
Biometrika (2000), 87, 2, pp. 371–390

© 2000 Biometrika Trust

Printed in Great Britain

Markov chain Monte Carlo in approximate Dirichlet and
beta two-parameter process hierarchical models

B HEMANT ISHWARAN

Department of Biostatistics and Epidemiology, Cleveland Clinic Foundation, Cleveland,
Ohio 44195, U.S.A.

ishwaran@bio.ri.ccf.org

 MAHMOUD ZAREPOUR

Department of Mathematics and Statistics, University of Ottawa, Ottawa,
Ontario K1N 6N5, Canada

zarepour@expresso.mathstat.uottawa.ca

S

We present some easy-to-construct random probability measures which approximate
the Dirichlet process and an extension which we will call the beta two-parameter process.
The nature of these constructions makes it simple to implement Markov chain Monte
Carlo algorithms for fitting nonparametric hierarchical models and mixtures of non-
parametric hierarchical models. For the Dirichlet process, we consider a truncation
approximation as well as a weak limit approximation based on a mixture of Dirichlet
processes. The same type of truncation approximation can also be applied to the beta
two-parameter process. Both methods lead to posteriors which can be fitted using Markov
chain Monte Carlo algorithms that take advantage of blocked coordinate updates. These
algorithms promote rapid mixing of the Markov chain and can be readily applied to
normal mean mixture models and to density estimation problems. We prefer the truncation
approximations, since a simple device for monitoring the adequacy of the approximation
can be easily computed from the output of the Gibbs sampler. Furthermore, for the
Dirichlet process, the truncation approximation offers an exponentially higher degree of
accuracy over the weak limit approximation for the same computational effort. We also
find that a certain beta two-parameter process may be suitable for finite mixture modelling
because the distinct number of sampled values from this process tends to match closely
the number of components of the underlying mixture distribution.

Some key words: Almost sure truncation; Generalised Dirichlet distribution; Mixture of Dirichlet processes;
Nonparametric hierarchical model; Normal mean mixture; Random probability measure; Weak convergence
in distribution.

1. I

1·1. Nonparametric hierarchical models

We will discuss how to implement efficient Markov chain Monte Carlo algorithms for
fitting the posterior distribution of a Bayesian nonparametric hierarchical model with the
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following structure:

(X
i
|Y
i
)~p(X

i
|Y
i
) (i=1, . . . , n),

(Y
i
|P)~P, (1)

P~P
N
.

In this nonparametric setting, X= (X1 , . . . , Xn
) is the observed data while Y1 , . . . , Yn are

unobserved random elements taking values in the measurable space (Y, B), where
Y=Rd, in the examples considered here, and B is the corresponding Borel s-algebra. In
(1) it is assumed that the X

i
are conditionally independent given the Y

i
, while the Y

i
conditioned on P are independently and identically distributed with distribution P. The
nonparametric hierarchical model is a nonparametric method for modelling p(X

i
|Y
i
), the

conditional distribution of X
i
given Y

i
, by modelling the distribution of the Y

i
through a

random probability measure P
N
. We note that this model and the methods discussed in

this paper can also be easily extended to the semiparametric hierarchical model formed
by introducing a finite-dimensional parameter h, where p(X

i
|Y
i
, h) is the conditional distri-

bution of X
i
given Y

i
and h.

Our interest will focus on models (1) involving random probability measures P
N

which
closely approximate either the Dirichlet process or a generalisation which we refer to as
a beta two-parameter process. These approximations are based on constructive sum-
representations, and are the key to the success of our Markov chain Monte Carlo algor-
ithms. In particular, the P

N
in (1) are random probability measures of the form

P
N
( . )= ∑

N

k=1
p
k
d
Z
k

( . ) (1∏N<2), (2)

where we write d
Z
( . ) to denote a discrete measure concentrated at Z. Moreover, the p

k
in

(2) are random variables chosen to be independent of Z
k
and constructed so that 0∏p

k
∏1

and p1+ . . .+p
N
=1 with probability one, while the Z

k
are independently and identically

distributed random elements defined over (Y, B) with distribution H.
The limit as N�2 in (2) will correspond, in various forms of convergence, to a

random probability measure P
2

, which in our setting will be either the Dirichlet process
or more generally a beta two-parameter process; both of these have constructive sum-
representations of the form

P
2

( . )= ∑
2

k=1
p
k
d
Z
k

( . ), (3)

where

p1=V1 , p
k
= (1−V1)(1−V2) . . . (1−V

k−1
)V
k

(k
2), (4)

and where V1 , V2 , . . . are independent Be(a, b) random variables. We refer to (3) as a beta
two-parameter process, writing this as P

2
=B(a, b, H).

One focus of the paper will be to look at different limiting approximations to the
Ferguson (1973) Dirichlet process, which as mentioned has a construction of the form (3).
In particular, if V

k
are independent Be(1, a) variables, then the P

2
formed by (3) and (4)

is the Dirichlet process with concentration parameter a>0 and reference distribution H
(Sethuraman, 1994). We write this as P

2
=(aH), or alternatively as P

2
=B(1, a, H ).
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In this case, for each measurable partition B1 , . . . , Bd of Y,

(P
2

(B1), . . . , P2(B
d
))~Dir{aH(B1), . . . , aH(B

d
)},

which is one way to characterise the Dirichlet process (Ferguson, 1973).

1·2. Markov chain Monte Carlo with blocked updates

The key to working with random probability measures like (2) is that it allows us to
perform blocked updates for p1 , . . . , pN and Z1 , . . . , ZN

in our Gibbs sampler. This will
lead to a rapidly mixing Markov chain, and moreover it permits direct inference for the
posterior P*

N
= (P

N
|X). This is in contrast to the usual method of fitting the nonparametric

hierarchical model involving the Dirichlet process, where the standard practice is to
integrate over P in order to exploit the Blackwell & MacQueen (1973) Pólya urn character-
isation of the Dirichlet process. In particular, with a (aH) prior, this method leads to
a marginalised version of the nonparametric hierarchical model (1):

(X
i
|Y
i
)~p(X

i
|Y
i
) (i=1, . . . , n),

(Y1 , . . . , Yn )~p
2

(Y1 , . . . , Yn ),

where

p
2

(dY1 , . . . , dY
n
)=H(dY1) a

n

i=2
q a

a+ i−1
H(dY

i
)+

1

a+ i−1
∑
i−1

j=1
d
Y
j

(dY
i
)r

is the distribution for a generalised Pólya urn scheme.
This clever trick for exploiting the Pólya urn connection can be harnessed within a

powerful Markov chain Monte Carlo setting, and was first discovered by Escobar (1994)
with further details appearing in Escobar & West (1995). Refinements to the algorithm
have been given by MacEachern (1994), West, Müller & Escobar (1994), MacEachern
(1998) and MacEachern & Müller (1998). The Escobar–West–MacEachern Gibbs sam-
pling method is a versatile Markov chain Monte Carlo approach for applying the Dirichlet
process in modern Bayesian settings. However, it suffers from two limitations. First, by
marginalising P

2
, the resulting Markov chain tends to mix slowly because of the Gibbs

sampler use of one-coordinate-at-a-time updates. This can occur even in the sophisticated
algorithms proposed by MacEachern (1994), which require one-at-a-time updates for
cluster indicator variables. A second limitation arises from the effect of marginalising P.
Although marginalising is the key underlying the Pólya urn approach, it has the undesir-
able side effect that it allows inference for the posterior of P

2
to be based only on the

values Y
i
.

One way to combat these problems for the Dirichlet process, or more generally for the
beta two-parameter process, is to use approximating random probability measures P

N
.

This leads to a nonparametric hierarchical model almost indistinguishable from its limit,
and a posterior P*

N
that yields approximate inference for the limiting posterior P*

2
. The

trick for making this all happen will be to find random probability measures P
N

which
provide good approximations to their limits P

2
, and selected so that it is possible to

perform a simple multivariate update for p1 , . . . , pN in the Gibbs sampler. Sections 3 and
4 will discuss two different approximations that satisfy these criteria by exploiting the
conjugacy of the generalised Dirichlet distribution to multinomial sampling. We note for
reference that other more general forms of conjugacy to the multinomial can also be
explored, such as those presented in Hjort (1996). Also, for other methods which have
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utilised approximations to the Dirichlet process; see Muliere & Tardella (1998) and
Muliere & Secchi (1996).

We mention that the methods described in this paper can also be extended to include
the two-parameter Poisson–Dirichlet process described by Pitman & Yor (1997). In this
case, the relevant random probability measure P

2
is also indexed by two parameters

a and b, but is constructed using independent random variables V
k
~Be(1−a, b+ka),

where 0∏a<1 and b>−a. As noted by Pitman & Yor (1997), the case where a=0 and
b=a corresponds to the Dirichlet process (aH), while the case a=a and b=0 yields
a process based on a stable law with index 0<a<1.

The layout of the paper is as follows. In § 3 we present a weak limit approximation to
the Dirichlet process based on mixtures of Dirichlet processes. The same type of approxi-
mation has also been recognised by Walker & Wakefield (1998), by R. M. Neal in a
University of Toronto technical report and by P. J. Green and S. Richardson in an
unpublished manuscript. However, none of these papers exploits the connection to random
probability measures in their Markov chain Monte Carlo algorithms. In § 4 we consider
a different type of approximation based on a truncation approach which leads to an
almost sure beta two-parameter process limit. We also discuss the accuracies of our differ-
ent approximations; see Theorems 1 and 2. We begin our discussion in § 2 with a general
method for the Gibbs sampling of nonparametric hierarchical models with random prob-
ability measures based on finite N.

2. G      P
N

 N<2
2·1. Random variable description

The trick for achieving efficient Markov chain Monte Carlo sampling of the nonpara-
metric hierarchical model is to recast the model completely in terms of random variables.
Let p= ( p1 , . . . , pN) and Z= (Z1 , . . . , ZN

). Model (1) can be rewritten as

(X
i
|Z, K )~p(X

i
|Z

K
i

),

(K
i
|p)~ ∑

N

k=1
p
k
d
k
( . ), (5)

( p, Z)~p( p)p(Z),

where K= (K1 , . . . , Kn
) and the K

i
are conditionally independent classification variables

that identify the Z
k

associated with each Y
i
. Specifically, note that Y

i
=Z

K
i

.
By rewriting the model as (5), we can devise a Gibbs sampling scheme for exploring

the posterior P*
N

. To implement the Gibbs sampler we iteratively draw values from the
following conditional distributions:

p( p, Z |K, X), (6)

p(K |p, Z, X). (7)

This method produces values drawn from the distribution p( p, Z, K |X) and each draw
( p(b), Z(b), K(b)) produces a random probability measure P(b)

N
( . )=WN

k=1
p(b)
k

d
Z(b)
k

( . ), which is
a draw from the posterior P*

N
. Thus, P(b)

N
can be used to estimate P*

N
and its functionals

directly.
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To determine the conditional density corresponding to (6), first observe from (5) that

f ( p, Z |K, X)3{ f (K |p) f ( p)}q f (ZK
) a
n

i=1
f (X

i
|Z

K
i

)r f (ZK ), (8)

where ZK corresponds to those values in Z excluding Z
K
=(Z

K*
1

, . . . , Z
K*
m

), and where
K*
1
, . . . , K*

m
represent the unique set of K

i
values. The third term on the right-hand side

of (8) is the product density for ZK, which we can easily sample by drawing independent
values from H. Therefore, we only need to work out the remaining first and second terms;
the conditional densities for p and Z

K
.

In §§ 3–4 we will provide two different approximations, one a weak limit approximation
to the Dirichlet process and the other a truncation of the beta two-parameter process
B(a, b, H), which will allow us to sample the conditional density of p exactly:

f ( p |K)3 f (K |p)f ( p). (9)

In general, to ensure a rapidly mixing Markov chain, the trick is to choose P
N

so as to
provide a good approximation to its limit P

2
, while leading to a simple expression for (9).

To complete the update for (6) we still need to derive the conditional distribution for
Z
K
. From (8), its density can be rewritten as

f (Z
K
|K, X)3 a

m

j=1
f (Z

K*
j

) a
{i :K

i
=K*

j
}
f (X

i
|Z

K*
j

). (10)

In the examples to be considered in §§ 3–4, conjugacy will allow us to sample (10) exactly.
In general, however, the distribution could be sampled fairly efficiently using a Metropolis–
Hastings step for each Z

K*
j

. Alternatively, the Metropolis step could be replaced by a step
using hybrid Monte Carlo, which could substantially improve mixing; see Neal (1996,
pp. 55–63), Gustafson (1997), Daniels (1998) and Ishwaran (1999) for some recent
statistical applications. It is important to note that the non-conjugacy is a much more
delicate issue in the Escobar–West–MacEachern Gibbs sampler. See West et al. (1994),
MacEachern & Müller (1998) or Walker & Damien (1998) for different approaches to
this problem.

The last step in the Gibbs sampler involves the conditional distribution (7) for K.
However, it is obvious that

(K
i
|p, Z, X)~ ∑

N

k=1
p*
k,i

d
k
( . )

are conditionally independent integers, where

( p*
1,i

, . . . , p*
N,i

)3 ( p1 f (X
i
|Z1), . . . , pN f (X

i
|Z

N
)). (11)

2·2. Mixtures of nonparametric hierarchical models

Greater model flexibility can be introduced by mixing over the random probability
measure P

N
, giving a mixture of nonparametric hierarchical models. The mixing is intro-

duced through the hyperparameters c for Z and a for p. In this case, the model (5), and
hence (1), is extended by assuming that

( p, Z |a, c)~p( p |a)p(Z | c),

(a, c)~p(a)p(c).
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The Gibbs sampler of the previous section is easily extended to this case. We present
this extension through several examples in the following sections.

3. W     D 

3·1. Dirichlet random weights

A simple and practical approximation to the Dirichlet process can be defined using a
random probability measure (2) with random probabilities p that have the Dirichlet
distribution

( p |a)~Dir (a/N, . . . , a/N). (12)

Working with a Dirichlet distribution is extremely convenient because of its conjugacy to
the multinomial distribution. In particular, it easily follows that the conditional distri-
bution (9) for p is a Dirichlet distribution with an updated parameter depending only
upon the number of occurrences of K

i
. In particular, if m

k
=card{K

i
=k} is the number

of K
i
’s which equal k, then

( p |K, a)~Dir(a/N+m1 , . . . , a/N+m
N
). (13)

Therefore, this choice for P
N

satisfies one of our conditions, namely that it leads to a
simple multivariate update for the conditional distribution of p. It also satisfies our second
criterion, which is that it provides a good approximation to its limit. In fact, P

N
converges

weakly in distribution to the Dirichlet process P
2
=(aH). Moreover, it can be shown

that

L{P
N
(g)}�L{P

2
(g)}

for each real-valued measurable function g that is integrable with respect to H. Thus, P
N

offers a strong approximation to the Dirichlet process and can be used to approximate
integrable functionals of the process; see the unpublished report by H. Ishwaran and
M. Zarepour ‘Exact and approximate sum-representations for the Dirichlet process’ for
details.

It is easy to see that P
N

is a mixture of Dirichlet processes, written in the style of
Antoniak (1974) as

P
N
( . )) P {aj

N
(Z, .)} dHN(Z),

where

j
N
(Z, .)=

1

N
∑
N

k=1
d
Z
k

( . )

is the empirical measure based on Z. Therefore, intuitively we expect that P
N
jP
2

for
large N, because j

N
jH. In fact, the sampling behaviours of P

N
and P

2
are quite similar

asymptotically. Consider the following theorem, detailed in the unpublished report by
H. Ishwaran and M. Zarepour, which compares the number of distinct Y

i
values.

T 1. L et C
N

and C
2

equal the number of distinct values in Y, where Y=
(Y1 , . . . , Yn ) is a sample obtained under P

N
and P

2
=(aH) respectively. If H is nonatomic,



377Dirichlet and beta two-parameter processes

then

N!

Nk(N−k)!
∏

pr{C
N
=k}

pr{C
2
=k}

∏nak/N (k=1, . . . , min(n, N)). (14)

Note that the two distributions agree in the limit as N�2 because the right-hand and
left-hand sides of (14) both converge to one for each value of k. Although the bound is
quite crude, it does work fairly well in the range k∏ log n, which is roughly the number
of distinct values we would expect to see under the two models when N=n. However,
when N is small and n is large, the expected number of distinct values under P

N
will be

much smaller than under the Dirichlet process model if H is nonatomic. This is because
each value Y

i
from P

N
is sampled from at most N distinct values in contrast to the

continuum of values available under the Dirichlet process. With a large enough sample
size n this will lead to relatively few distinct values.

3·2. Normal mean mixtures

We first apply the weak limit approximation to normal mean mixture models. These
are nonparametric hierarchical models expressible in the form (1), where

(X
i
|Y
i
)~N(Y

i
, s
X
),

and s
X
>0 is a known variance; later we will consider the case when s

X
is unknown. To

extend this model to a mixture of hierarchical models we introduce a prior for a in p and
include hyperparameters for Z. If we use representation (5), the model we consider is

(X
i
|Z, K)~N(Z

K
i

, s
X
),

(K
i
|p)~ ∑

N

k=1
p
k
d
k
( . ),

(Z
k
|h, s

Z
)~N(h, s

Z
),

(h |s
h
)~N(0, s

h
),

(s−1
Z
|t
1
, t
2
)~Ga(t1 , t2),

(a |n
1
, n
2
)~Ga(n

1
, n
2
),

(15)

with the distribution for p specified by (12).
Model (15) uses a conjugate normal prior for h and a conjugate inverse-gamma prior

for s
Z
. To ensure that these priors are noninformative, we choose a large value for s

h
,

that is s
h
=1000, and we select small values for the hyperparameters t1 and t2 , that is

t1=t2=0·001. Selecting an appropriate prior for a is critical to the model’s performance,
since the value for a is directly related to the number of distinct Y

i
values. We use a

Ga(n1 , n2) prior, which has been used by Escobar & West (1995) in density estimation
problems involving the Dirichlet process. A gamma prior is appropriate because of its
flexibility. For example, to discourage small and large values for a we choose large values
for both n1 and n2 . Selecting a large-scale parameter n2 is especially relevant to finite
mixture modelling since it encourages repetitions in the Y

i
and can be used as a tool for

studying the number of mixture components. In the case of the Dirichlet process, the use
of a gamma prior has the added feature that it allows for exact sampling of a; see Escobar
& West (1995, 1998) for details. Unfortunately, we will not be able to exploit this clever
trick with the weak limit approximation, and instead we will need to resort to a
Metropolis–Hastings step.
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Introducing the hyperparameters in (15) is a method for extending the nonparametric
hierarchical model by allowing for mixtures of random probability measures. In particular,
the P

N
defined by (12) and (15) is the mixture of Dirichlet processes

P
N
( . )) PPPP {aj

N
(Z, .)} dHN(Z |h, s

Z
) dp(h ) dp(s

Z
) dp(a),

where HN( . |h, s
Z
) is the distribution for Z conditioned on h and s

Z
.

To sample the posterior p( p, Z, K, h, s
Z
, a |X) of (15) using Gibbs sampling, we need

to complete five updates in each cycle of the sampler:

( p, Z |K, h, s
Z
, a, X), (16)

(K |p, Z, X), (17)

(h |Z, s
Z
), (18)

(s
Z
|Z, h), (19)

(a |p). (20)

As worked out in (13), we have

( p |K, a)~Dir(a/N+m1 , . . . , a/N+m
N
).

Therefore, to complete the update (16), we need to work out the conditional distribution
for Z, which by similar reasoning to (8) has the density

f (Z |K, h, s
Z
, X)3qam

j=1
f (Z

K*
j

|h, s
Z
) a
{i :K

i
=K*

j
}
f (X

i
|Z

K*
j

)r f (ZK |h, s
Z
).

The second term involves sampling independent normal variables, but so does the first
term because of conjugacy. In fact, the first term corresponds to the product of conditional
normals

(Z
K*
j

|K, h, s
Z
, X)~N(h*

j
, s*
Z
j

),

where

h*
j
=s*

Z
j Ah/s

Z
+ ∑

{i :K
i
=K*

j
}
X
i
/s
XB ,

s*
Z
j

=(n
j
/s
X
+1/s

Z
)−1, and n

j
is the number of times K*

j
occurs in K.

The conditional distribution for K
i
in (17) is determined using (11), which with a normal

density corresponds to

(K
i
|p, Z, X)~ ∑

N

k=1
p*
k,i

d
k
( . ),

where

( p*
1,i

, . . . , p*
N,i

)3Ap1 exp q−1

2s
X

(X
i
−Z1 )2r , . . . , pN exp q−1

2s
X

(X
i
−Z

N
)2rB .

The distributions for h and s
Z

in (18) and (19) are straightforward because of conjugacy.
Indeed, it easily follows that (h |Z, s

Z
, s
h
)~N(h*, s*

h
), where

h*=
s*
h

s
Z
∑
N

k=1
Z
k
, 1/s*

h
=N/s

Z
+1/s

h
.
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Also,

(s−1
Z
|Z, h)~Ga qt1+N/2, t

2
+ ∑

N

k=1
(Z
k
−h)2/2r .

This completes four of the five steps. The final step (20) involving a can be implemented
through the use of random walk Metropolis–Hastings. Note that the Metropolis step will
make use of the conditional density for a, which is

f (a |p)3
C(a)

C(a/N)N
pa/N−1
1

. . . pa/N−1
N

f (a). (21)

To illustrate our method, we simulated n=45 observations from a normal mean mixture
model with s

X
=1 and with an underlying mixing distribution with support points

{−3, 1, 2} having equal probabilities. Figures 1 and 2 contain the results from the Gibbs
sampler, where we have used a Ga(2, 2) prior for a and we have selected N to equal the
sample size.
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Fig. 1. (a) Posterior values for Y
i
based on 45 values of X

i
where each X

i
was simulated from a normal mean

mixture with s
X
=1 and with a mixing distribution having support {−3, 1, 2} with uniform probabilities

(1
3
, 1
3
, 1
3
). Values for X

i
and true values for Y

i
are superimposed using the symbols x and y respectively. Plot

is based on 4500 sampled values following an initial 2500 iteration burn-in using the Gibbs sampling scheme
described in § 3·2 with N=n=45 and a~Ga(2, 2). The Metropolis step for a had approximately a 34%
acceptance rate. (b) Averaged values for random measures P(b)

N
evaluated over a refined partition for b=

1, . . . , 4500; the solid curve is a smoothed version of the individual points.

The posterior values ( p(b), Z(b), K(b) ) and resulting random measures P(b)
N

obtained from
the Gibbs sampler were used to study the finite-dimensional distribution of P*

N
evaluated

over a refined partition {B1 , . . . , Bd} for Y:

(P*
N

(B1), . . . , P*
N

(B
d
))=A ∑N

k=1
p*
k
{Z*

k
µB1}, . . . , ∑

N

k=1
p*
k
{Z*

k
µB

d
}B . (22)

For example, consider Fig. 1(b), which estimates (22) by averaging the different values of
P(b)
N

evaluated over a refined partition. As we can see the estimate has uncovered two
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Fig. 2. Posterior distribution of the number of distinct Y
i

values from the model of Fig. 1.

distinct modes with the posterior being unable to delineate between the two distinct values
1 and 2 of Y.

Another way to study the number of mixture components is to consider the posterior
number of distinct Y

i
values, although in general this method tends to overestimate the

number of components. Looking at Fig. 2, we find that most of the posterior distribution
is concentrated on anywhere from 2 to 6 clusters, thus presenting evidence for the presence
of at least 2 components. This analysis agrees very closely with what we will see in § 4,
when we revisit this example with a larger value for N, and hence a more accurate approxi-
mation to the Dirichlet process.

3·3. Density estimation

The normal mean mixture model has a simple extension to density estimation problems.
By introducing s

X
as a parameter, the model can be used to estimate the unknown density

for the observations X
i
. In a classical setting, this would be similar to density estimation

using a normal kernel with a bandwidth value √s
X
. In a Bayesian context, this is a

semiparametric hierarchical model where (X
i
|Y
i
, s
X
)~N(Y

i
, s
X
), and corresponds to the

hierarchical model (1) when extended to include the finite-dimensional parameter s
X
. An

especially convenient choice for a prior for s
X

is the inverse gamma,

(s−1
X
|c1 , c2 )~Ga(c1 , c2),

where we select c1=c2=0·001 to yield a noninformative prior.
This model can be fitted using the same Gibbs sampler as before, although steps

(16)–(20) must now include the value for s
X
. An additional step is needed for the con-

ditional distribution for s
X
, but this is simple because of conjugacy:

(s−1
X
|X, Z, K)~Ga qc1+n/2, c

2
+ ∑

n

i=1
(X

i
−Z

K
i

)2/2r .
The output from the Gibbs sampler can be easily used to estimate a predictive density

for a future observation X
n+1

. Let f (X
n+1
|X) represent the predictive density for X

n+1
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conditioned on the data X, and let Y
n+1

be the corresponding unobserved Y value. Then

f (X
n+1
|X)= P f (X

n+1
|Y
n+1

, s
X
) dp(Y

n+1
, s
X
|X)

= PP f (Xn+1
|Y
n+1

, s
X
) dp(Y

n+1
|P) dp(P, s

X
|X).

For a probability measure P(.)=WN
k=1

p
k
d
Z
k

( . ),

P f (X
n+1
|Y
n+1

, s
X
) dp(Y

n+1
|P)= ∑

N

k=1
p
k
f (X

n+1
|Z

k
, s
X
). (23)

Consequently, f (X
n+1
|X) can be approximated by averaging the mixture of normal densi-

ties (23) over the sampled values ( p(b), Z(b), s(b)
X

) obtained from the Gibbs sampler. A
predictive density estimate can then be derived by evaluating the averaged density over a
refined partition.

To illustrate the method, we reanalysed the galaxy data in Roeder (1990), representing
the relative velocities of n=82 galaxies from six well-separated conic sections of space.
The data have also been studied by Escobar & West (1995), using a Dirichlet process and
the Escobar–West–MacEachern Gibbs sampling algorithm outlined in the Introduction.
To allow our results to be more easily compared to theirs, we used their choice of a
Ga(2, 4) prior for a.

Figure 3 represents the predictive density estimate (23) for the galaxy data obtained by
our Gibbs sampling scheme with N=n=82. Figure 3(a) shows the mean value averaged
over 5 batches of 1000 sampled values, following an initial 2500 iteration burn-in. From
Fig. 3(a) we see that there appear to be 5 or 6 distinct modes in our predictive density
estimate. The number of distinct modes can also be studied by looking at the posterior
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Fig. 3. Density estimation for relative velocities in thousands of kilometers/second for 82
galaxies (Roeder, 1990). (a) Posterior predictive density averaged over 5 different batches
each of size 1000. (b) Twenty-five randomly selected posterior densities. All predictions are
over the same refined partition. Posterior calculations are based on 5000 sampled values
following an initial 2500 iteration burn-in using the Gibbs sampler outlined in §§ 3·2 and 3·3.
The model used N=n=82 and a~Ga(2, 4). The Metropolis step for a had a 36% acceptance

rate.
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distribution of C
N
, the number of distinct Y

i
values, although this only provides an upper

bound. Looking at Table 1, we see that there are anywhere from 6 to 10 distinct clusters,
with nearly half of the posterior probability on 7 or 8 clusters. These findings are similar
to those seen in Escobar & West (1995, Table 5).

Table 1. Posterior probabilities of the number of distinct Y
i
values

from Fig. 3 for the galaxy data

k ∏5 6 7 8 9 10 11 12 >12

pr (C
N
=k |X) 0·01 0·12 0·24 0·24 0·18 0·11 0·06 0·02 0·02

The mixing behaviour of the Markov chain can be studied by considering the autocorrel-
ations of the Y

i
values from the Gibbs sampler. We re-ran the previous analysis using 3000

sampled values following an initial 1000 iteration burn-in. In this second run, we fixed a
at 1·2, the mean value from our previous analysis, in order to facilitate a simpler compari-
son to the Escobar–West Gibbs sampling algorithm; we used the same Gibbs sampler
described in Escobar & West (1995). The autocorrelations from both these Gibbs samplers
are recorded in Fig. 4 and are based on the same priors for s

X
and for the mean h and

variance s
Z

used in the normal reference distribution H. Looking at Fig. 4, we find that
our Gibbs sampler mixes well, with low autocorrelations for all parameters. This is in
contrast to the Escobar–West algorithm, which contains at least one group of Y values
with non-vanishing autocorrelations. This phenomenon is an inherent problem with the
one-coordinate-at-a-time Pólya urn sampling method, which suppresses the ability of
similar Y

i
values to change as the sampler iterates. Thus, a value for Y

i
can sometimes

persist for many iterations. See MacEachern (1994), MacEachern & Müller (1998) and
Escobar & West (1998) for more discussion and some suggested remedies.
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Fig. 4. Autocorrelations for each of the Y
i
values from the galaxy data based on 3000 sampled

values following a 1000 iteration burn-in. Models used the fixed value for a=1·2. (a) Gibbs
sampler of §§ 3·2 and 3·3, (b) Escobar–West Gibbs sampling algorithm.

Remark. Local bandwidth selection can also be easily accommodated by a simple exten-
sion to the normal mean mixture model. Local smoothing is introduced by modelling the
mean and variance for X

i
nonparametrically. In our previous notation, this would corre-

spond to setting Y
i
= (m

i
, s
X
i

) and (X
i
|Y
i
)~N(m

i
, s
X
i

), with the distribution of Y
i
a random
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distribution over the space of distributions for the mean and variance. Our Gibbs sampler
is easily modified to accommodate this setting; see Escobar & West (1995) and Müller,
Erkanli & West (1996) for motivation and examples.

4. B -  D  

4·1. Almost sure truncations

An approximation with an almost sure B(a, b, H) limit can be obtained by truncating
the higher-order terms in the sum-representation (3). This method gives an approximating
random probability measure

P
N
( . )=V1d

Z
1

( .)+ ∑
N

k=2
{(1−V1 )(1−V2) . . . (1−V

k−1
)V
k
}d
Z
k

( . ), (24)

where

p1=V1 , p
k
= (1−V1 )(1−V2 ) . . . (1−V

k−1
)V
k

(k=2, . . . , N) (25)

and the V
k

are independent Be(a
k
, b
k
) random variables with a

k
=a and b

k
=b, for

k∏N−1. We set V
N
=1 to ensure that p1+ . . .+p

N
=1 because

1− ∑
N−1

k=1
p
k
= (1−V1) . . . (1−V

N−1
).

In order to sample the posterior of the nonparametric hierarchical model associated
with (24) efficiently, we need to be able to perform an efficient multivariate update for the
conditional distribution of p=( p1 , . . . , pn ) as defined in (9). At the same time, however,
we also need to ensure that the choice for N in the truncation leads to an adequate
approximation of the beta two-parameter process.

4·2. Exact updates for the conditional distribution of p

In fact, for any a
k
and b

k
, the p defined by (25) has a generalised Dirichlet distribution,

written, following the style of Walker & Muliere (1997) and Muliere & Walker (1998), as

p~G(a1 , b1 , . . . , aN−1 , bN−1 ).

By Connor & Mosimann (1969), its density equals

q aN−1
k=1

C(a
k
+b

k
)

C(a
k
)C(b

k
)r pa1−11

. . . paN−1−1N−1
pbN−1−1N

× (1−P
1
)b
1
−(a

2
+b
2
) . . . (1−P

N−2
)b
N−2
−(a

N−1
+b

N−1
), (26)

where P
k
=p1+ . . .+p

k
. From this it easily follows that the distribution is conjugate for

multinomial sampling, and consequently the conditional distribution (9) for p defined with
a
k
=a and b

k
=b is G(a*

1
, b*
1
, . . . , a*

N−1
, b*
N−1

), where

a*
k
=a+m

k
, b*

k
=b+ ∑

N

j=k+1
m
j
=b+M

k
(k=1, . . . , N−1)

and m
k

is the number of K
i
’s which equal k, as before. Therefore, the conditional distri-

bution for p can be sampled exactly by using the sampling scheme for the generalised
Dirichlet distribution indicated by (25). This is very efficient, requiring simulation of only
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N−1 beta random variables, and the simple computations required to determine
m1 , . . . , mN

. For example, if P
N

is the truncated version of the (aH) process, then
a
k
=1, b

k
=a and the conditional distribution for p is a generalised Dirichlet distribution

with parameters a*
k
=1+m

k
and b*

k
=a+M

k
.

4·3. Selecting adequate truncation values N

An adequate truncation level N can be determined by considering the behaviour of the
higher-order p

k
values in the sum-representation (3) for P

2
. The following theorem can

be used as a guide for selecting N, as well as a diagnostic for assessing the adequacy for
the truncation.

T 2. For each positive integer N
1 and each positive integer r
1, let

U
N
(r)=A ∑2

k=N
p
kBr, W

N
(r)= ∑

2

k=N
pr
k

for the p
k

defined in (4). T hen

E{U
N
(r)}=q b(r)

(a+b)(r)rN−1, (27)

E{W
N
(r)}=q b(r)

(a+b)(r)rN−1 a(r)

(a+b)(r)−b(r)
, (28)

where c(r)=c(c+1) . . . (c+r−1) for each c>0 and c(0)=1.

Note that the expected values for U
N
(r) and W

N
(r) depend only upon the values of a, b

and N, and therefore they can be evaluated from the output of our Gibbs sampler in the
case when a and b are parameters. In particular, we can assess the adequacy of the
truncation level N by estimating moments of the tail probability

U
N
(1)=W

N
(1)= ∑

2

k=N
p
k
.

One can test whether or not U
N
(1) is small enough from the Gibbs sampler output by

evaluating its mean (27) as well as its variance

var{U
N
(1)}=E{U

N
(2)}−[E{U

N
(1)}]2.

Also note that the value for W1(r) can be used to study the sampling behaviour of P
2

.
For example, with a nonatomic H,

P
2

{Y1= . . .=Y
r
}=E{W1(r)}.

Proof of T heorem 2. First consider the case when N=1. Obviously U1(r)=1, which
leaves us to determine W1 (r). By the method of construction (4) for the values p

k
, it follows

that, in distribution,

W
1
(r)=V r

1
+ (1−V

1
)rW

1
(r),

where, on the right-hand side, W1 (r) is independent of V1 . Taking expectations and simplify-
ing, we obtain

E{W
1
(r)}=

E(V r
1
)

1−E(1−V
1
)r

.
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The rth moment for V1~Be(a, b) equals a(r)/(a+b)(r). From this and the rth moment for
1−V1~Be(b, a), deduce that

E{W
1
(r)}=

a(r)

(a+b)(r)−b(r)
.

To complete the theorem, note that, from (4),

U
N
(r)={(1−V

1
) . . . (1−V

N−1
)}rU

1
(r),

W
N
(r)={(1−V

1
) . . . (1−V

N−1
)}rW

1
(r),

where the two equalities are in distribution, and where, on the right-hand sides, both U1 (r)
and W1(r) are independent of V1 , . . . , VN−1 . Take expectations to arrive at (27) and (28).

%

4·4. T runcation values for the (aH) and the B(a, 1, H) processes

Recall that the (aH) process is derived from the random probability measure con-
struction (3) and (4) using independent V

k
~Be(1, a) random variables. Therefore, if we

use the identity (1+a)(r)=a(r) (a+r)/a, it follows from (27) that

E{U
N
(r)}=A a

a+rBN−1, (29)

and from (28) that

E{W
N
(r)}=A a

a+rBN−1 C(r)C(a+1)

C(a+r)
.

Note that the tail moment (29) is an increasing function in a. This reflects the fact that,
in the Dirichlet process, the expected number of distinct Y values is directly proportional
to the concentration parameter a; see for example Korwar & Hollander (1973) or Antoniak
(1974). In fact, the (aH) process converges weakly in distribution to H as a�2, and
with a nonatomic H we are assured of a sample with all distinct values in the limit.

This is in contrast to the B (a, 1, H) process, which is the random probability measure
(3) constructed with independent V

k
~Be(a, 1) variables. This reverses the role of the a

and b parameters used in constructing the Dirichlet process. In particular, from (27), we
have

E{U
N
(r)}=q 1(r)

(a+1)(r)rN−1,
which shows that the number of distinct values in Y increases as a�0 and decreases
as a�2.

In applying a truncation to each of these processes, we have to be careful that the
resulting random probability measure is still rich enough to model adequately the non-
parametric hierarchical model. This can be tested by looking at the tail probability
U
N
(1)=W2

k=N
p
k

over a range of a values. Consider Fig. 5, which plots the mean and
variance for U

N
(1) for various values of a and N. Figures 5(a), (b) for the Dirichlet process

show that we can use values of a up to 10 and still have a negligible tail probability once
N is reasonably large, such as N=50. Since most applications will involve values of a in
this range, we can expect an adequate truncation for reasonably large values of N. In
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contrast, Figures 5(c), (d) for the B(a, 1, H) process show that there can still be a substan-
tial amount of tail probability for the range of values 0<a<0·1, even for very large N.
Therefore, if we expect a large number of distinct Y values, and hence a small a, it would
appear prudent to choose a large value of N to ensure an adequate truncation.
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Fig. 5. Comparison between the tail probability U
N
(1)=W2

k=N
p
k

for the Dirichlet (aH) process,
shown in (a) and (b), and for the beta two-parameter B (a, 1, H ) process, shown in (c) and (d). (a) and
(c) show the mean tail probability E{U

N
(1)} over various values of a and N. (b) and (d) show the

variance, var{U
N
(1)}.

Figure 5 also illustrates a key difference between the two processes. Figures 5(b), (d)
show that there is substantially higher variability in the tail probabilities of the beta two-
parameter process. In fact, for small values of a, the variance of U

N
(1) can be at least 20

times higher than that for the Dirichlet process, at any a value, and this difference increases
rapidly as N becomes large. This implies that the B(a, 1, H) process tends to spread its
p
k

values less evenly than the Dirichlet process, and consequently it will tend to produce
fewer distinct values than the Dirichlet process. This can be an advantage in finite mixture
modelling, as we now describe.
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4·5. Normal mean mixture models for the (aH) and B (a, 1, H) processes

Using the truncation just discussed, we compare the B (a, 1, H) process to the (aH)
for the normal mean mixture data considered in § 3·2. Fitting these data proceeds by using
the same Markov chain Monte Carlo algorithm as before, although we now can take
advantage of exact sampling for a. A nice feature of the truncation approximation is that
we no longer need to run a Metropolis step for a. In particular, for the (aH) truncation,
it follows from (26) that the conditional density for a is

f (a |p)3aN−1pa−1
N

f (a),

and with a Ga(n1 , n2 ) prior for a it follows that

(a |p)~Ga(N+n1−1, n2−log p
N
). (30)

Exact sampling is also possible in the B(a, 1, H) truncation, because

f (a |p)3aN−1pa−1
1

. . . pa−1
N−1

(1−P
1
)−a . . . (1−P

N−2
)−a f (a)

and consequently

(a |p)~Ga qN+n1−1, n2− ∑
N−1

k=1
log p

k
+ ∑

N−2

k=1
log (1−P

k
)r . (31)

We compared the two processes using a truncation level of N=250, and we also
ran the mixture of Dirichlet processes approximation used in § 3 with this new larger
value for N. The results are depicted in Fig. 6 and are based on the same priors and
Gibbs sampling strategy that we used earlier. As Fig. 6 shows, the posterior number of
distinct cluster values is roughly similar in all three models, although the beta two-
parameter posterior tends to put less mass on two clusters. With such a large value
for N, it is not surprising that the two Dirichlet process approximations yield similar
results, but it is surprising that these results are close to those observed for the beta
two-parameter approximation. One possible explanation is that in all three models we
found the posterior for a to have a mean of approximately 1, which is the value at
which their limits are identical. Another explanation is that the B (a, 1, H ) process, like
the Dirichlet process, may be very good at uncovering the underlying components in
a finite mixture model. As we noted earlier, the manner in which it distributes its p

k
values ensures that it generates few distinct Y values, making it a practical tool in
problems like this.

The truncation level of N=250 that we have used appears to be more than adequate.
We kept track of the mean and variance for the tail probability U

N
(1) based on the

sampled value for a. In the Dirichlet truncation these quantities had average values
smaller than 10−26, and in the beta two-parameter truncation they were smaller than
10−6. Unfortunately, there is no simple method for testing the adequacy of the mixture
of Dirichlet processes approximation. However, given the similarity of the results to
the truncation approximation, it would appear that N is sufficiently large. Interestingly,
the posterior observed earlier for N=n=45 is still quite similar to the results seen
here. Even with such a small value for N, the approximation appears to be good.
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Fig. 6. Posterior distribution of the number of distinct Y
i
values for the normal mean mixture data used in

Fig. 1. Models are based on (a) the weak limit Dirichlet process approximation of § 3, (b) truncation of the
Dirichlet process, and (c) truncation of the B(a, 1, H ) process. In each case, N=250 with the same priors

and sampling scheme employed as in the analysis for Fig. 1.

5. D

For the Dirichlet process, both the truncation approximation and the mixture of
Dirichlet processes approximation involve Markov chain Monte Carlo algorithms that
require roughly the same amount of computation. However, the truncation-based approxi-
mation offers the advantage of exact sampling for a, which becomes very relevant as N
increases. With a large value of N, it can sometimes happen that a few p

k
values become

extremely small, and this can lead to serious numerical problems when running the
Metropolis step; see equation (21).

Small p
k
values are still an issue in evaluating the conditional distributions (30) and (31)

for a in the (aH) and B(a, 1, H) processes. However, there is a simple way to increase the
numerical stability if we remember that the current value for p is sampled from a generalised
Dirichlet distribution. Since the value of p is constructed in terms of V

k
beta random variables

in (25), it means that we can re-express the conditional distribution for a in terms of V
k
, as

long as we remember to keep track of these terms each time we update p. For the (aH)
process, the conditional distribution (30) can be rewritten as

(a |p)~Ga qN+n1−1, n2− ∑
N−1

k=1
log(1−V

k
)r ,
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while, for the B (a, 1, H) process, a nice cancellation occurs in the two sums in (31), giving

(a |p)~Ga AN+n1−1, n2− ∑
N−1

k=1
log V

kB .
Another attribute of the truncated Dirichlet process is that its accuracy increases expo-

nentially in terms of N. To see why, recall from § 4 that the Dirichlet process tail probability
has moments which decrease exponentially fast in N:

E{U
N
(r)}=E A ∑2

k=N
p
kBr=A a

a+rBN−1.
Therefore, if Y1 , . . . , Yn is a sample from the Dirichlet process P

2
, then

P
2

{Y1=Z
K
1

, . . . , Y
n
=Z

K
n

, where 1∏K1 , . . . , Kn
<N}=E{1−U

N
(1)}n,

which can be bounded by

E[exp{−nU
N
(1)}]=1+O qn A a

a+1BN−1r .
Note that the sample size n makes almost no impact on the exponential decrease in the
mean of U

N
(1), and consequently the sampling behaviour under P

N
and P

2
will be almost

identical. This is much better than the accuracy of the weak limit approximation of § 3,
which depends on the accuracy of the empirical measure j

N
. One method for gauging the

weak limit accuracy is through Theorem 1. Using these bounds we find that the difference
in the distinct number of values under P

N
and the Dirichlet process is order O( log n/N).

Thus, for the same value of N we anticipate exponentially higher accuracy using a
truncation.

Another benefit in using a truncation-based approximation is that there is a simple
diagnostic based on Theorem 2 for assessing its adequacy. As demonstrated, this diagnostic
can easily be evaluated from the output of the Gibbs sampler and applies to the Dirichlet
process, as well as to the beta two-parameter process. Unfortunately, there appears to be
no simple method for assessing the adequacy of the weak limit approximation discussed
in § 3.
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