributions, the idea is to consider the effects
of model selection under a procedure that is inconsistent. This
has the advantage that it will allow us to study focus parame-
ters ¹ that do not converge at a

p
n rate. It will also lend some

insight into a questionwe have always wonderedabout: namely,
is it better to use forward or backward stepwise regression? We
will give a brief outline of the argument in the context of nested
subset selection. For technical details, proofs, and a more ex-
tended discussion, see Ishwaran and Rao (2003).

For this result we assume that Xt X=n D I and that the coor-
dinates of ¯ have been ordered so that the � rst k0 coordinates
are the nonzero values. That is,

¯ D .¯1; : : : ; ¯k0; 0t
K¡k0

/t :

However, unlike the previous setup, the value for k0, the com-
plexity of the model, is assumed to be unknown (our only as-
sumption being that 1 · k0 · K ; previously it was assumed that
k0 · p where p was known). The complexity k0 will be our fo-
cus parameter ¹. Observe that ¹ is nondifferentiable.

Pötscher (1991), and more recently Leeb and Pötscher
(2003), studied the effects of selection bias from a backward
stepwise procedure. Let Ō D .Xt X/¡1Xt Y be the (unrestricted)
OLS estimator of ¯ and let O¾ 2

n D kY ¡ X Ō k2=.n ¡ K/ be the
unbiased estimator for ¾ 2 based on the full model. To test
whether Ōk, the kth coef� cient of the OLS, is 0, de� ne the fol-
lowing test statistic:

Zk;n D
p

n Ōk
O¾n

:
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Let ®1; : : : ; ®K be a sequence of � xed positive ®-signi� cance
values for the Zk;n test statistics. Let z®=2 be the 100£ .1¡®=2/

percentile of a standard normal distribution. Estimate the true
complexity k0 by the estimator OkB , where

OkB D max
©
k : jZk;nj ¸ z®k =2; k D 0; : : : ; K

ª
;

and where, to ensure that OkB is well de� ned, we take Z0;n D 0
and z®0=2 D 0. Observe that if OkB D k, then Zk;n is the � rst
test statistic starting from k D K and going to k D 0 such that
jZk;nj ¸ z®k=2 and jZj;nj < z®j =2 for j D k C 1; : : : ;K . This
corresponds to accepting the event f¯ :¯kC1 D 0; : : : ; ¯K D 0g
but rejecting f¯ :¯k D 0; : : : ; ¯K D 0g. The post-model selec-
tion estimator for ¯ is

Ō
B D 0KIf OkB D 0g C

KX

kD1

¡ Ō [k]t ; 0t
K¡k

¢t If OkB D kg; (4)

where I.¢/ is the indicator function. It should be clear that OkB

and Ō
B are derived from a backward stepwise mechanism.

A forward stepwise procedurecan be de� ned in an analogous
way. De� ne

OkF D min
©
k ¡ 1 : jZk;nj < z®k =2; k D 1; : : : ;K C 1

ª
;

where ZKC1;n D 0 and ®KC1 D 0 are chosen to ensure a well-
de� ned procedure. Observe that if OkF D k ¡ 1, then Zk;n is
the � rst test statistic such that jZk;nj < z®k=2 and jZj;nj ¸
z®j =2 for j D 1; : : : ; k ¡ 1. This corresponds to accepting the
event f¯ : ¯1 6D 0; : : : ; ¯k¡1 6D 0g but rejecting f¯ :¯1 6D 0; : : : ;

¯k 6D 0g. Note that OkF D 0 if jZ1;nj < z®1=2. The post-model
selection estimator Ō

F derived from OkF is de� ned analogously
to (4).

We now state some asymptotic properties of OkB and OkF .
Part (a) of the following theorem is related to Lemma 4 of
Pötscher (1991).

Theorem 1 (Ishwaran and Rao, 2003). Assume that Xt X=

n D I and max1·i·n kxik=
p

n ! 0. Also assume that ²i are in-
dependentsuch that E.²i/ D 0, E.²2

i / D ¾ 2, and E.²4
i / · M for

some M < 1. Let kB and kF denote the limits for OkB and OkF ,
respectively, as n ! 1. For 1 · k · K ,

(a) PfkB D kg D 0 £ Ifk < k0g

C .1 ¡ ®k0C1/ ¢ ¢ ¢.1 ¡ ®K /Ifk D k0g

C ®k.1 ¡ ®kC1/ ¢ ¢ ¢.1 ¡ ®K /Ifk > k0g;

(b) PfkF D kg D 0 £ Ifk < k0g C .1 ¡ ®k0C1/Ifk D k0g

C .1 ¡ ®kC1/®k0C1 ¢ ¢ ¢®kIfk > k0g;

where ®KC1 D 0 in (b).

Theorem 1 can be used to assess the performance of the
two procedures. Suppose that ®k D ® > 0 for each k. Then
the limiting probability of correctly recovering the true com-
plexity is PfkF D k0g D .1 ¡ ®/ for forward stepwise, whereas
PfkB D k0g D .1 ¡ ®/K¡k0 for backward stepwise. Notice if
K ¡ k0 is large, this last probability can be approximated by
exp.¡.K ¡k0/®/, which becomes exponentiallysmall as K in-
creases. Simply put, backward stepwise can lead to models that

are much too large. To see visually the effect of model uncer-
tainty, consider Figure 1, which presents the limiting probabil-
ities for the two procedures under various choices of K and k0

(all � gures computed with ® D :10). One can clearly see how
much better the forward procedure is, especially as K becomes
larger.

(a)

(b)

(c)

Figure 1. Effect of Model Uncertainty Under Forward and Backward
Stepwise Regression. Limiting probabilities versus model dimension k
for k̂F (—) and k̂B (¢ ¢ ¢). In all cases ®k D .10. From top to bottom:
(a) K D 10, k0 D 5; (b) K D 25, k0 D 10; (c) K D 40, k0 D 10.
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Because of limited space we only mention the effects that
model uncertainty has on the performance of complexity esti-
mators, but it should be reasonably clear from Theorem 1 that
the post-model selection estimators Ō

B and Ō
F will have limit-

ing mixture distributions. A more detailed analysis can be then
be used to reveal the effect of selection bias due to model selec-
tion (Ishwaran and Rao 2003). For more on selection bias, see
Zhang (1992) and Leeb and Pötscher (2003).

4. CONCLUSIONS

Our major concern in this discussion has been that the lo-
cal misspeci� cation framework does not correctly capture the
essence of a true regression subset selection problem. This,
however, should not be interpreted as a criticism of the general
technique. Indeed, we are quite positive about local asymptotic
arguments, seeing them as a versatile theoretical tool for study-
ing the effects of model uncertainty. Hjort and Claeskens have
illustrated one useful way this technique can be used, but we
believe there are potentiallymany others. At least one other ex-
ample we are aware of was given by Bühlmann and Yu (2002),
who used a type of local misspeci� cation framework to study
bootstrap aggregation (or bagging) algorithms and their abil-
ity to sometimes reduce prediction error. This approach differs
slightlybecause it looks at predictionerror rather than a focused
parameter as the main criterion of interest, but there are still in-

teresting similarities. Bühlmann and Yu’s approach was to look
at the distribution of an estimator (what they called a predic-
tor) when perturbed around a � xed value. They then derived
the limiting mean squared error as the effect of the perturbation
vanishes at an O.1=

p
n / rate. In some cases they showed that

the corresponding risk is lower under a bagged version of the
estimator (a type of model-averaged estimator), thus showing
that model averaging can sometimes improve performance due
to its ability to handle model uncertainty (there called instabil-
ity).

We hope that the other discussants will indicate more exam-
ples where local asymptotics has been used. Clearly, this is an
interesting technique, and one that we expect will be explored
more in the future.
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Discussion
R. Dennis COOK and Lexin LI

1. INTRODUCTION

Claeskens and Hjort in their article “The Focused Infor-
mation Criterion” (hereinafter CH) have put forth an interest-
ing thesis, one that apparently breaks away from the some-
times con� ning methodology of the standard model selection
paradigms. Their articles work well on a number of levels:
new practically relevant ideas; fresh interpretations of standard
methodology, including model averaging; and a focus that in-
vites re� ection on the foundations of model/variable selection.
Their work will surely be the subject of much application and
elaboration in the future. We address the focused information
criterion in the following remarks.

To buy the Claeskens–Hjort focused paradigm, we must evi-
dently be comfortable with a number of ingredients, including
the following.

Known True Model. Similar to most model selection meth-
ods, the focused paradigm starts with a true model ftrue that is
known up to a � nite-dimensional parameter. In many analyses
ftrue will be unknown and must be built using the observed data
and prior information before addressing model selection. The
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St. Paul, MN 55108 (E-mail: dennis@stat.umn.edu). Lexin Li is Postdoctoral
Fellow, Medical School, University of California, Davis, CA 95616. Cook was
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process of building ftrue can be complex and dif� cult to char-
acterize, as CH mentioned in their Introduction. The focused
approach seems fully applicable to the degree that the model
building process can be parameterized � nitely; otherwise, there
may still be a substantial element of faith underlying applica-
tion of the focused criterion, just as there may be for current
model selection methodology. Assessing the quality of the � -
nal model is even more elusive when the methodology inter-
weaves model building and model selection.

Nesting. The focused criterion, like much current method-
ology, requires that all potential models be nested within the
true model. This could be an issue, depending on the applica-
tion. Consider the true normal linear model with mean func-
tion E.yjx; u/ D ¯0 C ¯1x C .±=

p
n /u and constant variance

function Var.yjx; u/ D ¾ 2 . The notation here follows CH’s
Section 4.2, so the intercept and x are protected and °0 D 0.
With ¹ D E.yjx0;u0/, we can now apply the CH machin-
ery to contrast the full model with E.yjx;u/ D ¯0 C ¯1x and
Var.yjx; u/ D ¾ 2 . However, this is not the only approach to
variable selection. If we wish to understandwhat happens in the
absence of u, then perhaps we should compare the full model to
the derived submodel that conditionsonly on x : E.yjx/ D ¯0 C
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