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Decision Tree: Introduction

A decision tree is a powerful method for classifica-
tion and prediction and for facilitating decision 
making in sequential decision problems. This 
entry considers three types of decision trees in 
some detail. The first is an algorithm for a recom-
mended course of action based on a sequence of 
information nodes; the second is classification and 
regression trees; and the third is survival trees.

Decision Trees

Often the medical decision maker will be faced with 
a sequential decision problem involving decisions 
that lead to different outcomes depending on 
chance. If the decision process involves many 
sequential decisions, then the decision problem 
becomes difficult to visualize and to implement. 
Decision trees are indispensable graphical tools in 
such settings. They allow for intuitive understand-
ing of the problem and can aid in decision making.

A decision tree is a graphical model describing 
decisions and their possible outcomes. Decision 
trees consist of three types of nodes (see Figure 1):

	 1.	 Decision node: Often represented by squares 
showing decisions that can be made. Lines 
emanating from a square show all distinct 
options available at a node.

	 2.	 Chance node: Often represented by circles 
showing chance outcomes. Chance outcomes 
are events that can occur but are outside the 
ability of the decision maker to control.

	 3.	 Terminal node: Often represented by triangles 
or by lines having no further decision nodes or 
chance nodes. Terminal nodes depict the final 
outcomes of the decision making process.

For example, a hospital performing esophagec-
tomies (surgical removal of all or part of the 
esophagus) for patients with esophageal cancer 
wishes to define a protocol for what constitutes an 
adequate lymphadenectomy in terms of total num-
ber of regional lymph nodes removed at surgery. 
The hospital believes that such a protocol should 
be guided by pathology (available to the surgeon 
prior to surgery). This information should include 

histopathologic cell type (squamous cell carcinoma 
or adenocarcinoma); histopathologic grade (a 
crude indicator of tumor biology); and depth of 
tumor invasion (PT classification). It is believed 
that number of nodes to be removed should 
increase with more deeply invasive tumors when 
histopathologic grade is poorly differentiated and 
that number of nodes differs by cell type.

The decision tree in this case is composed pre-
dominantly of chance outcomes, these being the 
results from pathology (cell type, grade, and tumor 
depth). The surgeon’s only decision is whether to 
perform the esophagectomy. If the decision is made 
to operate, then the surgeon follows this decision 
line on the graph, moving from left to right, using 
pathology data to eventually determine the termi-
nal node. The terminal node, or final outcome, is 
number of lymph nodes to be removed.

Decision trees can in some instances be used to 
make optimal decisions. To do so, the terminal 
nodes in the decision tree must be assigned termi-
nal values (sometimes called payoff values or end-
point values). For example, one approach is to 
assign values to each decision branch and chance 
branch and define a terminal value as the sum of 
branch values leading to it. Once terminal values 
are assigned, tree values are calculated by follow-
ing terminal values from right to left. To calculate 
the value of chance outcomes, multiply by their 
probability. The total for a chance node is the total 
of these values. To determine the value of a deci-
sion node, the cost of each option along each deci-
sion line is subtracted from the cost already 
calculated. This value represents the benefit of the 
decision.

Classification Trees

In many medical settings, the medical decision 
maker may not know what the decision rule is. 
Rather, he or she would like to discover the deci-
sion rule by using data. In such settings, decision 
trees are often referred to as classification trees. 
Classification trees apply to data where the y-value 
(outcome) is a classification label, such as the dis-
ease status of a patient, and the medical decision 
maker would like to construct a decision rule that 
predicts the outcome using x-variables (dependent 
variables) available in the data. Because the data 
set available is just one sample of the underlying 
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population, it is desirable to construct a decision 
rule that is accurate not only for the data at hand 
but over external data as well (i.e., the decision 
rule should have good prediction performance). At 
the same time, it is helpful to have a decision rule 
that is understandable. That is, it should not be so 
complex that the decision maker is left with a 
black box. Decision trees offer a reasonable way to 
resolve these two conflicting needs.

Background

The use of tree methods for classification has a 
history that dates back at least 40 years. Much of 
the early work emanated from the area of social 
sciences, starting in the late 1960s, and computa-
tional algorithms for automatic construction of 
classification trees began as early as the 1970s. 
Algorithms such as the THAID program devel-
oped at the Institute for Social Research, University 
of Michigan, laid the groundwork for recursive 
partitioning algorithms, the predominate algo-
rithm used by modern-day tree classifiers, such as 
Classification and Regression Tree (CART).

An Example

Classification trees are decision trees derived 
using recursive partitioning data algorithms that 
classify each incoming x-data point (case) into 
one of the class labels for the outcome. A classifi-
cation tree consists of three types of nodes (see 
Figure 2):

	 1.	 Root node: The top node of the tree comprising 
all the data.

	 2.	 Splitting node: A node that assigns data to a 
subgroup.

	 3.	 Terminal node: Final decision (outcome).

Figure 2 is a CART tree constructed using the 
breast cancer databases obtained from the 
University of Wisconsin Hospitals, Madison (avail-
able from http://archive.ics.uci.edu/ml). In total, 
the data comprise 699 patients classified as having 
either benign or malignant breast cancer. The goal 
here is to predict true disease status based on nine 
different variables collected from biopsy.
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Figure 1    Decision trees are graphical models for describing sequential decision problems.
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The first split of the tree (at the root node) is on 
the variable “unsize,” measuring uniformity of cell 
size. All patients having values less than 2.5 for 
this variable are assigned to the left node (the left 
daughter node); otherwise they are assigned to the 
right node (right daughter node). The left and right 
daughter nodes are then split (in this case, on the 
variable “unshape” for the right daughter node 
and on the variable “nuclei” for the left daughter 
node), and patients are assigned to subgroups 
defined by these splits. These nodes are then split, 
and the process is repeated recursively in a proce-
dure called recursive partitioning. When the tree 

construction is completed, terminal nodes are 
assigned class labels by majority voting (the class 
label with the largest frequency). Each patient in a 
given terminal node is assigned the predicted class 
label for that terminal node. For example, the left-
most terminal node in Figure 2 is assigned the class 
label “benign” because 416 of the 421 cases in the 
node have that label. Looking at Figure 2, one can 
see that voting heavily favors one class over the 
other for all terminal nodes, showing that the deci-
sion tree is accurately classifying the data. However, 
it is important to assess accuracy using external 
data sets or by using cross-validation as well.
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Figure 2    Classification tree for Wisconsin breast cancer data

Note: Light-shaded and dark-shaded barplots show frequency of data at each node for the two classes: benign (light shaded); 
malignant (dark shaded). Terminal nodes are classified by majority voting (i.e., assignment is made to the class label having the 
largest frequency). Labels in black given above a splitting node show how data are split depending on a given variable. In some 
cases, there are missing data, which are indicated by a question mark. 
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Recursive Partitioning

In general, recursive partitioning works as fol-
lows. The classification tree is grown starting at the 
root node, which is the top node of the tree, com-
prising all the data. The root node is split into two 
daughter nodes: a left and a right daughter node. 
In turn, each daughter node is split, with each split 
giving rise to left and right daughters. The process 
is repeated in a recursive fashion until the tree can-
not be partitioned further due to lack of data or 
some stopping criterion is reached, resulting in a 
collection of terminal nodes. The terminal nodes 
represent a partition of the predictor space into a 
collection of rectangular regions that do not over-
lap. It should be noted, though, that this partition 
may be quite different than what might be found 
by exhaustively searching over all partitions cor-
responding to the same number of terminal nodes. 
However, for many problems, exhaustive searches 
for globally optimal partitions (in the sense of pro-
ducing the most homogeneous leaves) are not com-
putationally feasible, and recursive partitioning 
represents an effective way of undertaking this task 
by using a one-step procedure instead.

A classification tree as described above is referred 
to as a binary recursive partitioned tree. Another 
type of recursively partitioned tree is multiway 
recursive partitioned tree. Rather than splitting the 
parent node into two daughter nodes, such trees 
use multiway splits that define multiple daughter 
nodes. However, there is little evidence that multi-
way splits produce better classifiers, and for this 
reason, as well as for their simplicity, binary recur-
sive partitioned trees are often favored.

Splitting Rules

The success of CART as a classifier can be 
largely attributed to the manner in which splits are 
formed in the tree construction. To define a good 
split, CART uses an impurity function to measure 
the decrease in tree impurity for a split. The purity 
of a tree is a measure of how similar observations 
in the leaves are to one another. The best split for 
a node is found by searching over all possible vari-
ables and all possible split values and choosing 
that variable and split that reduces impurity the 
most. Reduction of tree impurity is a good princi-
ple because it encourages the tree to push dissimi-
lar cases apart. Eventually, as the number of nodes 

increases, and dissimilar cases become separated 
into daughter nodes, each node in the tree becomes 
homogeneous and is populated by cases with simi-
lar outcomes (recall Figure 2).

There are several impurity functions used. These 
include the twoing criterion, the entropy criterion, 
and the gini index. The gini index is arguably the 
most popular. When the outcome has two class 
labels (the so-called two-class problem), the gini 
index corresponds to the variance of the outcome 
if the class labels are recoded as being 0 and 1.

Stopping Rules

The size of the tree is crucial to the accuracy of 
the classifier. If the tree is too shallow, terminal 
nodes will not be pure (outcomes will be heteroge-
neous), and the accuracy of the classifier will suf-
fer. If the tree is too deep (too many splits), then 
the number of cases within a terminal node will be 
small, and the predicted class label will have high 
variance—again undermining the accuracy of the 
classifier.

To strike a proper balance, pruning is employed 
in methodologies such as CART. To determine the 
optimal size of a tree, the tree is grown to full size 
(i.e., until all data are spent) and then pruned back. 
The optimal size is determined using a complexity 
measure that balances the accuracy of the tree as 
measured by cost complexity and by the size of  
the tree.

Regression Trees

Decision trees can also be used to analyze data 
when the y-outcome is a continuous measurement 
(such as age, blood pressure, ejection fraction for 
the heart, etc.). Such trees are called regression 
trees. Regression trees can be constructed using 
recursive partitioning similar to classification trees. 
Impurity is measured using mean-square error. The 
terminal node values in a regression tree are 
defined as the mean value (average) of outcomes 
for patients within the terminal node. This is the 
predicted value for the outcome.

Survival Trees

Time-to-event data are often encountered in the 
medical sciences. For such data, the analysis 
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focuses on understanding how time-to-event var-
ies in terms of different variables that might be 
collected for a patient. Time-to-event can be time 
to death from a certain disease, time until recur-
rence (for cancer), time until first occurrence of a 
symptom, or simple all-cause mortality.

The analysis of time-to-event data is often com-
plicated by the presence of censoring. Generally 
speaking, this means that the event times for some 
individuals in a study are not observed exactly 
and are only known to fall within certain time 
intervals. Right censoring is one of the most com-
mon types of censoring encountered. This occurs 
when the event of interest is observed only if it 
occurs prior to some prespecified time. For exam-
ple, a patient might be monitored for 2 weeks 

without occurrence of a symptom and then 
released from a hospital. Such a patient is said to 
be right censored because the time-to-event must 
exceed 2 weeks, but the exact event time is 
unknown. Another example of right censoring 
occurs when patients enter a study at different 
times and the study is predetermined to end by a 
certain time. Then, all patients who do not experi-
ence an event within the study period are right 
censored.

Decision trees can be used to analyze right-cen-
sored survival data. Such trees are referred to as 
survival trees. Survival trees can be constructed 
using recursive partitioning. The measure of impu-
rity plays a key role, as in CART, and this can be 
defined in many ways. One popular approach is to 
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Figure 3    Binary survival tree for breast cancer patients

Note: Dependent variables NKI70 and TSP are gene signatures. For example, extreme right terminal node (Node 5) corresponds 
to presence of both the NKI70 and TSP gene signatures. Underneath each terminal node are Kaplan-Meier survival curves for 
patients within that node.
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define impurity using the log-rank test. As in 
CART, growing a tree by reducing impurity 
ensures that terminal nodes are populated by indi-
viduals with similar behavior. In the case of a sur-
vival tree, terminal nodes are composed of patients 
with similar survival. The terminal node value in a 
survival tree is the survival function and is esti-
mated using those patients within the terminal 
node. This differs from classification and regres-
sion trees, where terminal node values are a single 
value (the estimated class label or predicted value 
for the response, respectively). Figure 3 shows an 
example of a survival tree.
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Decision Trees, Advanced 
Techniques in Constructing

Decision trees such as classification, regression, 
and survival trees offer the medical decision maker 
a comprehensive way to calculate predictors and 
decision rules in a variety of commonly encoun-
tered data settings. However, performance of deci-
sion trees on external data sets can sometimes be 
poor. Aggregating decision trees is a simple way to 
improve performance—and in some instances, 
aggregated tree predictors can exhibit state-of-the-
art performance.

Decision Boundary

Decision trees, by their very nature, are simple and 
intuitive to understand. For example, a binary 
classification tree assigns data by dropping a data 
point (case) down the tree and moving either left 
or right through nodes depending on the value of 
a given variable. The nature of a binary tree 
ensures that each case is assigned to a unique ter-
minal node. The value for the terminal node (the 
predicted outcome) defines how the case is classi-
fied. By following the path as a case moves down 
the tree to its terminal node, the decision rule for 
that case can be read directly off the tree. Such a 
rule is simple to understand, as it is nothing more 
than a sequence of simple rules strung together.

The decision boundary, on the other hand, is a 
more abstract concept. Decision boundaries are 
estimated by a collection of decision rules for cases 
taken together—or, in the case of decision trees, 
the boundary produced in the predictor space 
between classes by the decision tree. Unlike deci-
sion rules, decision boundaries are difficult to 
visualize and interpret for data involving more 
than one or two variables. However, when the data 
involve only a few variables, the decision bound-
ary is a powerful way to visualize a classifier and 
to study its performance.

Consider Figure 1. On the left-hand side is the 
classification tree for a prostate data set. Here, the 
outcome is presence or absence of prostate cancer 
and the independent variables are prostate-specific 
antigen (PSA) and tumor volume, both having been 
transformed on the log scale. Each case in the data 
is classified uniquely depending on the value of 
these two variables. For example, the leftmost ter-
minal node in Figure 1 is composed of those 
patients with tumor volumes less than 7.851 and 
PSA levels less than 2.549 (on the log scale). 
Terminal node values are assigned by majority vot-
ing (i.e., the predicted outcome is the class label 
with the largest frequency). For this node, there are 
54 nondiseased patients and 16 diseased patients, 
and thus, the predicted class label is nondiseased.

The right-hand side of Figure 1 displays the 
decision boundary for the tree. The dark-shaded 
region is the space of all values for PSA and tumor 
volume that would be classified as nondiseased, 
whereas the light-shaded regions are those values 
classified as diseased. Superimposed on the figure, 


