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Background—Logical Analysis of Data is a methodology of mathematical optimization on the basis of the systematic
identification of patterns or “syndromes.” In this study, we used Logical Analysis of Data for risk stratification and
compared it to regression techniques.

Methods and Results—Using a cohort of 9454 patients referred for exercise testing, Logical Analysis of Data was applied
to identify syndromes based on 20 variables. High-risk syndromes were patterns of up to 3 findings associated with
�5-fold increase in risk of death, whereas low-risk syndromes were associated with �5-fold decrease. Syndromes were
derived on a randomly derived training set of 4722 patients and validated in 4732 others. There were 15 high-risk and
26 low-risk syndromes. A risk score was derived based on the proportion of possible high risk and low risk syndromes
present. A value �0, meaning the same or a greater proportion of high-risk syndromes, was noted in 979 patients (21%)
in the validation set and was predictive of 5-year death (11% versus 1%, hazard ratio 8.3, 95% CI 5.9 to 11.6,
P�0.0001), accounting for 67% of events. Calibration of expected versus observed death rates based on Logical
Analysis of Data and Cox regression showed that both methods performed very well.

Conclusion—Using the Logical Analysis of Data method, we identified subsets of patients who had an increased risk and
who also accounted for the majority of deaths. Future research is needed to determine how best to use this technique
for risk stratification. (Circulation. 2002;106:685-690.)
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The Logical Analysis of Data (LAD) is a mathematical
methodology based on techniques of optimization and

logic.1,2 Designed to identify patterns of findings, or syn-
dromes, that predict outcomes, this method has been applied
to problems in economics, seismology, and oil exploration,3

but not to medicine. Cardiovascular risk stratification may be
an appropriate application for the LAD, as it relies on
collections of different data elements.4 In this study, we
applied the LAD to a cohort of patients referred for exercise
electrocardiography.5 We assessed this method’s ability to
predict mortality and compared it to Cox regression.6

Methods
Patient Population
The sample has been described in detail.5 Consecutive adults referred
for symptom-limited exercise electrocardiography between Septem-
ber 1990 and March 1998 were eligible. Patients with heart failure,
valvular disease, left bundle branch block, digoxin use, and resting
ST segment depression were excluded. The Cleveland Clinic Foun-
dation’s Institutional Review Board approved research study of the
exercise database.

Clinical Data
All patients provided a structured history for prospective recording
of symptoms, risk factors, cardiac procedures, co-morbidities, and
medication use. Detailed explanations and definitions of these have
been published elsewhere.5

Exercise Testing
Exercise testing was symptom-limited according to standard proto-
cols.7 All data were collected prospectively, including heart rates
before, during, and after exercise, symptoms, arrhythmias, blood
pressure, exercise capacity, electrocardiographic changes, and cal-
culated Duke treadmill scores.8

End Points
The primary end point was all-cause mortality9 obtained from the
Social Security Death Index.10

LAD and Derivation of Syndromes
The LAD method focuses on systematic evaluation of combinations
of findings, or syndromes, which we based on 20 variables consid-
ered as predictors of death. These variables were age, sex, current or
recent smoking, hypertension, diabetes, chronic lung disease, periph-
eral vascular disease, prior coronary heart disease, referral because of
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chest discomfort, right bundle branch block, resting non-specific ST
abnormalities, use of aspirin, �-blockers, non-dihydropyridine cal-
cium channel blockers, vasodilators, and/or lipid-lowering drugs,
resting heart rate, Duke treadmill score,8 chronotropic index,11 and
1-minute heart rate recovery.5

Two types of syndromes were searched for, high-risk and low-
risk. High-risk syndromes were collections of �3 findings that were
associated with a mortality rate at least 5 times the average and were
present in at least 15% of deceased patients. For example, in a
training data set of 4722 patients, the pattern of normal ST segments
at rest, heart rate recovery �12 beats per minute, and Duke exercise
treadmill score �5 was found in 162, 27 of whom died. This pattern
accounted for 17% of all deaths and was associated with a mortality
rate that was 5.1 times the average.

Conversely, low-risk syndromes were collections of up to 3
findings that were associated with mortality rates of no more than
20% of the average death risk and were found in at least 30% of
survivors. For example, in the same training set, there were 2687
patients who had the pattern of age �58 years and normal resting ST
segments. Only 16 died. Thus, this syndrome accounted for 59% of
the survivors and was associated with a mortality rate of 0.60 deaths
per 100 person-years, which was under 1/20 of the average mortality
rate.

We identified 502 candidate high-risk syndromes and 1098
candidate low-risk syndromes. As expected, there was much redun-
dancy between syndromes; by applying a standard “set covering”
algorithm of discrete optimization, this set was collapsed into 15
high-risk syndromes (Table 1) and 26 low-risk syndromes (Table 2).
Further technical details regarding the derivation of high- and
low-risk syndromes are provided elsewhere.12 Of note, the process
was performed mathematically with no manual intervention, mean-
ing that aside from the variables chosen for study, investigator bias
had no role in syndrome derivation.

Statistical Analyses
The study sample of 9454 patients was randomly divided into
training and validation sets. The training set was used to derive
syndromes. Missing data were uncommon (�3% of patients had any
missing data); mean and mode imputations were performed as
appropriate.

All remaining analyses were performed on the validation data set.
Patients were divided into those who had only high-risk syndromes,
only low-risk syndromes, both high- and low-risk syndromes, and
neither type of syndrome. Survival curves were generated using the
Kaplan-Meier method. After confirmation of the proportional haz-
ards assumption by Schoenfeld residuals, Cox modeling6 was used to
assess the association of syndromes with mortality.

A risk score was derived from LAD-derived syndromes by taking
into account the total number of high-risk and low-risk syndromes
each patient had. The score of patient X was calculated as a linear
discriminant

Score�X���
i�I

�iPi�X���
j�J

�jNj�X�,

where the Pi (i in I) and Nj (j in J) represent the high-risk and low-risk
syndromes, Pi(X) (respectively, Nj(X)) takes the value 1 if patient X
displays the high-risk syndrome Pi (respectively, low-risk syndrome
Nj ) and takes the value 0 otherwise, and where the �is and �js are
non-negative normalized “weights.” In our example, we have chosen
all the 15 �is corresponding to the high-risk syndromes to be equal
to 100/15, and all the 26 �js to be equal to 100/26.

To understand the theoretical basis for this score, consider all the
positive patterns P1,. . ., Ph and all the negative patterns N1,. . ., Nk,
listed only “in theory,” without us actually having produced them.
Associate to a patient C the 0,1 vector of h�k components, which
indicate for each one of the positive or negative patterns whether the
patient does or does not display that pattern. Further, let C* be an
“ideal” (obviously non-existent) patient, who displays every positive
pattern and none of the negative ones. Then, his/her associated vector
is (1,1,. . .,1,1,0,0,. . .,0,0). Let cor(C) be the correlation of the 0,1
vector associated to patient C and the 0,1 vector associated to patient
C*. The risk score Score(C) developed in LAD for patient C has the
property that it has the same sign as cor(C). Therefore, when we base
our classification on the sign of Score(C), we are in fact basing it on
the sign of cor(C).

Model Comparisons and Validation
To compare the predictive capabilities of the LAD with traditional
statistical techniques, we developed a Cox proportional hazards
model6 in the training data set, paying attention to variable transfor-
mations and possible interactions. On the basis of deciles predicted

TABLE 1. Fifteen High-Risk Syndromes Derived From the Training Set

Syndrome
Number Features N (% of all) Deaths

Percent of
Deaths

Deaths per 100
Person-Years

1 Normal resting ST, HRR �12, Duke �5 162 (3) 27 17 16.7

2 Abnormal resting ST, CRI �0.81,
Duke �5

175 (4) 30 19 17.1

3 Age �68, male, no aspirin use 162 (3) 29 19 17.9

4 Age �48, resting HR �92, HRR �13 185 (4) 31 20 16.8

5 Age �56, resting HR �78, HRR �12 247 (5) 42 27 17.0

6 Age �58, resting HR �86, CRI �0.99 163 (3) 27 17 16.6

7 Age �62, resting HR �70, CRI �0.88 235 (5) 40 26 17.0

8 Age �62, resting HR �70, prior CAD 211 (4) 35 22 16.6

9 Age �68, resting HR �65, Duke �7 266 (6) 44 28 16.5

10 Age �58, HRR �12, no aspirin use 246 (5) 41 26 16.7

11 Age �65, not referred for CP, HRR �13 316 (7) 54 35 17.1

12 Age �57, not referred for CP, CRI �0.76 320 (7) 54 35 16.9

13 Age �58, smoker, HRR �21 145 (3) 24 15 16.6

14 Resting HR �84, HRR �12, CRI �0.95 180 (4) 31 20 17.2

15 Resting HR �73, HRR �12, Duke �8 295 (6) 49 31 16.6

HR indicates heart rate in beats per minute; HRR, heart rate recovery; Duke, Duke Treadmill Score; CRI,
chronotropic response index; and CP, chest discomfort. Age is expressed in years.
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in the training set, calibration plots were constructed for patients in
the validation data set examining predicted versus observed mortal-
ity. Differences in correlations between predicted and observed
mortality rates were compared using the transformed zr statistic of
Fisher.13 To compare model discrimination, c-statistics were calcu-
lated according to the method of Harrell.14 All analyses were
performed using the SAS system, version 8.1.

Results

Derivation of Syndromes
Syndromes were derived from the training set of 4722
patients. Tables 1 and 2 present the representative 15 high-
risk and 26 low-risk syndromes.

Syndromes in the Validation Set
Among the 4732 patients in the validation set, there were 723
(15%) who had �1 high-risk syndrome and no low-risk
syndromes. Analogously, there were 3501 patients (74%)
who had at least 1 low-risk syndrome but had none of the 15
high-risk syndromes. There were 415 patients (9%) who had
high-risk and low-risk syndromes, and there were 93 (2%)
who had neither. Baseline and exercise characteristics accord-
ing to syndromes are summarized in Table 3.

High-Risk Syndromes, Low-Risk Syndromes,
and Mortality
During 5 years of follow-up, there were 156 deaths in the
validation set. Patients with only high-risk syndromes were at
increased risk for death (Figure 1; 12% versus 2%, hazard
ratio 8.0, 95% CI 5.8 to 10.9, P�0.0001). Although these
patients made up only 15% of the population, they accounted
for 58% of the deaths.

Patients with only low-risk syndromes were at low risk
(1.3%, compared with all others hazard ratio 0.15, 95% CI
0.10 to 0.20, P�0.0001). Compared with patients with only
low-risk syndromes, patients who had both high-risk and
low-risk syndromes were at somewhat increased risk (4%,
hazard ratio 3.1, 95% CI 1.8 to 5.4, P�0.0001). Patients who
had neither high-risk nor low-risk syndromes could not be
shown to be at increased risk (2% with hazard ratio 1.8, 95%
CI 0.4 to 7.4, P�0.42).

Prognostic Score and Risk
A prognostic score based on the number of high-risk and
low-risk syndromes present in each patient was derived
(median �31, 25th and 75th percentile values �54 and 8). A
value �0, representing the highest quintile, was noted in 979

TABLE 2. Twenty-Six Selected Low-Risk Syndromes Derived From the Training Set

Syndrome
Number Features N (% of all) Deaths

Percent of
Survivors

Deaths per 100
Person-Years

1 Age �58, normal resting ST 2687 (59) 16 58 0.60

2 Age �61, normal resting ST, resting HR �73 1393 (30) 9 30 0.65

3 46 �Age �57, resting HR �92 1431 (30) 9 31 0.63

4 Age �62, HRR �21 1449 (31) 9 31 0.62

5 41 �Age �57, Duke �8 1575 (33) 10 34 0.63

6 Age �58, no COPD, resting HR �73 1427 (30) 9 31 0.63

7 Age �52, resting HR �89, no diabetes 1846 (39) 12 40 0.65

8 Age �59, resting HR �76, HRR �10 1399 (30) 7 30 0.50

9 Age �61, resting HR �76, HRR �12 1392 (29) 8 30 0.57

10 Age �59, resting HR �75, CRI �0.81 1424 (30) 8 31 0.56

11 Age �62, resting HR �78, CRI �0.92 1415 (30) 8 31 0.57

12 Age �62, resting HR �79, CRI �0.93 1392 (29) 9 30 0.65

13 Age �57, non-smoker, no hypertension 2039 (43) 13 44 0.64

14 Age �62, HRR �19 & �29 1404 (30) 8 31 0.57

15 Age �68, HRR �13, CRI �1.001 1384 (29) 8 30 0.58

16 Age �68, HRR �15, CRI �0.99 1410 (30) 9 31 0.64

17 Age �68, HRR �19, CRI �0.92 1410 (30) 9 31 0.64

18 Age �68, HRR �21, CRI �0.81 1410 (30) 9 31 0.64

19 Age �65, HRR �21, no prior CAD 1380 (29) 8 30 0.58

20 Age �61, HRR �14, Duke �10 1441 (31) 9 31 0.62

21 Age �61, CRI �0.92 & �1.05 1388 (29) 9 30 0.65

22 Age �65, CRI �1.00, no prior CAD 1435 (30) 9 31 0.63

23 Age �59, CRI �0.84, Duke �10 1382 (29) 9 30 0.65

24 Age �65, CRI �0.96, Duke �11 1321 (30) 9 31 0.63

25 HRR �17, CRI �0.88, Duke �7 1688 (36) 11 37 0.65

26 HRR �18, CRI �0.86, Duke �7 1529 (32) 10 33 0.65

Abbreviations as in Table 1. Age is expressed in years.
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patients (21%) who had a markedly increased risk of death
(Figure 2; 11% versus 1%, hazard ratio 8.3, 95% CI 5.9 to
11.6, P�0.0001), accounting for 67% of events. The score
was predictive of death when considered as a continuous
variable (for a 1 standard deviation increase of risk score;
hazard ratio 2.8, 95% CI 2.4 to 3.2, P�0.0001).

LAD and Cox Model
We analyzed a model in which we entered the LAD risk score
and a score risk derived from the parameter coefficients of a

Cox model; both scores were derived in the training set and
tested in the validation data set. The variables that entered the
final Cox model were age, sex, chronotropic response, heart
rate recovery, resting heart rate squared, and a history of
chronic lung disease. The 2 interactions entered were age and
chronotropic response and resting heart rate and heart rate
recovery.

The LAD risk score provided additional prognostic infor-
mation over that provided by the Cox model (P�0.037).
Specifically, the likelihood ratio �2 value for the Cox model
alone was 226.9 and increased to 231.3 when adding the LAD
risk score. When high risk was defined as the highest quintile,

Figure 1. Kaplan-Meier plot relating pattern of syndromes
derived from LAD in the training data set to mortality in the vali-
dation data set. Patients were divided into those who only had
high-risk syndromes, only low-risk syndromes, both high- and
low-risk syndromes, and neither high- nor low-risk syndromes.

Figure 2. Kaplan-Meier plot relating quintiles of prognostic risk
score with mortality in the validation data set.

TABLE 3. Baseline and Exercise Characteristics According to Presence or
Absence of High-Risk or Low-Risk Syndromes

Characteristic
Only High-Risk

(N�723)
Only Low-Risk

(N�3501)
Both

(N�415)
Neither
(N�93)

Age, y 69�6 49�8 56�8 68�6

Female sex 207 (29) 689 (20) 113 (27) 23 (25)

Resting heart rate/minute 77�14 74�13 84�15 64�10

Hypertension 353 (49) 569 (16) 167 (40) 36 (39)

Diabetes 144 (20) 124 (4) 53 (13) 3 (3)

Smoking 108 (15) 494 (14) 125 (30) 2 (2)

Prior coronary disease 317 (44) 298 (9) 121 (29) 28 (30)

Chronic lung disease 39 (5) 19 (�1) 12 (3) 3 (3)

Peripheral vascular disease 42 (6) 20 (�1) 8 (2) 2 (2)

Right bundle-branch block 67 (9) 159 (5) 17 (4) 8 (9)

Abnormal resting ST 242 (33) 434 (12) 103 (25) 21 (23)

Aspirin 316 (44) 472 (13) 117 (28) 46 (49)

�-Blocker 169 (23) 206 (6) 64 (15) 15 (16)

Calcium blocker 109 (15) 147 (4) 50 (12) 19 (20)

Lipid-lowering therapy 120 (17) 240 (7) 48 (12) 12 (13)

Screening test* 354 (49) 2883 (82) 268 (65) 51 (55)

Duke score 4�4 9�3 6�4 6�4

Chronotropic index† 0.81�0.26 0.99�0.14 0.87�0.24 0.88�0.12

Heart rate recovery/min‡ 12�7 21�7 14�8 18�6

Data came from the validation dataset. Values are mean�SD or n (%).
*Screening test indicates patient with no symptoms and no history of coronary disease.
†Chronotropic index�(peak heart rate�resting heart rate)/(220�age�resting heart rate).
‡Heart rate recovery�peak heart rate�heart rate one minute later.
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there were 3652 patients (77%) who were considered low risk
by both methods, 210 (4%) considered high risk by the Cox
model only, 101 (2%) considered high risk by the LAD only,
and 769 (16%) considered high risk by both methods. The
respective Kaplan-Meier 5 year death rates in these groups
were 1.3%, 2.5%, 3.9%, and 12.4%, respectively.

Model Calibrations
Figure 3 shows the predicted and actual mortality outcomes
in the validation data set according to deciles of predicted
risk, as defined by the training set using the LAD method.
There was excellent calibration (F�1063, r2�0.992). Figure
4 shows predicted and actual mortality outcomes in the
validation set according to deciles of risk based on the Cox
model. Calibration was quite good, but tended to be not as
good as with the LAD method (F�238, r2�0.963, P for
difference in r2�0.14). Model discrimination was similar
with both approaches. The c-statistics for Cox alone, LAD
alone, and both together were 0.82, 0.81, and 0.82,
respectively.

Discussion
We used the LAD method to derive a risk stratification
scheme for patients referred for exercise electrocardiography.

In a training data set of 4722 patients, we identified 15 unique
high-risk syndromes and 26 unique low-risk syndromes.
When applying these syndromes to a validation set of 4732
patients, a greater preponderance of high-risk syndromes
predicted increased death risk. Thus, we were able to desig-
nate a group of patients who made up 21% of validation
cohort, yet accounted for 67% of the deaths. This is in
contrast to most risk markers, which, although they identify
high-risk populations, can only identify a minority of patients
who experience events.15 Using LAD, it was possible to
accurately predict death rates across a wide spectrum of risk
(Figure 3) to at least the same degree that a Cox proportional
hazards model did (Figure 4).

Previous groups have incorporated clinical and exercise
test findings into standard multivariable modeling techniques
to derive risk scores for similar patient populations.8,16

Although these risk scores have been shown to identify high-
and low-risk patients, they are limited in that patients labeled
as high-risk tend to be very few and therefore account for a
small minority of events.17 For example, the Duke treadmill
score8 has been used to identify intermediate risk patients.
Patients with either intermediate or high-risk scores were
shown to comprise the majority of those to experience events,
but they also accounted for 45% to 55% of all patients
studied.17 Thus, a clinician referring a patient for a stress test
would be faced with an even chance that the test result would
require further evaluation. In contrast, by classifying patients
according to whether or not they had high-risk or low-risk
syndromes, it was possible to label 15% of the population as
high-risk and 74% as very low- risk. This left some degree of
uncertainty among the remaining 11%.

The LAD method may represent a systematic means to
explore the importance and nature of interactions in prognos-
tic models. Not only is it possible to test very large numbers
of interactions in an efficient way, but one can also test 3-way
and even more complex patterns. LAD allows for determina-
tion of predictive variables via a rigorous, systematic, and
unbiased examination of combinations. Continuous variables
need not be constrained to arbitrary cut-points. Finally,
another advantage of LAD is that it does not require confir-
mation of any assumptions about the distributions of data or
times to events, unlike, for example, the Cox model, which
requires constant proportional hazards over time.

This was an observational study limited to 1 center and is
therefore subject to the inherent limitations of such studies,
including unobserved confounders and biased sampling vari-
ation. Although we performed validation studies, both in
deriving the syndromes and in assessing how well they
predicted risk, the results of this analysis will need to be
confirmed in other data sets derived from other centers. We
also did not have formal measures of left ventricular function
or non-electrocardiographic measures of myocardial ischemia
available.

By systematically considering patterns of findings, we
have demonstrated a potentially useful means of prediction of
death after exercise testing. On the basis of this analysis
alone, the role of LAD in cardiovascular medicine in relation
to standard methodologies has not been established, only
introduced. If the prognostic utility can be confirmed in other

Figure 3. Predicted versus actual mortality rates among patients
in the validation data set with predicted values based on LAD
on the derivation data set. Each point refers to a decile of risk,
whereas the line reflects the least squares fit.

Figure 4. Predicted versus actual mortality rates among patients
in the validation data set with predicted values based on Cox
regression modeling on the derivation data set. Each point
refers to a decile of risk, whereas the line reflects the least
squares fit.
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cohorts, it may function well not only for risk stratification
but also for systematic determination of clinically important
interactions. Much future research will be needed to deter-
mine whether or not and how best to incorporate the LAD
method into routine clinical risk stratification.
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