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define impurity using the log-rank test. As in 
CART, growing a tree by reducing impurity 
ensures that terminal nodes are populated by indi-
viduals with similar behavior. In the case of a sur-
vival tree, terminal nodes are composed of patients 
with similar survival. The terminal node value in a 
survival tree is the survival function and is esti-
mated using those patients within the terminal 
node. This differs from classification and regres-
sion trees, where terminal node values are a single 
value (the estimated class label or predicted value 
for the response, respectively). Figure 3 shows an 
example of a survival tree.
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Decision trees, aDvanceD 
techniQues in constructing

Decision trees such as classification, regression, 
and survival trees offer the medical decision maker 
a comprehensive way to calculate predictors and 
decision rules in a variety of commonly encoun-
tered data settings. However, performance of deci-
sion trees on external data sets can sometimes be 
poor. Aggregating decision trees is a simple way to 
improve performance—and in some instances, 
aggregated tree predictors can exhibit state-of-the-
art performance.

Decision Boundary

Decision trees, by their very nature, are simple and 
intuitive to understand. For example, a binary 
classification tree assigns data by dropping a data 
point (case) down the tree and moving either left 
or right through nodes depending on the value of 
a given variable. The nature of a binary tree 
ensures that each case is assigned to a unique ter-
minal node. The value for the terminal node (the 
predicted outcome) defines how the case is classi-
fied. By following the path as a case moves down 
the tree to its terminal node, the decision rule for 
that case can be read directly off the tree. Such a 
rule is simple to understand, as it is nothing more 
than a sequence of simple rules strung together.

The decision boundary, on the other hand, is a 
more abstract concept. Decision boundaries are 
estimated by a collection of decision rules for cases 
taken together—or, in the case of decision trees, 
the boundary produced in the predictor space 
between classes by the decision tree. Unlike deci-
sion rules, decision boundaries are difficult to 
visualize and interpret for data involving more 
than one or two variables. However, when the data 
involve only a few variables, the decision bound-
ary is a powerful way to visualize a classifier and 
to study its performance.

Consider Figure 1. On the left-hand side is the 
classification tree for a prostate data set. Here, the 
outcome is presence or absence of prostate cancer 
and the independent variables are prostate-specific 
antigen (PSA) and tumor volume, both having been 
transformed on the log scale. Each case in the data 
is classified uniquely depending on the value of 
these two variables. For example, the leftmost ter-
minal node in Figure 1 is composed of those 
patients with tumor volumes less than 7.851 and 
PSA levels less than 2.549 (on the log scale). 
Terminal node values are assigned by majority vot-
ing (i.e., the predicted outcome is the class label 
with the largest frequency). For this node, there are 
54 nondiseased patients and 16 diseased patients, 
and thus, the predicted class label is nondiseased.

The right-hand side of Figure 1 displays the 
decision boundary for the tree. The dark-shaded 
region is the space of all values for PSA and tumor 
volume that would be classified as nondiseased, 
whereas the light-shaded regions are those values 
classified as diseased. Superimposed on the figure, 
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using white and light-gray dots, are the observed 
data points from the original data. Light-gray 
points are truly diseased patients, whereas white 
points are truly nondiseased patients. Most of the 
light-gray points fall in the light-shaded region of 
the decision space and, likewise, most of the white 
points fall in the dark-shaded region of the deci-
sion space, thus showing that the classifier is clas-
sifying a large fraction of the data correctly. Some 
data points are misclassified, though. For example, 
there are several light-gray points in the center of 
the plot falling in the dark-shaded region. As well, 
there are four light-gray points with small tumor 
volumes and PSA values falling in the dark-shaded 
region. The misclassified data points in the center 
of the decision space are especially troublesome. 
These points are being misclassified because the 
decision space for the tree is rectangular. If the 
decision boundary were smoother, then these 
points would not be misclassified. The nonsmooth 

nature of the decision boundary is a well-known 
deficiency of classification trees and can seriously 
degrade performance, especially in complex deci-
sion problems involving many variables.

Instability of Decision Trees

Decision trees, such as classification trees, are known 
to be unstable. That is, if the original data set is 
changed (perturbed) in some way, then the classifier 
constructed from the altered data can be surprisingly 
different from the original classifier. This is an unde-
sirable property, especially if small perturbations to 
the data lead to substantial differences.

This property can be demonstrated using the 
prostate data set of Figure 1. However, to show 
this, it is important to first agree on a method for 
perturbing the data. One technique that can  
be used is to employ bootstrap resampling. A 
bootstrap sample is a special type of resampling 
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Figure 1   Decision tree (left-hand side) and decision boundary (right-hand side) for prostate cancer data with 
prostate-specific antigen (PSA) and tumor volume as independent variables (both transformed on the log 
scale)

Note: Barplots under terminal nodes of the decision tree indicate proportion of cases classified as diseased or nondiseased, with 
the predicted class label determined by majority voting. Decision boundary shows how the tree classifies a new patient based on 
PSA and tumor volume. Gray-shaded points identify diseased patients, and white points identify nondiseased patients from the 
data. 
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procedure. A data point is randomly selected 
from the data and then returned. This process is 
repeated n times, where n is the sample size. The 
resulting bootstrap sample consists of n data 
points but will contain replicated data. On aver-
age, a bootstrap sample draws only approxi-
mately 63% of the original data.

A total of 1,000 different bootstrap samples of 
the prostate data were drawn. A classification tree 
was calculated for each of these 1,000 samples. 
The top panel of plots in Figure 2 shows decision 
boundaries for four of these trees (bootstrap sam-
ples 2, 5, 25, and 1,000; note that Tree 1 is the 
classification tree from Figure 1 based on the 
original data). One can see clearly that the decision 
spaces differ quite substantially—thus providing 
clear evidence of the instability.

It is also interesting to note how some of the 
trees have better decision spaces than the original 
tree (recall Figure 1; also see Tree 1 in Figure 2). 
For example, Trees 2, 5, 25, and 1,000 identify 
some or all of the four problematic light-gray 
points appearing within the lower quadrant of the 
dark-shaded region of the original decision space. 
As well, Trees 5, 25, and, 1,000 identify some of 
the problematic green points appearing within the 
center of the original decision space.

An important lesson that emerges from this 
example is not only that decision trees can be 
unstable but also that trees constructed from dif-
ferent perturbations of the original data can pro-
duce decision boundaries that in some instances 
have better behavior than the original decision 
space (over certain regions). Thus, it stands to rea-
son that, if one could combine many such trees, the 
classifier formed by aggregating the trees might 
have better overall performance. In other words, 
the whole may be greater than the sum of the parts 
and one may be able to capitalize on the inherent 
instability using aggregation to produce more 
accurate classifiers.

Bagging

This idea in fact is the basis for a powerful 
method referred to as “bootstrap aggregation,” or 
simply “bagging.” Bagging can be used for many 
kinds of predictors, not just decision trees. The 
basic premise for bagging is that, if the underlying 
predictor is unstable, then aggregating the predictor 

over multiple bootstrap samples will produce a 
more accurate, and more stable, procedure.

To bag a classification tree, the procedure is as 
follows (bagging can be applied to regression trees 
and survival trees in a similar fashion):

 1. Draw a bootstrap sample of the original data.

 2. Construct a classification tree using data from 
Step 1.

 3. Repeat Steps 1 and 2 many times, 
independently.

 4. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 3. Use majority voting to 
classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 3.

The bottom panel of plots in Figure 2 shows the 
decision boundary for the bagged classifier as a 
function of number of trees (based on the same 
prostate data as before). The first plot is the origi-
nal classifier based on all the data (Tree 1). The 
second plot is the bagged classifier composed of 
Tree 1 and the bootstrap tree derived using the first 
bootstrap sample. The third plot is the bagged 
classifier using Tree 1 and the first four boot-
strapped trees, and so forth. As number of trees 
increases, the bagged classifier becomes more 
refined. Even the decision boundary for the bagged 
classifier using only five trees (third plot) is sub-
stantially smoother than the original classifier and 
is able to better classify problematic cases. By 
1,000 trees (last plot), the bagged classifier’s deci-
sion boundary is fully defined. The accuracy of the 
bagged classifier is substantially better than any 
single bootstrapped tree. Table 1 records the mis-
classification (error) rate for the bagged predictor 
against the averaged error rate for the 1,000 boot-
strapped trees. The first column is the overall error 
rate, the second column is the error rate for dis-
eased patients, and the third column is the error 
rate for nondiseased patients. Error rates were cal-
culated using out-of-bag data. Recall that each 
bootstrap sample uses on average 67% of the 
original data. The remaining 33% of the data is 
called out-of-bag and serves as test data, as it is not 
used in constructing the tree. Table 1 shows that 
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the bagged classifier is substantially more accurate 
than any given tree.

Random Forests

“Random forests” is a refinement of bagging that 
can yield even more accurate predictors. The 
method works like bagging by using bootstrapping 
and aggregation but includes an additional step 
that is designed to encourage independence of 
trees. This effect is often most pronounced when 
the data contain many variables.

To create a random forest classifier, the proce-
dure is as follows (regression forests and random 
survival forests can be constructed using the same 
principle):

 1. Draw a bootstrap sample of the original data.

 2. Construct a classification tree using data from 
Step 1. For each node in the tree, determine the 
optimal split for the node using M randomly 
selected dependent variables.

 3. Repeat Steps 1 and 2 many times, 
independently.

 4. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 3. Use majority voting to 

classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 3.

Step 2 is the crucial step distinguishing forests 
from bagging. Unlike bagging, each bootstrapped 
tree is constructed using different variables, and not 
all variables are used (at most M are used at each 
node in the tree growing process). Considerable 
empirical evidence has shown that forests can be 
substantially more accurate because of this feature.

Boosting

Boosting is another related technique that has 
some similarities to bagging although its connec-
tion is not as direct. It too can produce accurate 
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Figure 2   Top row shows decision boundary for a specific bootstrapped tree (1,000 trees used in total), and the 
bottom plot shows different aggregated (bagged) decision trees

Note: Bagged trees are more robust to noise (stable) because they utilize information from more than one tree. The most stable 
bagged tree is the one on the extreme right-hand side and shows decision boundary using 1,000 trees.

Table 1   Misclassification error rate (in percentage) for 
bagged classifier (1,000 trees) and single tree 
classifier

Classifier  All  Diseased  Nondiseased

Bagged tree  27.2  28.8  25.9

Single tree  34.9  36.7  33.0
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classifiers through a combination of reweighting 
and aggregation. To create a boosted tree classi-
fier, the following procedure can be used 
(although other methods are also available in the 
literature):

 1. Draw a bootstrap sample from the original data 
giving each observation equal chance (i.e., 
weight) of appearing in the sample.

 2. Build a classification tree using the bootstrap 
data and classify each of the observations, 
keeping track of which ones are classified 
incorrectly or correctly.

 3. For those observations that were incorrectly 
classified, increase their weight and 
correspondingly decrease the weight assigned to 
observations that were correctly classified.

 4. Draw another bootstrap sample using the newly 
updated observation weights (i.e., those 
observations that were previously incorrectly 
classified will have a greater chance of 
appearing in the next bootstrap sample).

 5. Repeat Steps 2 to 4 many times.

 6. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 5. Use majority voting to 
classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 5.

The idea of reweighting observations adaptively 
is a key to boosting’s performance gains. In a 
sense, the algorithm tends to focus more and more 
on observations that are difficult to classify. There 
has been much work in the literature on studying 
the operating characteristics of boosting, primarily 
motivated by the fact that the approach can pro-
duce significant gains in prediction accuracy over 
a single tree classifier. Again, as with bagging, 
boosting is a general algorithm that can be applied 
to more than tree-based classifiers. While these 
aggregation algorithms were initially thought to 
destroy the simple interpretable structure (topol-
ogy) produced by a single tree classifier, recent 
work has shown that, in fact, treelike structures 
(with respect to the decision boundary) are often 
maintained, and interpretable structure about how 

the predictors interact with one another can still be 
gleaned.
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Decision trees, construction

A decision model is a mathematical formulation 
of a decision problem that compares alternative 
choices in a formal process by calculating their 
expected outcome. The decision tree is a graphical 
representation of a decision model that represents 
the basic elements of the model. The key elements 
of the model are the possible choices, information 
about chance events, and preferences of the deci-
sion maker. The choices are the alternatives being 
compared in the decision model. The information 
consists of an enumeration of the events that may 
occur consequent to the choice and the probabili-
ties of each of their outcomes. Preferences are 


