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SUMMARY

Therapeutic blocking of the PD1 pathway results
in significant tumor responses, but resistance is
common. We demonstrate that prolonged inter-
feron signaling orchestrates PDL1-dependent and
PDL1-independent resistance to immune checkpoint
blockade (ICB) and to combinations such as radia-
tion plus anti-CTLA4. Persistent type II interferon
signaling allows tumors to acquire STAT1-related
epigenomic changes and augments expression of
interferon-stimulated genes and ligands for multiple
T cell inhibitory receptors. Both type I and II inter-
ferons maintain this resistance program. Crippling
the program genetically or pharmacologically inter-
feres with multiple inhibitory pathways and expands
distinct T cell populations with improved function
despite expressing markers of severe exhaustion.
Consequently, tumors resistant to multi-agent ICB
are rendered responsive to ICB monotherapy.
Finally, we observe that biomarkers for interferon-
driven resistance associate with clinical progression
after anti-PD1 therapy. Thus, the duration of tumor
interferon signaling augments adaptive resistance
and inhibition of the interferon response bypasses
requirements for combinatorial ICB therapies.
INTRODUCTION

Immune checkpoint blockade (ICB) is rapidly becoming an effec-

tive therapeutic option for several cancer types (Topalian et al.,

2015). Despite this success, resistance and relapse are com-

mon. One important mechanism of resistance is the upregulation
1540 Cell 167, 1540–1554, December 1, 2016 ª 2016 Elsevier Inc.
of PDL1 (Topalian et al., 2015; Tumeh et al., 2014), a ligand for

the T cell inhibitory receptor PD1. T cell inhibitory receptors

(TCIRs), or immune checkpoint receptors, such as PD1, promote

tolerance to self-antigens and limit immune-mediated pathology

that can result from persistent antigen and chronic inflammation

(Pauken and Wherry, 2015). PD1 serves this negative regulatory

function by promoting T cell exhaustion. Exhausted T cells (TEX)

have reduced proliferative and functional capacity that includes

diminished cytokine and cytolytic activity. This dysfunctional

state can be partially reversed, or reinvigorated, to improve

effector function. Hence, the clinical activity of PD1/PDL1

blockade in cancer may be related to the reinvigoration of TEX
that develops as a result of a pre-existing immune response or

to preventing the development of TEX after therapy is initiated.

An additional hallmark of TEX is the expression of multiple

inhibitory receptors, such as CTLA4, TIM3, LAG3, TIGIT, and

others (Blackburn et al., 2009; Pauken and Wherry, 2015). The

co-expression of multiple TCIRs on TEX suggests that these

additional inhibitory pathways may drive PD1/PDL1-indepen-

dent resistance mechanisms that can be targeted to improve re-

sponses. Across several cancer types, up to 50% of patients

with PDL1+ tumors are either resistant or relapse after PD1/

PDL1 blockade (Herbst et al., 2014; Powles et al., 2014; Taube

et al., 2014), consistent with the need to antagonize parallel

PDL1-independent resistance mechanisms. However, how to

rationally combine ICB agents with each other or other therapies

is not obvious. In particular, the TEX population appears hetero-

geneous in TCIR expression, exhaustion-related markers, and

reinvigoration potential (Blackburn et al., 2008; He et al., 2016;

Im et al., 2016; Utzschneider et al., 2016). For example, in

chronic viral infections, TEX expressing high levels of multiple

TCIRs are considered less susceptible to reinvigoration by

PD1/PDL1 blockade. Thus, approaches to effectively prevent

the development of or reinvigorate a broader and more recalci-

trant subset of TEX may have therapeutic importance for

immunotherapy.
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Figure 1. PDL1-Dependent and PDL-Independent Resistance to RT and Anti-CTLA4

(A) Res 499 relapsed 3 weeks after RT + anti-CTLA4.

(B and C) (B) Representative contour plot of in vivo PDL1 expression on melanoma cells (blue) and CD45+ immune cells (red) from Res 499 tumors implanted into

IFNGKO mice or (C) mice treated with anti-CSF1R. Percentages for boxed populations are indicated.

(D) Survival of untreated mice with Res 499 or Res 499 PDL1KO tumors (far left) or mice treated with RT + anti-CTLA4 with or without anti-CSF1R or anti-PD1

(n = 5–15).

(E) JB2, which is from a Res 499 PDL1KO tumor, relapsed 2 months after therapy.

(legend continued on next page)
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The balance between immune-mediated tumor elimination

and escape is influenced by many factors. Interferons (IFNs)

are typically considered important in the generation of an anti-

tumor immune response. Type I IFN (IFN-I) promotes dendritic

cell function and CD8 T cell cross-priming, whereas interferon-

gamma (IFNG), a type II IFN, influences both host and tumor cells

to favor rejection of highly immunogenic tumors (Mittal et al.,

2014). Both IFNs appear to be particularly critical for early

T cell priming and activation events with less effect on tumor

response when either is antagonized at later times (Diamond

et al., 2011). In contrast, under conditions of prolonged IFN

signaling and persistent antigen exposure, accumulating evi-

dence indicates that IFNs can have immunosuppressive roles

(Minn and Wherry, 2016). For example, in cancer, the upregula-

tion of PDL1 by IFNG is an ‘‘adaptive resistance’’ mechanism.

Here, tumor cells respond to IFNG as part of a negative feedback

event to inhibit the immune response (Spranger et al., 2013;

Taube et al., 2012). Countering adaptive resistance appears to

be a major therapeutic effect of PD1/PDL1 blockade. In total,

these observations suggest that opposing immunomodulatory

functions of IFNs may influence the balance between immune-

mediated elimination and immune escape.

Recently, we examined the molecular and immune determi-

nants of response to the combination of anti-CTLA4 and radia-

tion (RT) for metastatic melanoma (Twyman-Saint Victor et al.,

2015). Although the combination regimen can result in durable

responses with RT contributing to T cell repertoire diversification

and ICB driving oligo-clonal T cell expansion, a majority of mice

and patients treated with RT + anti-CTLA4 were either resistant

or relapsed. The upregulation of PDL1 in the tumor was deter-

mined to be an important resistance mechanism to RT + anti-

CTLA4 and was associated with persistent T cell exhaustion or

poor reinvigoration as measured in the post-treatment blood of

mice and patients. However, although the addition of anti-PD1/

PDL1 to RT + anti-CTLA4 improved responses in mice, resis-

tance and/or relapse still occurred, indicating the existence of

additional immunosuppressive pathways.

RESULTS

Cancer Cells Drive PDL1-Dependent and
PDL1-Independent Adaptive Resistance Mechanisms to
Radiation and Anti-CTLA4
Previously, we demonstrated in a mouse model and a clinical

trial for metastatic melanoma that high levels of PDL1 expressed

on cancer cells are an important resistance mechanism to RT

and anti-CTLA4. Because PDL1 can also be expressed on infil-

trating immune cells in the tumor, we sought to investigate the
(F) Tumor growth in mice treated with or without RT + anti-CTLA4 (n = 5). ***p <

(G) Predicted survival of metastatic melanoma patients treated with RT + anti-CTL

score on melanoma cells and macrophages. Estimates are based on out-of-bag

(H) Overall survival after starting anti-PD1 for patients initially treated with RT + a

anti-PD1 are indicated.

(I) Relative expression of IFN and IFN receptor genes from whole tumor lysates.

microarray are indicated. Error bars are SDs.

(J) IFNG levels in the blood of mice bearing Res 499 tumors after RT + anti-CTLA

Unless indicated, error bars are SEM of biological replicates. See also Figure S1
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contribution of these other sources of PDL1 to resistance. In

tumors from mice subcutaneously implanted with Res 499, a

subline of B16-F10 (B16) melanoma that relapsed 3 weeks after

RT + anti-CTLA4 (Figure 1A), high levels of PDL1 originate from

both melanoma cells and CD45+ immune cells and is partially

dependent on host IFNG (Figure 1B). A variety of immune cells

expressed PDL1; however, the highest level was observed on

F4/80+ tumor-associated macrophages (TAMs) (Figure S1A),

which was confirmed by depletion with an anti-CSF1R antibody

(Figures 1C and S1B). Thus, IFNG drives high levels of PDL1 on

both melanoma cells and immune cells, consistent with adaptive

resistance.

To examine the relative contribution of PDL1 on melanoma

and/or immune cells to resistance, we disrupted PDL1 on Res

499 cells by CRISPR, depleted TAMs with anti-CSF1R, or dis-

rupted PDL1 in Res 499 and blocked the remaining PDL1/PD1

interactions with anti-PD1. The largest improvement in survival

after RT + anti-CTLA4 was observed when PDL1 was inhibited

on both Res 499 and non-melanoma cells (Figure 1D); however,

resistance persisted in�40% of mice, indicating that even when

both melanoma and immune cell PDL1 are inhibited, a large pro-

portion of mice still relapse. Re-transplantation of these relapsed

PDL1KO Res 499 cells (denoted as JB2) confirmed reversion of

resistance back to wild-type Res 499 levels, indicating that

JB2 cells had stably acquired PDL1-independent resistance

(Figures 1E and 1F). To corroborate these findings, we examined

tumors from patients treated on our clinical trial of RT + anti-

CTLA4 and modeled overall survival as a function of PDL1 sur-

face staining intensity and positivity on melanoma cells and

macrophages. Both melanoma cell and macrophage PDL1 sta-

tus independently contribute to survival, with higher PDL1

intensity scores on each cell type predicting for worse outcome

(Figures S1C and S1D). However, similar to mice, although pa-

tients with low PDL1 expression on melanoma cells and macro-

phages have improved survival (Figure 1G), a significant fraction

still has �40%–50% risk for death (Figure 1G, left). Moreover,

several patients who progressed after RT + anti-CTLA4 subse-

quently received anti-PD1 but nonetheless experienced further

disease progression irrespective of PDL1 status on cancer cells

and/or macrophages (Figure 1H). Taken together, these clinical

and preclinical results demonstrate that, although PDL1 on mel-

anoma and immune cells is an important adaptive resistance

mechanism, resistance frequently persists despite blocking

these cellular sources of PDL1. The profound resistance that

can develop even when melanoma cells lack PDL1 prompted

us to focus on additional PDL1-independent resistance path-

ways controlled by cancer cells (hereafter also referred to as

tumor cells).
0.001 versus Res 499 RT + anti-CTLA4.

A4 modeled by random survival forest using the combined IHC PDL1 intensity

samples. Error rate is 38.7 ± 0.01% with n = 13.

nti-CTLA4 on a clinical trial. Progression, time of progression, and death after

Mean (gray line) and first and third quartiles (dashed lines) of all genes on the

4 (n = 7). *p < 0.05.

.
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Figure 2. Prolonged Tumor IFNG Signaling Is Sufficient to Instigate Resistance to RT + Anti-CTLA4, while Type I and II IFN Signaling

Maintains PDL1-Independent Resistance

(A and B) (A) Tumor volumes (day 17, split y axis) and (B) survival of mice with indicated tumors treated with RT + anti-CTLA4 (n = 5–10).

(C) Standard (D5) and delayed treatment schedules for anti-CTLA4 + anti-PDL1. Sizes of B16 tumors prior to treatment for each schedule are shown (left).

(D) Tumor volumes for B16 tumors with or without IFNGRKO treated with anti-CTLA4 + anti-PDL1 according to indicated schedule.

(E) Tumor volumes relative to the average of untreated controls for B16 tumors with IFNGRKO or IFNA/GRKO.

(F and G) (F) Survival of mice with Res 499 tumors with or without indicated KO or (G) after treatment with RT + anti-CTLA4 (n = 5–10).

(legend continued on next page)
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Prolonged Tumor IFN Signaling Drives
PDL1-Independent Resistance to ICB
IFNG drives PDL1 expression, which may be regulated by either

type I or II IFNs. Therefore, we sought to investigate whether IFNs

could orchestrate resistance beyond the upregulation of PDL1.

Both Res 499 and JB2 were derived from tumors that initially re-

sponded to RT + ICB but subsequently relapsed several weeks

after initiation of therapy. Type I and II IFN transcripts are present

in both B16 and Res 499 whole tumors (Figure 1I) and can in-

crease significantly after therapy, in particular IFNG (Figure 1J).

To potentially mimic IFN conditions in the tumor microenviron-

ment post-therapy, we treated parental B16 cells with various

doses of either IFNG or IFN-I for 2 weeks in culture, followed

by removal of IFN and continuous culture for another week.

Treating B16 cells with prolonged IFNG (B16g) was sufficient

to confer resistance to RT + anti-CTLA4 to levels approaching

Res 499 (Figures 2A and 2B). In contrast, prolonged IFN-I

signaling did not confer resistance (Figure S2A), and signaling

through type III IFNs was not detected (Figure S2B). These re-

sults demonstrate that exposure to persistent IFNG is sufficient

to render sensitive melanoma resistant to RT + anti-CTLA4.

Prolonged tumor growth accompanied by an ineffective T cell

response would be expected to result in persistent IFN exposure

in vivo. Therefore, to examine whether acquisition of resistance

in vivo can occur after prolonged tumor growth and IFN expo-

sure, we used three different treatment schedules that first

allowed tumors to grow to substantially larger sizes prior to ther-

apy (Figure 2C). For the treatment, anti-PDL1 instead of RT was

combined with anti-CTLA4 to eliminate rapid cytoreduction from

RT and to examine for PDL1-independent resistance. As ex-

pected, mice with B16 tumors responded to a standard dosing

schedule at day 5 but failed to respond when therapy was

delayed until day 10 (Figure 2D). In contrast, mice bearing B16

tumors with knockout of the IFNG receptor (IFNGRKO) (Fig-

ure S2C) maintained their ability to respond despite the delay.

Importantly, IFNGRKO had no effect onB16 tumorswhen therapy

was not delayed (Figure 2D, D5 schedule), supporting the notion

that signaling through the tumor IFNG receptor was not influ-

encing primary resistance but rather driving PDL1-independent

adaptive resistance.

Even though prolonged IFN-I signaling in vitro did not appear

sufficient to confer resistance, we investigated whether the IFN-I

receptor (IFNAR) might influence B16 tumor response when ab-

lated with IFNGR. In the absence of therapy, double IFNGR and

IFNAR knockout (IFNA/GRKO) tumors (Figure S2D) displayed

similar tumor growth as control tumors (Figure S2E) and similar

to IFNGRKO tumors (Figure S2F). However, when treatment

was delayed until day 13 (but not earlier), IFNA/GRKO appeared

more effective than IFNGRKO at sustaining responsiveness to

therapy (Figure 2E). This effect of IFN was observed only after

prolonged tumor growth and therapy delay, prompting us to

examine the role of each IFN receptor in maintaining resistance.
(H) Gene set analysis examining transcriptomic features associated with resistanc

499) with parental tumors. Individual gene scores are on top along with an overall g

sorted tumor cells with indicated KO (rows). Red is high expression and blue is l

(I) Growth of JB2 tumors with or without IFNA/GRKO after RT + anti-CTLA4 (n = 5

See also Figures S2 and S3.
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Type I and II IFN Signaling in Tumor Cells Maintains
PDL1-Independent Resistance
To distinguish a role for type I and/or II tumor IFN signaling in

maintaining as opposed to initiating resistance, we utilized Res

499 tumors with IFNGRKO or IFNAR knockout (IFNARKO) (Figures

S2G and S2H). This revealed that disrupting either IFN receptor

did not alter Res 499 tumor growth in the absence of treatment

(Figure 2F) but restored response of these resistant tumors to

RT + anti-CTLA4 to levels similar to parental B16 tumors (Figures

2G and 2B). Examination of in vivo transcriptomic changes

demonstrated that each receptor partially diminished expression

of top upregulated genes representing transcriptomic features

acquired by Res 499 tumors as a consequence of relapsing after

RT + anti-CTLA4 (Figure 2H). IFNA/GRKO (Figure S2I) led to the

largest decrease in genes associated with resistance and had

the largest effect on multiple biological processes related to

IFN signaling, as well as other pathways (Figure S3A). Given

the more comprehensive effect of IFNA/GRKO, we knocked out

both IFN receptors in JB2 cells to directly establish their role in

maintaining PDL1-independent resistance (Figure S2J). Indeed,

despite JB2 cells lacking PDL1 and having acquired resis-

tance through PDL1-independent means, IFNA/GRKO restored

response of JB2 tumors to RT + anti-CTLA4 (Figure 2I). Thus,

these results indicate that type I and II IFN signaling contributes

to maintaining a PDL1-independent resistance state.

Prolonged IFN Drives STAT1-Related Epigenomic and
Transcriptomic Features of Resistant Tumors
The effect of prolonged IFNG signaling in vitro and in vivo on

PDL1-independent resistance suggests possible epigenetic in-

fluence. Indeed, persistent IFNG stimulation resulted in elevated

levels of constitutive STAT1 as observed in B16g cells even after

continuous culture in the absence of exogenous IFNG (Fig-

ure 3A). To investigate if elevated STAT1 might be associated

with how the epigenome responds to in vivo signals in the tumor

microenvironment, we performed ATAC-seq on sorted mela-

noma cells to assess differences in open chromatin regions

(OCRs). This revealed that prior chronic IFNG exposure alters

the in vivo epigenome of B16 to partially resemble that of Res

499 (Figure 3B). Analysis of differential OCRs in B16g and Res

499 relative to B16 demonstrated that a significant fraction

(45.9%) of differential OCRs acquired by B16g overlapped with

those acquired by Res 499 (Figure 3C). A de novo motif search

showed that many motifs within the differential OCRs found in

B16g and Res 499 significantly matched to STAT1 sites (Fig-

ure S3B), and many were shared between B16g and Res 499

(Figure 3C, p = 5.3 3 10�47 for overlap by hypergeometric

test). ATAC-seq revealed DNA footprinting centered at discov-

ered STAT1 motifs, and these footprints increased in Res 499

and B16g relative to B16, consistent with increased STAT1 oc-

cupancy within these OCRs (Figure 3D). This increase in inferred

STAT1 occupancy and STAT1 levels in B16gwas correlated with
e to RT + anti-CTLA4, derived from comparing resistant B16 tumors (e.g., Res

ene score and p value. Heatmap shows relative gene expression (columns) for

ow.

–10). Unless indicated, error bars are SEM of biological replicates.
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Figure 3. STAT1 Regulates a Multigenic Resistance Program to ICB

(A) Protein levels of STAT1 after 2 weeks of in vitro IFNG treatment of B16 cells followed by 1-week washout (denoted B16g).

(B) Principle components analysis of differential OCRs from ATAC-seq of melanoma cells sorted from mice with the indicated tumors.

(C) Differential OCRs (rows) from B16g versus B16 (left) or Res 499 versus B16 (right) are shown for all tumors (columns) color-coded (bottom of heatmap) the

same as the PCA plot. OCRs with predicted STAT1 binding sites are shown (black lines beside heatmaps).

(D) Normalized coverage fromATAC-seq reads at base pair positions centered on STAT1motifs. A fitted smoothing spline is shown for Res 499 or B16g (dark red)

or B16 (blue).

(E and F) (E) Tumor volumes (day 15, split y axis) or (F) survival of mice bearing Res 499 tumors with STAT1KO and/or PDL1KO after RT + anti-CTLA4 (n = 10–15).

(G) Correlation between Stat1 and the indicated genes from microarray analysis of whole tumor lysates. Blue dots indicate p < 0.05.

(H) Heatmap of gene correlation matrix with correlation value color coded per the legend.

(I) Undirected ARACNE network graph using TCGA human melanoma expression data. Edges are weighted by mutual information scores, and nodes are color

coded by functional groups.

(J) Correlation between STAT1 and other genes in the network under conditions where PDL1 expression (x axis) or CD8A expression (y axis) is restricted to low/

intermediate (left) or high (right) expression values. Blue dots indicate p < 0.05.

(K) Gene set analysis of TCIRs, TCIR ligands, and ISGs. Individual gene scores are on top along with an overall gene score and p value. Heatmap shows relative

expression of genes (columns) for sorted tumor cells with indicated KO (rows). Red is high expression and blue low.

See also Figure S3.
the in vivo acquisition of transcriptomic features associated with

relapse from RT + anti-CTLA4 (Figure S3C, left). Indeed, these

transcriptomic features showed a high degree of STAT1 depen-

dency, as demonstrated by STAT1KO in Res 499 tumors (Fig-

ure S3C, right). STAT1KO in Res 499 also inhibited resistance

to RT + anti-CTLA4 (Figures 3E and 3F), and STAT1KO together

with PDL1KO (Figure S3D) led to better tumor response
compared to either knockout alone, consistent with STAT1 regu-

lating PDL1-independent resistance. Thus, prolonged IFNG

alters the melanoma epigenome in vivo to partially resemble

that of resistant tumors. STAT1 occupancymay underlie a signif-

icant proportion of these changes to influence transcriptomic

features of resistant tumors and to regulate PDL1-independent

resistance pathways.
Cell 167, 1540–1554, December 1, 2016 1545



A Multigenic Resistance Program of TCIR Ligands
and ISGs
Genome-wide effects of persistent IFN signaling and acquisition

of PDL1-independent resistance appeared to converge onto

enhanced STAT1 expression and/or activity. Thus, we reasoned

that genes associated with STAT1 could provide insight into ef-

fectors involved in PDL1-independent resistance. Due to the

large number of genes differentially expressed in Res 499

compared to B16, we integrated transcriptomic data from mice

and patients to examine only genes that included (1) annotated

type I and II IFNs; (2) ISGs that we previously described to be

robustly expressed across human cancers (Weichselbaum

et al., 2008); and (3) common TCIRs, their ligands, and immuno-

suppressive effectors such as IDO1. Analysis of unsorted Res

499 and B16 tumors revealed that, in resistant tumors, Stat1

preferentially correlated with genes encoding multiple TCIR li-

gands that included TNFRSF14 (HVEM), LGALS9 (Galectin-9),

and MHC class II (MHCII)—ligands for CD160 and BTLA,

HVARC2 (TIM3), and LAG3, respectively (Figure 3G). A similar

pattern was observed with the ISGs Ifit1 and Mx1.

Using expression data from TCGA, we sought to corroborate

the significance of the TCIR ligands and ISGs that preferentially

associate with STAT1 in resistant mouse tumors. Because many

of the examined genesmay simply correlate with the presence of

a T cell infiltrate, we also added CD8A, GZMA, and PRF1, which

can act as a surrogate for T cell infiltration and cytolytic activity

(Rooney et al., 2015). Despite a high degree of correlation among

most of the examined genes (Figure 3H), network analysis re-

veals that STAT1 is the only gene that connects the IFNG/CD8

T cell infiltrate genes, ISGs, and a cluster of TCIR and TCIR li-

gands through PDL1 (Figure 3I). To mimic the effect of elevated

PDL1 found in Res 499 compared to B16, we examined how cor-

relations between STAT1 and other genes in the network change

when PDL1 gene expression is high versus when it is low (Fig-

ure 3J). Indeed, when PDL1 is high, STAT1 more strongly and

significantly correlates with TNFRSF14, LGALS9, MHCII,

CD86, and the ISGs MX1 and IFIT1 compared to when CD8A

levels are high, suggesting that these associations are not simply

due to higher T cell infiltration. Thus, in both Res 499 tumors and

human melanoma tumors with high PDL1 expression, an over-

lapping set of TCIR ligands and ISGs preferentially associates

with STAT1. We denote this set of multiple TCIR ligands

(PDL1, TNFRSF14, LGALS9, MHCII, CD86) and cancer-associ-

ated ISGs (IFIT1 and MX1) as IDILS, or interferon-driven inhibi-

tory ligands and ISGs. Transcriptomic analysis of sorted tumor

cells revealed that IDILS increases in B16g compared to B16

and decrease as a consequence of STAT1KO (Figure 3K). Treat-

ment of Res 499 cells in vitro with IFNG or IFN-Is confirmed that

IFNs directly regulate the TCIR ligands that comprise IDILS (Fig-

ure 4A). Thus, IDILS is IFN and STAT1-dependent and increases

as a result of prolonged IFNG signaling.

Inhibiting Tumor IFN Signaling Antagonizes Multiple
TCIR Ligands and Resistance
Examining in vivo expression of IDILS TCIR ligands confirmed

elevated expression in Res 499 compared to B16 (Figure 4B,

top two rows). B16g showed increased expression for some,

but not all, of these ligands, and this expression was generally in-
1546 Cell 167, 1540–1554, December 1, 2016
termediate between B16 and Res 499. Interestingly, although

most TCIR ligands are influenced by both type I and II IFNs,

some ligands like LGALS9 are preferentially affected by IFN-I,

while others such as MHCII are predominantly influenced by

IFNG (Figure 4A). Indeed, distinct effects by type I versus type

II IFNs on TCIR ligands and other IDILS genes are observed

in vivo when each receptor is disrupted, and the most severe ef-

fects on IDILS occur with IFNA/GRKO (Figure 4C). The effect of

IFNA/GRKO and the STAT1 dependency of TCIR ligands was

also confirmed by flow cytometry of in vivo tumors (Figure 4B,

bottom two rows). Thus, inhibiting both IFN receptors in tumor

cells effectively collapses IDILS and its multiple TCIR ligands.

To assesswhether IDILS TCIR ligands can contribute to PDL1-

independent immune suppression, we used a combination of

genetic and blocking antibody approaches. Given the near-

absent baseline expression of TNFRSF14 and reports that it

can interact with multiple TCIRs that include CD160 and BTLA

(Wherry and Kurachi, 2015), we utilized CRISPR to ablate

TNFRSF14 in Res 499 PDL1KO tumors (Figure S4A). The addi-

tional blockade of the TNFRSF14 pathway improved response

to RT + dual blockade of PDL1 and CTLA4 (Figure 4D). To inter-

rogate LGALS9 and MHCII, a blocking antibody to TIM3 and

LAG3 was used, respectively. For these experiments, RT was

omitted due to unexpected high toxicity when RT was combined

with triple ICB (data not shown). Nonetheless, blocking either the

LGALS9/TIM3 or MHCII/LAG3 pathways improved response to

dual blockade of CTLA4 and PDL1, while quadruple blockade

had the best effect (Figures 4E and 4F). Blocking TIM3 and

LAG3 also improved ICB efficacy in the Res 237 resistant breast

cancer model (Figure 4G). Similar to Res 499, Res 237 tumor

cells originated from a breast tumor that initially responded to

RT + anti-CTLA4 but relapsed weeks later. Thus, IDILS TCIR li-

gands can contribute to PDL1-independent resistance.

Although initial response to ICB is improved by blocking mul-

tiple IDILS TCIR ligands, most mice relapse (Figures 4F and 4G);

however, we reasoned that IFNA/GRKO would be more effective

due to disruption not only of multiple TCIR ligands but other

IDILS and IFN-associated pathways as well (Figures 2H and

S3A). Indeed, IFNA/GRKO markedly improved response and sur-

vival to anti-CTLA4 + anti-PDL1 compared to addition of TIM3

and/or LAG3 blockade (Figure 4H). Thus, interfering withmultiple

TCIR ligands and potentially other suppressive mechanisms

associated with IDILS effectively improves ICB response and

survival.

Inhibiting IFN-Driven Resistance Expands Distinct
Populations of Exhausted T Cells after ICB
Exhausted T cells are a heterogeneous population that differs in

their capacity for reinvigoration after ICB. Part of this heteroge-

neity is due to increased severity of exhaustion with increasing

co-expression of multiple TCIRs. We reasoned that interfering

with multiple TCIR ligands as part of blocking IDILS could

enhance expansion of the T cell repertoire particularly by

affecting severely exhausted T cells co-expressing multiple

TCIRs. To investigate this, we first developed an approach to

identify populations of T cells expressing distinct TCIR co-

expression patterns (Figure S4B). Nine robust T cell clusters

were identified (Figures 5A, 5B, and S5A). T cells in four clusters
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Figure 4. Blocking IFN-Driven Resistance Interferes with Multiple TCIR Ligands and Improves Response to ICB

(A) Expression of TCIR ligands on Res 499 cells after in vitro treatment with indicated type I or II IFN.

(B) Expression of TCIR ligands. Shown are representative histograms andMFI values from biological replicates. Isotype controls are shown in histograms on top.

(C) Gene set analysis of TCIRs, TCIR ligands, and ISGs. Individual gene scores are on top along with an overall gene score and p value. Heatmap shows relative

expression of genes (columns) for sorted tumor cells with indicated KO (rows). Red is high expression and blue low.

(D) Survival of mice bearing Res 499 tumors with indicated KO after RT + anti-CTLA4 (n = 20).

(E and F) (E) Tumor growth and (F) survival of mice with Res 499 tumors treated with anti-CTLA4 + anti-PDL1 alongwith anti-LAG3 and/or anti-TIM3 (n = 5–15). For

comparison with anti-CTLA4 + anti-PDL1, *p = 0.02 and ***p < 0.001. For quadruple ICB versus anti-CTLA4 + anti-PDL1 + anti-LAG3, p < 0.01.

(G) Survival of mice with Res 237 ICB-resistant breast cancer tumors treated with indicated ICB (n = 5–10).

(H) Tumor growth and survival of mice bearing Res 499 tumors with or without IFNA/GRKO after anti-CTLA4 + anti-PDL1 (n = 5).

Unless indicated, error bars are SEM of biological replicates. See also Figure S4.
express either high or intermediate levels of PD1 (Cl.1, Cl.5.2,

Cl.5.3, and Cl.5.5). Among these, clusters Cl.1 and Cl.5.5 exhibit

co-expression of multiple TCIRs but lack high expression of any

individual TCIR (PD1intTCIRlow cluster). In contrast, Cl.5.2 and

Cl.5.3 are PD1highTCIRhigh clusters showing highly elevated

expression of multiple TCIRs (Figure 5B), a cardinal feature of

severely exhausted T cells (Blackburn et al., 2009).

Although all T cell clusters could be identified in the tumor,

tumor-reactive CD8 TILs, as measured by a tetramer to the

known melanoma antigen TRP2 (McWilliams et al., 2006), pre-

dominantly belonged to the PD1highTCIRhigh Cl.5.2 and Cl.5.3
clusters (Figure S5B). The proportion of T cells in these

PD1highTCIRhigh clusters either increased or remained the

same after treating mice with Res 499 tumors with anti-

CTLA4 + anti-PDL1. Furthermore, the proportion of

Ki67+GzmB+ TILs in either the total CD8 TIL population (Fig-

ure 5C) or in TILs from individual clusters failed to increase (Fig-

ures 5D and 5E). In contrast, IFNA/GRKO or STAT1KO altered the

frequency of TRP2+ CD8 TILs in response to dual ICB, resulting

in an increase in the proportion of PD1highTCIRhigh Cl.5.2 T cells

(Figures S5B and S5C). This was accompanied by an ICB-medi-

ated increase in the proportion of Ki67+GzmB+ TILs (Figure 5C)
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Figure 5. Inhibiting IFN-Driven Resistance Preferentially Expands Distinct Populations of TEX

(A) Feature summary of nine populations (clusters) of CD44high CD8 peripheral T cells identified using co-expression of six TCIRs. Heatmap shows the scaled MFI

(rows) characterizing each cluster (columns). Clusters are additionally categorized (bottom boxes) by TCIR and PD1 status (see legend). Baseline frequency of

T cells in each cluster compared to total splenic T cells (boxplot) and frequency of Ki67high T cells is also shown (black box indicates too few events).

(B) Co-expression of the six TCIRs on T cells belonging to the PD1highTCIRhigh clusters Cl.5.2 and Cl.5.3.

(C) Percentage of CD8 TILs that are Ki67+GzmB+ from Res 499 tumors with or without IFNA/GRKO grouped by anti-CTLA4 + anti-PDL1 treatment (ICB).

(D and E) (D) Distribution of Ki67+GzmB+ CD8 TILs in each TCIR cluster and (E) percentage of Ki67+GzmB+ T cells in each TCIR cluster.

(F) Representative contour plots of PD1 and Eomes expression (red) and Ki67 and GzmB expression (blue) from CD8 TILs belonging to the PD1highTCIRhigh Cl.5.2

cluster.

(G) Percentage of indicated peripheral PD1+ T cells over time. ICB was given at day 13.

(H) Pie chart summarizing the average frequency of PD1+ CD8 peripheral T cells in each TCIR cluster.

(I) Day 20 percentage of Eomes+ Ki67+GzmB+ T cells in each TCIR cluster after ICB.

(J and K) (J) Representative contour plots and (K) summary of Eomes and Ki67/GzmB status in T cells from the indicated TCIR clusters at day 20. Ki67/GzmB

analysis is restricted to the Eomes+ population from each cluster.

Unless indicated, error bars are SEM of biological replicates. See also Figure S5.
that preferentially affected the Cl.5.2 cluster (Figures 5D–5F).

Thus, blocking tumor IFN signaling along with ICB leads to a

preferential accumulation of PD1highTCIRhigh Cl.5.2 TILs with

markers of improved function.

To better assess population expansion dynamics, we per-

formed serial analysis of peripheral blood on mice before and

after anti-CTLA4 + anti-PDL1. After dual ICB (given on day 13),

mice with Res 499 IFNA/GRKO tumors demonstrated a large
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expansion in PD1+ peripheral T cells compared to mice with

wild-type Res 499 tumors (Figure 5G). Furthermore, IFNA/

GRKO led to a larger fraction of PD1+ T cells that were Ki67/

GzmB positive despite concomitantly expressing Eomes, a tran-

scription factor typically expressed by severely exhausted T cells

with limited proliferative potential. This increase was apparently

driven by a larger proportion of PD1+ T cells belonging to the

PD1highTCIRhigh Cl.5.2 and Cl.5.3 clusters (Figure 5H) and by



A

B C

D

E G

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Res 237
Res 237, aCTLA4
IFNA/GRKO

IFNA/GRKO, aCTLA4

p<0.001

Res 237 Breast Cancer

P
ro

po
rt

io
n 

S
ur

vi
va

l

F

IFNARKO

IFNGRKO

IFNA/GRKO

Res 499

aCTLA4 Monotherapy

Days
10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5

aPD1 Monotherapy

10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

T
um

or
 V

ol
um

e 
(c

m
3 )

Days

Control JAKi Tumor

0

-10
3

10
3

10
4

P
D

L1

0

-10
3

10
3

T
N

F
R

S
F

14
0-103 103 104 105

0

-10
3

10
3

10
4

10
5

M
H

C
II

0-103 103 104 105

500

1000

1500

p=0.032

p=0.008

250

500

750

1000

1250

p=0.008

N.S.

200

400

600

800

1000
p=0.016

N.S.

CD45+

250

500

750

N.S.

500

1000

N.S.

0

500

1000

1500

2000

2500
N.S.

IgG Res
499

IgG Res
499

JAKiCont

IgG Res
499

IgG Res
499

JAKiCont

M
F

I
M

F
I

M
F

I

CD45

5 8 11

8 9 10 11 12

JAKi

aCTLA4

Days

5 6 7 8 9

D8

D5

Schedule T
um

or
 V

ol
um

e 
(c

m
3 )

10 15 20 25
0

0.2

0.4

0.6

0.8

1.0 aCTLA4
aCTLA4+JAKi
JAKi
Control

Days

D8 Schedule D5 Schedule

aCTLA4
aCTLA4+JAKi

p<0.001

p<0.001
(vs aCTLA4) p=N.S.

Res 237 Breast Cancer

10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0 Control
aCTLA4
aCTLA4+JAKi
JAKi

T
um

or
 v

ol
um

e 
(c

m
3 )

10 12 14 16 18
0.0

0.2

0.4

0.6

0.8

1.0

Days Days

Res 499 Melanoma

Days

P
ro

po
rt

io
n 

S
ur

vi
va

l Res 499, aCTLA4
IFNARKO, aCTLA4
IFNGRKO, aCTLA4
IFNA/GRKO, aCTLA4

p<0.001

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

***

***
***

***

***
***

p=0.005
(vs aCTLA4)

p<0.001

Figure 6. Disrupting IFN-Driven Resistance Renders Highly Multi-ICB Resistant Tumors Sensitive to ICB Monotherapy

(A) Tumor growth of Res 499 tumors with the indicated IFN receptor KO after anti-PD1 (left) or anti-CTLA (right) (n = 5–10). ***p < 0.001 for comparisons with Res

499. For anti-CTLA4 (right), p = 0.037 for IFNA/GRKO versus IFNGRKO.

(B and C) (B) Effect of IFN receptor KO on survival of mice with Res 499 tumors or (C) Res 237 ICB-resistant breast cancer tumors treated with anti-CTLA4

(n = 5–10).

(D) Contour plot of indicated TCIR ligands in Res 499 tumors from mice after treatment with a JAK inhibitor (JAKi). Red contours represent melanoma cells and

blue indicate CD45+ immune cells. Statistical summary from biological replicates is shown on right.

(E) Treatment schedules for anti-CTLA4 and JAKi.

(F) Tumor growth curves of Res 499 tumors from each treatment schedule (D8, n = 10; D5, n = 7).

(G) Tumor growth of Res 237 breast cancer tumors treated with anti-CTLA4 and/or JAKi for five days starting on day 10 (n = 6).

Unless indicated, error bars are SEM of biological replicates. See also Figure S6.
the preferential increase in the fraction of Eomes+ Ki67+GzmB+

T cells in both of these populations (Figure 5I). In contrast, the

TCIRlow and/or PD1low/int populations Cl.1, Cl.5.1, and Cl.5.5

failed to show a similar increase. For the PD1highTCIRhigh Cl.5.2

population, the expansion of Eomes+ Ki67+GzmB+ T cells result-

ing from IFNA/GRKO was associated with an increase in both the

proportion of Eomes+ versus Eomes– T cells and in the fraction of

Eomes+ T cells that were Ki67+GzmB+ (Figures 5J and 5K). For

the PD1highTCIRhigh Cl.5.3 group, the vast majority of T cells

already expressed Eomes irrespective of IFN receptor status.

In total, these observations suggest that crippling multiple

TCIR ligands and IDILS results in accumulation of distinct popu-

lations of PD1highTCIRhighEomes+ TEX that otherwise would be

recalcitrant to reactivation.
Targeting IFN-Driven Resistance Restores Response to
ICB Monotherapy
Tumor IFN signaling drives expression of IDILS genes, contrib-

utes to PDL1-independent resistance to RT + anti-CTLA4, and

can be ablated to preferentially expand otherwise severely ex-

hausted T cells and improve response to combination ICB. We

reasoned that, if inhibiting IDILS is functionally equivalent to

blocking multiple TCIR pathways and other suppressive genes

en bloc, such an effect might even restore sensitivity to ICB

monotherapy. Indeed, although triple or quadruple ICB was

required to significantly improve response of Res 499 tumors

(Figures 4E and 4F), IFNGRKO and/or IFNARKO allowed for

response to anti-PD1 monotherapy and to anti-CTLA4 mono-

therapy (Figure 6A) with the largest effect typically observed
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with IFNA/GRKO. In fact, when both type I and II IFN receptors

were eliminated from Res 499 tumors, complete responses

and long-term survival were observed after anti-CTLA4 mono-

therapy (Figure 6B). Remarkably, with Res 237 breast cancer

tumors, which also show elevated levels of genes involved in

IFN-driven resistance (Figure S6A), IFNA/GRKO led to 100%

complete response and survival after anti-CTLA4 alone (Fig-

ure 6C). Improved response to ICB monotherapy after inhibiting

tumor IFN signaling was CD8 T cell dependent (Figures S6B

and S6C). Accordingly, MHC class I surface expression was

maintained in vivo despite blocking tumor IFN signaling, albeit

at expectedly lower levels (Figures S6D and S6E). This constitu-

tive MHC-I is consistent with baseline expression of MHC-I

and antigen processing machinery observed across melanoma

and breast cancer cell lines largely in the absence of IFNs

(Figure S6F).

Similar to genetic ablation, administration of a JAK1/JAK2 in-

hibitor (JAKi) ruxolitinib decreases multiple TCIR ligands on tu-

mor cells (Figures 6D and S6G). At the dose used, effects on

immune cells appeared less pronounced, although downward

trends in expression were evident. A delayed administration of

JAKi after start of ICB (Figure 6E, D8 schedule) resulted in

improved response of both Res 499 melanoma and Res 237

breast cancer tumors (Figures 6F and 6G). Starting JAKi at the

same time as anti-CTLA4 did not result in improved response

(Figures 6E and 6F, D5 schedule), consistent with the require-

ment for early IFN signaling for immune cell function (Diamond

et al., 2011). In total, these results demonstrate that inhibiting

IFN signaling genetically or pharmacologically can restore

response to ICB monotherapy even with tumors that are highly

resistant to extensive ICB combination therapy.

High Expression of ISGs Can Associate with Clinical
Progression after Anti-PD1
The IDILS resistance program is comprised of two ISGs, IFIT1

and MX1. Since these ISGs are co-expressed with the TCIR li-

gands and also regulated by tumor IFN signaling, we examined

whether their expression could be associated with lack of clinical

response to ICB. To test this, we used the average expression of

IFIT1 andMX1 and computationally modeled clinical response to

anti-PD1 using a recently published cohort of melanoma patients

(Hugo et al., 2016). To guard against bias, out-of-bag (OOB)

samples, or samples not used in constructing the model, pro-

vided estimates of model error rate and variable importance

scores. Given the known association between neo-antigen

burden and anti-PD1 response (Rizvi et al., 2015), we included

the number of non-synonymous somatic mutations, or single-

nucleotide variants (nsSNVs), in the model. The OOB error rates

for overall accuracy and association with response or progres-

sion were all �39%, which likely is influenced by the small sam-

ple size (Figure 7A). Both nsSNVs and IFIT1/MX1 contributed to

prediction accuracy, as measured by a variable importance

score (Figure 7B). Examination of partial plots, which adjust for

the effects of other variables in the model, reveals that likelihood

of response increases with low IFIT1/MX1 expression and high

nsSNV load (Figure 7C). These relationships are further demon-

strated in a scatterplot whereby the majority of patients that

responded (blue circles) distribute to the lower right quadrant,
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representing high nsSNV load and low IFIT1/MX1 expression

(Figure 7D). Accordingly, these patients also generally have a

higher OOB predicted likelihood of response (larger circles).

Because of high correlations between IFIT1/MX1with the mul-

tiple genes originally examined for IFN-driven resistance (Figures

7E and 3H), we used bootstrapping and previously described

variable selection methods (Ishwaran et al., 2010) to better

assess performance of IFIT1/MX1 and nsSNVs against these

other TCIRs, TCIR ligands, and ISGs. This revealed that nsSNVs

and IFIT1/MX1 are themost frequently selected variables among

bootstrap samples, suggesting that they robustly associate with

response (Figure 7E, right). Interestingly, IFN-I is also frequently

selected, has a high importance score relative to the other

genes, and negatively correlates with anti-PD1 response (Fig-

ure 7F). In total, these results provide correlative clinical evi-

dence that high expression of IDILS genes and IFN signaling

associate with progression after anti-PD1.

DISCUSSION

Several clinical observations reflect the complex biology of IFN

signaling in immunotherapy (Minn and Wherry, 2016). A major

source of IFNG in the tumor microenvironment is T cells

(Spranger et al., 2013). Since T cell infiltration is essential to

generate an anti-tumor response, IFNG-related gene expression

can correlate with response to immunotherapy (Gajewski et al.,

2011; Galon et al., 2013). However, IFNGalso regulates inducible

expression of PDL1 on tumor and immune cells. Accordingly,

with immunotherapy regimens that do not block the PD1/PDL1

pathway, PDL1 and ISGs can portend relapse (Fu et al., 2015;

Twyman-Saint Victor et al., 2015; Vanpouille-Box et al., 2015).

In contrast, when regimens include anti-PD1/PDL1, the pres-

ence of PDL1 and IFNG-related genes can favorably predict

response due to the effectiveness of these agents at inhibiting

PD1 activation. However, for a majority of patients, anti-PD1/

PDL1 does not appear sufficient despite having PDL1/IFNG-ex-

pressing tumors (Taube et al., 2014). Our study reveals that this

can result from PDL1-independent adaptive resistance associ-

ated with distinct TCIR ligands, ISGs, and IFN-I gene expression.

In total, these clinical observations highlight how IFNs can track

with favorable immune parameters but yet orchestrate PDL1-

dependent and PDL1-independent immune suppression.

Our data suggest that the development of PDL1-independent

resistance is influenced by the nature and duration of IFN

signaling in the tumor microenvironment. Adequate early pro-

duction of type I IFNs promotes dendritic cell activation and

T cell cross-priming (Diamond et al., 2011). IFNG signaling on

host and tumor cells can also be important early during immune

activation, particularly in tumors with limited baseline MHC-I

expression (Dighe et al., 1994). However, our data support the

notion that sustained IFN signaling contributes not only to

PDL1 expression but also to PDL1-independent adaptive resis-

tance. Mechanistically, prolonged IFNG signaling changes how

tumor cells epigenetically respond to in vivo signals. STAT1

occupancy appears to associate with these epigenomic differ-

ences and is responsible for elevated expression of cancer-

related ISGs and multiple TCIR ligands on resistant tumors.

Interestingly, STAT1 has been shown to increase after persistent
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Figure 7. ISGs Associated with IFN-Driven Resistance Can Predict Clinical Response to Anti-PD1
A random forest model for melanoma response/progression after anti-PD1 was developed using the number (Log10) of nsSNVs and the average mRNA

expression of IFIT1 and MX1 (IFIT1/MX1) for a cohort of 27 patients.

(A and B) Shown are (A) overall error rates, error rates for progression or response, and (B) variable importance scores (greater than 0 is deemed significant)

determined from out-of-bag (OOB) samples. Error bars represent Monte Carlo SDs.

(C) Partial plots showing the adjusted effects of the indicated variables on the probability of response. Red dashed lines are standard errors.

(D) Predicted probabilities of response fromOOB samples as a function of IFIT1/MX1 and nsSNVs. Larger circle sizes represent higher probability (legend). Actual

response (blue) and progression (red) are denoted by circle color. Quadrants are divided by values from partial plots approximating 50% probability of response.

(E) Association between IFIT1/MX1 and nsSNVs with clinical response to anti-PD1 compared to other genes. Gene expression correlation is shown in the

heatmap (left). The frequency of bootstrap samples that each variable was selected as significant for predicting response and its variable importance are plotted

(right). Gray dotted line for each axis is the upper 5% quantile. Top variables are highlighted in blue and IDILS TCIR ligands in red.

(F) Partial plot representing the adjusted effects of IFN-I on the probability of response. Red dashed lines are standard errors.

(G) Model for IFN-driven resistance.
IFN stimulation to maintain a subset of ISGs, including IFIT1 and

MX1 (Cheon and Stark, 2009). Given the extensive number of

type I, II, and III IFNs, multiple members from this large family

may have similar or distinct effects. Thus, the nature of IFN

signaling may regulate the balance between immune-mediated

tumor elimination and escape and when PDL1-independent

adaptive resistance dominates over PDL1 alone.

The ability of ICB to prevent or to reverse T cell dysfunction or

exhaustion is thought to be an important pharmacological mech-
anism of action for these agents (Pauken andWherry, 2015). This

is best defined in models of chronic infection where increasing

antigen burden and duration of viremia result in the accumulation

of PD1high TEX with elevated expression of multiple TCIRs and

conversion from Eomes– to Eomes+. These PD1highEomes+ TEX
with co-expression of multiple TCIRs are severely exhausted

and have limited proliferative potential (Blackburn et al., 2009).

Thus, PD1 blockade preferentially reinvigorates PD1intEomes–

TEX that are Tbet+ to give rise to PD1highEomes+ TEX (Blackburn
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et al., 2008; Paley et al., 2012). Recent studies also demonstrate

that a PD1+CXCR5+ CD8 T cell population that resides in

lymphoid niches with low expression of inhibitory receptor li-

gands like PDL1 is a target for reactivation by PD1 blockade

(He et al., 2016; Im et al., 2016). Thus, given the heterogeneity

of the TEX population, determining the TEX subset that is more

responsive to ICB and/or devising approaches to reinvigorate

deeply exhausted PD1highEomes+ TEX populations may be an

effective strategy to improve response to immunotherapies.

Addressing this notion, we show that, in mice with ICB-resistant

tumors, inhibiting tumor IFN signaling along with ICB increases

the fraction of PD1highTCIRhigh Cl.5.3 and/or Cl.5.2 TEX that is

Ki67+GzmB+ in both the tumor and periphery, consistent with re-

invigoration of TEX and/or prevention of exhaustion. In contrast,

T cells from TCIRlow clusters are less impacted. Moreover,

knockout of tumor IFN signaling results in Cl.5.2 and Cl.5.3

peripheral T cells that are almost exclusively Eomes+. In

contrast, peripheral PD1highTCIRhigh Cl.5.2 and Cl.5.3 TEX from

mice with intact tumor IFN signaling show more mixed Eomes

status after ICB. Whether tumor IFNA/GRKO primarily promotes

the conversion of reinvigorated Eomes– TEX to Eomes+ TEX in

populations such as Cl.5.2, facilitates direct reinvigoration of

Eomes+ TEX, or prevents the development of the exhausted state

will require further investigation. Regardless, in mice with ICB-

resistant tumors, blocking tumor IFN signaling can expand the

T cell repertoire by preferentially increasing the proportion of

PD1highTCIRhighEomes+ Ki67+GzmB+ T cells that otherwise

would be severely exhausted (Figure 7G).

Recently, two melanoma patients who initially responded

to anti-PD1 but suffered late relapse were discovered to have

mutations in JAK1 or JAK2 (Zaretsky et al., 2016). In another

study, melanoma patients who failed to respond to anti-

CTLA4 were found to have copy number alterations in IFN

pathway genes (Gao et al., 2016). Together with the findings

described here, these data suggest an emerging framework

for resistance to ICB that consists of primary resistance, ac-

quired resistance, and PDL1-dependent and PDL1-indepen-

dent adaptive resistance. Primary resistance occurs due to

selective pressures often related to tumor growth or survival

that coincidently render cancers non-responsive to therapy.

In contrast, acquired resistance occurs as a result of direct

selective pressure imposed by treatment. Both are often due

to mutational or genetic events. The copy number loss in

IFN pathway genes and mutations in JAK1/JAK2 represent

loss-of-function (LOF) examples of primary and/or acquired

resistance mechanisms to ICB. In both cases, it has been sug-

gested that such genetic events may be selected to circumvent

IFN-mediated cytostasis and cytotoxicity (Gao et al., 2016; Zar-

etsky et al., 2016), resulting in these tumors failing or relapsing

after ICB due to reliance on IFN-regulated antigen processing

or other positive immune effects. However, in contrast to LOF

resistance mechanisms, adaptive resistance has been pro-

posed to be a negative feedback response that antagonizes

anti-tumor T cells though functioning IFNG signaling pathways,

resulting in the upregulation of PDL1. These tumors, like the

tumors used in this study, may be poorly responsive to the

growth inhibitory effects of IFNs. Rather, prolonged IFN

signaling enables STAT1-related changes to the in vivo epige-
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nome and transcriptome that promote PDL1-independent

adaptive resistance through IDILS.

Whether IFN signaling is lost or retained may depend on the

existence of other immune suppressive pathways or anti-cyto-

static responses. Alternatively, rather than LOF and adaptive

resistance mechanisms competing, an interplay between the

two may exist. Our results demonstrate that type I and II IFNs

can separately contribute to maintaining IFN-driven resistance.

Therefore, an acquired JAK2 mutation may promote relapse

yet still allow type I IFN to maintain PDL1-independent adaptive

resistance. LOF mutations that affect both IFNAR and IFNGR

signal transduction, such as a JAK1mutation, may also influence

ICB response and resistance in complex ways. For example,

JAK1 LOF may promote ongoing response to PD1 blockade

and a long progression-free survival, as was reported in the

patient harboring a JAK1 mutation (Zaretsky et al., 2016). How-

ever, the late clinical relapse in this same patient may reflect a

critical issue on the durability of tumor responses when tumor

eradication relies upon the reinvigoration of TEX. We show that

IFNA/GRKO improves response of resistant tumors but preferen-

tially expands T cells belonging to PD1highTCIRhighEomes+ T cell

subsets. In chronic viral infection models, PD1 blockade of

PD1highEomes+ TEX fails to convert these cells into durable and

self-renewing memory T cells (Pauken et al., 2016). Thus, a

LOF JAK1 mutation may contribute to both initial response but

also to late relapse should residual disease persist beyond the

functional/proliferative capacity of reinvigorated PD1highTCIR-
highEomes+ T cells that undergo preferential expansion when tu-

mor IFN signaling is ablated. These opposing immunomodula-

tory effects of IFN signaling highlight a complex yet central role

for this pathway in influencing ICB response (Minn and Wherry,

2016), which likely reflects why both LOF and IFN-driven resis-

tance pathways exist.

Combining different ICB agents with each other or other

therapies is often empiric and can increase severe and life-

threatening toxicity with unclear benefit in unselected patients

(Johnson et al., 2016). Limiting the availability of multiple TCIR

ligands by disrupting tumor IFN signaling may functionally block

multiple TCIRs and serve as a general strategy to broadly target

T cell inhibitory pathways. Besides the IDILS genes studied

here, unidentified ISGs, and/or immune populations other than

T cells may also promote IFN-driven resistance. A multigenic

IFN-driven resistance program that goes beyond what we

initially characterize in this study likely contributes to why inter-

fering with tumor IFN signaling combined with ICB monotherapy

is more effective than even quadruple antibody-based ICB.

Thus, crippling a broad multigenic resistance program may

help to address some of the challenges with formulating combi-

nation therapies. Practically, this may be accomplished with

JAK inhibitors. The dose and schedule are likely critical and

will need optimization, as indiscriminately blocking IFN signaling

on host cells can interfere with the generation of anti-tumor

(Diamond et al., 2011) and anti-viral responses (Ng et al.,

2015; Sandler et al., 2014; Wilson et al., 2013). Nonetheless,

proper timing using a JAK inhibitor and biomarkers such as

MX1 and IFIT1 to identify tumors under the influence of IFN-

driven immune suppression may represent a feasible strategy

for inhibiting PDL1-independent resistance.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H-2 Kb TRP2 Tetramer MBL International Cat#:T03015

Anti-mouse CD8 MBL International Cat#:D271-4; RRID: AB_10597265

Anti-mouse TIGIT BD Biosciences Cat#:565270

Anti-mouse Ki67 BD Biosciences Cat#:563757

Anti-mouse LAG-3 BioLegend Cat#:125219; RRID: AB_2566571

Anti-mouse 2B4 Life Technologies Cat#:553305

Anti-mouse/human CD44 BioLegend Cat#:103031; RRID: AB_2076206

Anti-mouse TIM-3 BioLegend Cat#:119703; RRID: AB_345377

Anti-mouse/human Granzyme B Life Technologies Cat#:GRB17

Anti-mouse PD1 BioLegend Cat#:109110; RRID: AB_572017

Anti-mouse Eomes eBioscience Cat#:50-4875; RRID: AB_2574226

Anti-mouse CD45.2 BioLegend Cat#:109822; RRID: AB_493731

Anti-mouse CD8a BioLegend Cat#:100713; RRID: AB_312752

Anti-mouse CD160 BioLegend Cat#:143008; RRID: AB_256267

Anti-mouse B220 eBioscience Cat#:47-0452

Anti-mouse CD4 eBioscience Cat#:47-0042

Anti-mouse NK1.1 eBioscience Cat#:47-5941

Anti-mouse CD3 BioLegend Cat#:100229

Anti-mouse MHCII BioLegend Cat#:107631

Live/Dead Aqua Life Technologies Cat#:L34957

Anti-mouse CD80 BioLegend Cat#:104731

Anti-mouse CD86 BioLegend Cat#:105043

Anti-mouse CD112 Abcam Cat#:EPR6717

Anti-mouse PD-L1 eBioscience Cat#:46-5982

Anti-mouse Galectin9 BioLegend Cat#:136103

Anti-mouse CD155 BioLegend Cat#:131511

Anti-mouse HVEM BioLegend Cat#:136305

Anti-mouse CD48 BioLegend Cat#:103431

Anti-mouse F4/80 BioLegend Cat#:123114

Anti-mouse CTLA-4 BioXCell Cat#:BE0131

Anti-mouse PD-L1 BioXCell Cat#:BE0101

Anti-mouse PD-1 Merck Cat#:mDX400

Chemicals, Peptides, and Recombinant Proteins

Ruxolitinib LC Laboratories Cat#:R-6688

Mouse interferon beta, carrier-free PBL Assay Science Cat#:12401-1

Recombinant murine interferon gamma PeproTech Cat#:315-05

Critical Commercial Assays

IFN gamma ELISA Kit ThermoFisher Scientific Cat#:KMC4022

TruSeq Stranded Total RNA Library Prep Kit Illumina Cat#:RS-122-2303

Nextera DNA sample prep Illumina Cat#:FC-121-1030

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibody Concentration Kit Abcam Cat#:Ab102778

FITC Conjugation Kit Abcam Cat#:Ab102884

Deposited Data

RNA and ATAC sequencing GEO GEO: GSE83850

Experimental Models: Cell Lines

Mouse: B16-F10 ATCC ATCC CRL-6475

Mouse: TSA Laboratory of Sandra Demaria PMID: 19706802

Mouse: 499, 237, 499 PDL1 KO Laboratory of Andy Minn PMID: 25754329

Mouse: JB2, all other CRISPR KO cell lines This paper N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Charles River Stock#:027

Mouse: BALB/c Charles River Stock#:028

Mouse: C57BL/6J The Jackson Laboratory Stock#:000664

Mouse: B6.129S7-Ifngtm1Ts/J The Jackson Laboratory Stock#:002287

Sequence-Based Reagents

See Table S1 for CRISPR/Cas9 gRNA Sequences: This paper Table S1

Software and Algorithms

R language and environment for statistical

computing and graphics

https://www.r-project.org N/A

Bioconductor and packages https://www.bioconductor.org N/A

CRAN https://cran.r-project.org/web/packages/ N/A

cutadapt https://pypi.python.org/pypi/cutadapt N/A

STAR https://github.com/alexdobin/STAR/releases N/A

Subread http://subread.sourceforge.net N/A

bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

N/A

Picard Tools https://broadinstitute.github.io/picard/ N/A

MACS2 https://pypi.python.org/pypi/MACS2 N/A

Wellington https://pypi.python.org/pypi/pyDNase/0.2.3 N/A

FIMO http://meme-suite.org/doc/fimo.html N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by, the Lead Contact Andy Minn (andyminn@

mail.med.upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of the

University of Pennsylvania. Five to seven week old female C57BL/6 (Stock# 027), BALB/c (Stock# 028), were obtained from Charles

River Laboratory. Five to seven week old female C57BL/6 (Stock# 000664) and IFNy KO (B6.129S7-Ifngtm1Ts/J –Stock# 002287)

were obtained from Jackson Laboratory (Bar Harbor, ME). Mice were maintained under pathogen-free conditions.

Human
The clinical trial of RT and anti-CTLA4 for metastatic melanoma patients (NCT01497808) has been described in detail (Twyman-Saint

Victor et al., 2015). The study protocol was approved by the University of Pennsylvania institutional review board. All participating

patients provided written informed consent.
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Cell Lines
B16-F10 melanoma cells, TSA breast cancer cells, and resistant sublines were derived and cultured as previously described (Twy-

man-Saint Victor et al., 2015).

METHOD DETAILS

Immunohistochemistry for PDL1
Details on PDL1 staining of formalin-fixed, paraffin-embedded tumors collected at the time of surgical resection or from biopsy have

been described (Twyman-Saint Victor et al., 2015). In brief, intensity of staining on a 0-3+ scale, the percent positive staining on tumor

cells or macrophages (identified by H&E and morphological features), and the cellular pattern (membrane versus cytoplasm) were

independently analyzed by two pathologists.

CRISPR gene targeting
Gene targeting by CRISPR/Cas9 was accomplished by co-transfection of a Cas9 plasmid (Addgene, 41815), the guide sequence

(selected using ZiFit Targeter) cloned into the gBlock plasmid, and a plasmid with the puromycin selection marker. Gene blocks

used contain a 20 bp target size (N), U6 promoter, gRNA scaffold, and termination signal. The sequence and sequences for each

guide used are listed in Table S1. Successful targeting of the gene(s) of interest was determined by treating cells with and without

100 ng/mL of interferon (IFN)-gamma (PeproTech), 1000 units/mL IFN-beta (PBL Assay Science), or both depending on the target

gene, and examining PDL1 and TNFRSF14 surface expression by flow cytometry. Knockout cells were sorted from a bulk knockout

population using Fluorescence Activated Cell Sorting (FACS) on the Aria (BD) or FACSJazz (BD) to maintain the diversity of the parent

cells.

In vivo mouse studies
Tumor injection and treatment schedule were done as previously described (Twyman-Saint Victor et al., 2015). Blocking antibodies

were given on days 5, 8, and 11 unless otherwise specified. Anti-CD8 was given on days �2, 0, 4, 8, 12, and 16. Anti-CSF1R was

given every 3 days starting on day 5. For in vivo experiments, antibodies to CTLA4 (9H10), PDL1 (10F.9G2), PD1 (Merck

mDX400), CD8 (2.43), and LAG3 (C9B7W), and were all administered intraperitoneally at 200 ug/dose. Anti-TIM3 (BE0115) was given

at 250 ug/dose, and Anti-CSF1R (AFS98) was given at 1mg/dose. Ruxolitinib was administered intraperitoneally at 60mg/kg. Isotype

controls were used to confirm the lack of non-specific effects and a similar response and survival to untreated mice.

Flow cytometry
Spleen and tumor were harvested at day 15 post tumor implantation. Single-cell suspensionswere prepared and red blood cells were

lysed using ACK Lysis Buffer (Life Technologies). Live/dead cell discrimination was performed using Live/Dead Fixable Aqua Dead

Cell Stain Kit (Life Technologies). Cell surface staining was done for 30 min at 4 degrees. TRP2 and Ova tetramer (MBL International)

staining was done at 37 degrees for 90min and then surface antibody staining was performed. Intracellular staining was done using a

fixation/permeabilization kit (eBioscience). All data acquisition was done using an LSR II (BD) or FACSCalibur (BD) and analyzed using

FlowJo software (TreeStar) or the FlowCore package in the R language and environment for statistical computing.

ELISA
Mice were treated with anti-CTLA4 on days 5, 8, 11 and 20 Gy RT to the right tumor on day 8. Peripheral blood was collected on days

3, 6, 10, 14, and 17, and plasma was centrifuged at 850 x g for 10 min. Supernatants were frozen in aliquots and subsequently

analyzed by ELISA for mouse IFN alpha (Affymetrix), beta (PBL Assay Science), and gamma (Life Technologies) according to man-

ufacturer’s instructions.

RNA-Seq of sorted mouse tumors
Mice were injected with tumors as previously described. On day 15 tumors were harvested, red blood cell lysis was performed, and a

single cell suspension was created. Tumor cells were stained with Live/Dead Aqua and CD45. Samples were sorted on an Aria (BD)

by gating on live, CD45 negative cells. Total RNA was isolated and purified from the cells using Isol-RNA Lysis Reagent (Fisher) and

treated with DNase I (Fisher). RNA-seq libraries were prepared using the TrueSeq Stranded Total RNA Library Prep Kit (Illumina) and

sequenced on Illumina HiSeq 2500 with 100 base paired end reads.

ATAC-Seq of sorted mouse tumors
ATAC-seq libraries were prepared as described previously (Buenrostro et al., 2013). Approximately 200,000 sorted tumor cells were

used for each library using the same sort methodology as RNA-seq. Libraries were sequenced on Illumina HiSeq 2500 with 100 base

pair end reads.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of tumor volume, growth curves, and survival curves
Mice were randomly assigned a treatment group and tumor volume determined by caliper measurements. Differences in survival

were determined for each group by the Kaplan-Meier method and the overall p value was calculated by the log-rank test using

the survival R package version 2.38-3. For mouse studies, an event was defined as death or when tumor burden reached a pre-

specified size to minimize morbidity. A mixed effect linear model using the lmerTest R package version 2.0 was used to determine

differences in growth curves. The significance of all two-way comparisons was determined by two-sample, two-tailed t test. For non-

parametric data, a Wilcoxon or Mann-Whitney test was used. Significance of tumor growth was determined by a mixed effect linear

model. Simple correlation between variables was done using a Spearman correlation.

Analysis of RNA-seq of sorted mouse tumors
Reads were trimmed first using cutadapt v1.9 with parameters -q 10 -m 30 -O 4. Trimmed reads that were aligned to rRNAs

sequences were removed and the remaining sequences were aligned to the GRCm38 reference genome using STAR v2.4.0k with

parameters –outFilterMultimapNmax 100 –outFilterMismatchNmax 999 –outFilterMismatchNoverLmax 0.06. Primary aligned reads

were counted against GENCODE annotation vM4 using Subread v1.4.6 with parameters -s 2 -minReadOverlap 10. The DESeq2 R

package version 1.10 was used for differential gene expression analysis.

Analysis of ATAC-seq of sorted mouse tumors
Reads were trimmed using cutadapt v1.9 with parameters -m 30 -O 4, and mapped to the reference genome using bowtie2 v2.2.4

with parameters –fr –no-mixed –no-discordant –X 2000. Reads were then deduplicated with Picard Tools v1.140. Secondary align-

ment and low quality reads (mapQ% 10) were filtered out and all reads aligning to the plus strand were offset by +4 bp, and all reads

aligning to the minue strand were offset �5 bp. Peaks were called using MACS2 v2.1.0 with parameters -f BAMPE –no-model and

FDR cutoff 0.01. Regions overlapping with the ENCODE ‘‘blacklist’’ were removed. TheDiffBindR package version 1.16 was used for

differential binding analysis with a false discovery rate of 0.10. The rGADEM R package version 2.18 was used for motif discovery.

Discoveredmotifs were thenmatched against the JASPAR database. Onlymotifs with an e-value < 10–6 and had a STAT1 binding site

ranking in the top 1% of all transcription factors examined were kept. For DNA footprinting, open chromatin regions (OCRs) were

scanned for transcription factor footprinting using Wellington with p value cutoff �10. Identified footprinted regions were then

extended 5bp on each side and scanned for STAT1 motifs using FIMO with default settings and Position Frequency Matrices

(PFMs) from the JASPAR database. Mapped reads from replicates were merged and the transposon cutting positions (50 end of

mapped reads) were counted around the identified motifs. Counts were normalized to the total insertion sites in OCRs.

Analysis of mouse and human genes associated with STAT1
Using either mousemicroarray data for Res 499 and B16 tumors or patient melanoma data from TCGA, the strength of the correlation

between STAT1 and genes from a manually curated gene list that included previously described cancer-associated ISGs (IFI44,

IFIT1, IFIT3, ISG15, MX1, OAS1) (Weichselbaum et al., 2008), T cell inhibitory receptors (TCIRs), TCIR ligands, and other IFN regu-

lated immune suppressive mediators such as IDO1 was determined by calculating a Spearman correlation coefficient along with the

associated two-sided p value. For themouse data, microarray expression values fromRes 499 andB16 tumors were examined sepa-

rately and the correlation between STAT1 and each gene compared between these groups. For TCGA humanmelanoma data, addi-

tional genes were added to the gene list as a surrogate for T cell infiltration, including CD8A, PRF1, and GzmA. In order to analyze

which genes most strongly influence STAT1, a gene network was constructed using ARACNE, as implemented in theminet R pack-

age version 3.28. Using the resulting mutual information matrix, an undirected graph was constructed with edges weighted by the

mutual information scores. Based on the network findings, CD8A and PDL1 mRNA expression values were divided into q-quantiles,

where q = 6, in order to examine how perturbing each of these genes, which formed strong connections with STAT1, would influence

the correlation between STAT1 and other genes in the network. Specifically, within each quantile for CD8A or PDL1, the correlation

coefficients and p values between STAT1 and other genes in the network were compared.

Gene set enrichment analysis
To test whether gene setswere enriched in response to different conditions, we utilizedGene Set Analysis as implemented in theGSA

Rpackage version 1.03 or the pianoRpackage. For GSA, the ‘‘maxmean’’ test statistic was used to test enrichment using a two-class

comparison when comparing groups or quantitative analysis for continuous variables. All p values and false discovery rates were

based on 500-1000 permutations. For restandardization, a method that combines randomization and permutation to correct permu-

tation values of the test statistic and to take into account the overall distribution of individual test statistics, the entire dataset was

used rather than only the genes in the gene sets tested. Gene signatures examined included a manually curated list of TCIRs,

TCIR ligands, and ISG (Figure 3H) and the upregulated genes from a resistance signature for radiation and anti-CTLA4 (Twyman-

Saint Victor et al., 2015). For the piano implementation, Reactome gene sets were downloaded from the Molecular Signatures Data-

base v5.1 (http://software.broadinstitute.org/gsea/msigdb).
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Random forest for classification and survival analysis
Random forest (RF) for classification, regression, and survival analysis is a multivariable non-parametric ensemble partitioning tree

method that can be used to model the effect of all interactions between genes on a response variable (Chen and Ishwaran, 2012).

Each model was constructed using approximately two-thirds of randomly selected samples and cross-validated on the one-third

of the samples left out of the model building process (out-of-bag samples). After many iterations, results of all models were averaged

to provide unbiased estimates of predicted values, error rates, and measures of variable importance. Performance of an RF model

was measured by the misclassification error rate for classification and by a concordance index (one minus the error rate) for survival.

For each gene, an importance score was determined, which measures the contribution of the variable to the error rate (higher scores

aremore predictive). We used the randomForestSRC package version 2.0.7 and the following parameters: 1000 trees, node size of 2,

and mtry values equal to the number of variables in the model. The default splitting rule was used for classification and the log-rank

slitting rule was used for survival analysis. For small sample sizes, 500 Monte Carlo replications were used and the results averaged.

All predicted values, error rates, and importance scores were based on cross-validation using out-of-bag samples to provide unbi-

ased estimates. To examine the effect of sampling error on variable selection, 1000 bootstrap samples were utilized and variable

selection was performed using the minimal depth statistic (Ishwaran et al., 2010).

T cell inhibitory receptor expression analysis
To determine the patterns of T cell inhibitory receptor expression, splenic T cells were isolated from mice bearing Res 499 or Res 499

IFNAR/IFNGR knockout tumors and processed for flow cytometry. Fluorescence intensity data were analyzed using the flowCore R

package version 1.36.3 and transformed using the logicle method. After excluding debris, dead cells, doublets, and non-T cell popu-

lations using a dump channel, the CD44high CD8 T cell population was identified. From this population, T cells that were negative

for all T cell inhibitory receptors (TCIRs) examined (PD1, LAG3, 2B4, TIGIT, TIM3, CD160)were excluded. From the remainingCD44high

CD8 T cells, the expression of the TCIRs was used as features for model-based clustering as implemented in the mclust R package

version 5.1. An ellipsoidal distribution, variable shape, variable orientation, and variable volume were used as model parameters. An

aggregate data matrix from random sampling of 1000 to 5000 events from each sample was used for clustering analysis. The number

of initial clusterswas estimatedbasedon the ‘‘elbow’’ from theBayesian InformationCriterion as a function of cluster number. Resulting

clusters were then inspected and the within cluster sum of squares calculated. Cluster(s) with the highest within cluster sum of squares

and confirmed to be a persistently mixed population by inspection of scatterplots for all pairwise combinations was then re-clustered

using the samesteps. Thisprocedure resulted in nineTCIRclusters.Usingclustermembership as classdefinitions, a random forest (RF)

basedclassifierwasdevelopedusing thesameaggregatedatamatrix. ThisRFclassifierhadanout-of-bagerror rateof less than5%and

was used to assign CD44high CD8 T cells from a new sample from either the periphery or the tumor to one of the nine TCIR clusters.

DATA AND SOFTWARE AVAILABILITY

Software
PRISMwasused for somebasic statistical analysis andplotting (http://www.graphpad.com),while theR languageandenvironment for

statistical computing and graphics (https://www.r-project.org) was used for the majority of the statistical and bioinformatics analysis.

TheRpackagesused for various analysis described in themethodswereobtained fromBioconductor (https://www.bioconductor.org)

and/or fromCRAN (https://cran.r-project.org/web/packages/). Additional software andpackages for processing, alignment, andanal-

ysisof sequencingdataare list below.Pleaseseeaccompanying references fromthesoftwareandpackages formoredetails.cutadapt

(https://pypi.python.org/pypi/cutadapt); STAR (https://github.com/alexdobin/STAR/releases); Subread (http://subread.sourceforge.

net); bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml);Picard Tools (https://broadinstitute.github.io/picard/);MACS2

(https://pypi.python.org/pypi/MACS2); Wellington (https://pypi.python.org/pypi/pyDNase/0.2.3); FIMO (http://meme-suite.org/doc/

fimo.html).

Data Resources
RNA sequencing data

TheRNA and ATAC sequencing data has been deposited at theGEO (http://www.ncbi.nlm.nih.gov/geo) under the accession number

GSE83850.

Mouse microarray and human gene expression data

Normalized Affymetrix GeneChip Mouse Gene ST Array data for B16 and Res 499 tumors have been previously described (Twyman-

Saint Victor et al., 2015) and were used to examine expression of interferon and interferon receptor gene transcripts. Z-scores for

mRNA expression data for melanoma patients from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal (http://

www.cbioportal.org). RMA normalized gene expression data for human melanoma and breast cancer cell lines were obtained

from the Cancer Cell Line Encyclopedia (https://www.broadinstitute.org/ccle/home). Normalized transcriptomic data, summarized

exome analysis, and annotations for human melanoma patients treated with anti-PD1 were previously described (Hugo et al.,

2016) and downloaded from the GEO (http://www.ncbi.nlm.nih.gov/geo), accession GSE78220. When multiple probes existed for

the same gene, the probe values were averaged.
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Supplemental Figures

Figure S1. PDL1 Expression on Cancer Cells and Immune Cells and Association with Survival after RT + Anti-CTLA4, Related to Figure 1

(A) Histogram plot of relative PDL1 expression on the indicated immune cell populations in Res 499 tumors.

(B) Percentage of CD45+ immune cells that are F4/80+ in Res 499 tumor 10 days after starting anti-CSF1R.

(C and D) (C) Overall survival of metastatic melanoma patients treated on a clinical trial of RT + anti-CTLA4 was modeled by random survival forest using the

percentage of PDL1+ melanoma cells or macrophages, or the PDL1 IHC staining intensity score (0-3) on melanoma cells, macrophages, or both. The prediction

error rate for the model is 38.7 ± 0.01% with n = 13. Shown are variable importance scores with Monte Carlo standard deviations, as a measure of how strongly

the variable contributes to prediction accuracy, or (D) the predicted survivals of patients with the indicated melanoma (top) or macrophage (bottom) IHC intensity

score. Survival estimates are from out-of-bag samples (samples not used to build the model).



(legend on next page)



Figure S2. Tumor IFN Signaling Drives PDL1-Independent Resistance, Related to Figure 2

(A) Survival after RT + anti-CTLA4 for mice with B16 tumors or tumors from B16 cells chronically treated with type I IFNB (B16b) (n = 5-10).

(B) PDL1 expression on Res 499 cells after treatment with indicated doses of IFNL (mg/mL).

(C and D) (C) Expression of PDL1 (an ISG responsive to type I and II IFN signaling) on B16 and B16 cells with IFNGR knockout, or (D) B16 and B16 cells knocked-

out for both IFNAR and IFNGR after treatment with IFNG or IFNG and IFNB, respectively.

(E) Tumor volumes prior to the start of treatment for each treatment schedule (Figure 2C).

(F) Tumor volumes after the indicated treatment schedule with anti-CTLA4 + anti-PDL1 for mice with B16 tumors or B16 tumors with IFNGR knockout or IFNGR

and IFNAR knockout (IFNA/GRKO).

(G and H) (G) Res 499 and Res 499 cells with IFNGR knockout after treatment with IFNG, or (H) Res 499 and Res 499 cells with IFNAR knockout after treatment

with IFNB.

(I) Res 499 and Res 499 cells with IFNAR and IFNGR knockout after treatment with IFNG and IFNB.

(J) Expression of PDL1 and TNFRSF14 on JB2 cells with IFNAR and IFNGR knockout after treatment with IFNB and IFNG. JB2 cells were derived from Res 499

PDL1KO cells (Figure 1E).



Figure S3. Biological Processes and Epigenomic and Transcriptomic Changes Regulated by Tumor IFN Signaling and STAT1, Related to

Figures 2 and 3

(A) Expression of genes differentially expressed after IFNA/GRKO in Res 499 versus control in the indicated melanoma cells sorted from in vivo tumors by flow

cytometry. Also shown are Reactome gene sets with decreased (blue tones) or increased (red tones) expression after individual and combined IFN receptor

knockout. Size of circles is proportional to number of genes, and circles are color-coded by p value for statistical significance as indicated in the legend.

Thickness of lines is proportional to genes shared between sets.

(B) Differential open chromatin regions by ATAC-seq with predicted STAT1 binding sites were determined by de novo motif search and matching discovered

motifs against the JASPAR database. Shown are representative top motifs, sequence logos, and e-values for matches against STAT1 consensus (bottom). Only

motifs with an e-value < 10�6 and a match to STAT1 ranking in the top 1% of transcription factor sites were considered.

(C) Quantitative gene set analysis for B16g versus B16 (left) or Res 499 versus Res 499 STAT1KO. Association between Stat1 expression and a previously

described resistance gene signature (Twyman-Saint Victor et al., 2015) derived from comparing resistant B16 melanoma tumors (e.g., Res 499) with sensitive

parental B16 tumors is analyzed for significance. The individual gene scores are indicated on top along with an overall gene score and p value. Positive gene

scores reflect positive correlation with Stat1. Bottom shows a heatmap of the relative expression of each gene (columns) for each tumor type (rows). Red is high

expression and blue is low. The dot plot on the right of the heatmap indicates Stat1 expression levels for each tumor.

(D) Expression of PDL1 after treatment with IFNG on Res 499 and Res 499 cells with STAT1 or STAT1 and PDL1 knockout.
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Figure S4. T Cell Inhibitory Receptor Ligands and Identifying Distinct Exhausted T Cell Populations Involved in IFN-Driven Resistance,

Related to Figure 4

(A) Expression of TNFRSF14 after treatment with IFNG on Res 499 cells with TNFRSF14 and PDL1 knockout.

(B) Schematic of rationale and strategy for identifying distinct T cell populations based on co-expression patterns of T cell inhibitory receptors (TCIRs) in order to

determine if severely exhausted T cells expressing high levels of multiple TCIRs (yellow) can preferentially expand when ligand expression on tumor cells is

disrupted by inhibiting tumor IFN signaling.



Figure S5. T Cell Populations Identified by Model-Based Clustering of T Cell Inhibitory Receptors, Related to Figure 5

(A) Co-expression of six T cell inhibitory receptors (TCIRs) for seven of the nine TCIR clusters identified on splenic CD8 T cells by model-based clustering. See

Figure S4B.

(B and C) (B) Pie chart summarizing the average frequency of TRP2+ CD8 TILs in each TCIR cluster for Res 499 and Res 499 IFNA/GRKO, or (C) Res 499 and Res

499 STAT1KO.
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Figure S6. Improved Response After Blocking Tumor IFN Signaling is CD8 T Cell Dependent, Related to Figure 6

(A) Heatmap of the relative RNA-seq expression of the indicated TCIR ligands and ISGs from parental TSA breast cancer or Res 237 cells. Res 237 cells are from a

TSA tumor that relapsed after RT + anti-CTLA4.

(B and C) (B) Mice with Res 499 IFNAR/IFNGR knockout tumors were treated with anti-CTLA4 with or without anti-CD8 to deplete CD8 T cells. Shown is a

representative density plot of CD8 versus CD4 T cell frequency in the tumor (box indicates frequencies of CD8 T cells as a percentage of CD45+) and (C) tumor

growth curves (n = 5).

(D and E) (D) Representative histogram and (E) strip plot of in vivomean fluorescence intensity for MHC class I expression onmelanoma cells fromRes 499 tumors

and Res 499 tumors with IFNAR/IFNGR knockout.

(F) Relative expression of MHC class I, immunoproteosome subunits, TAP, IFN receptor, and IFN genes (rows) in human melanoma and breast cancer cell lines

(columns) from the Cancer Cell Line Encyclopedia (CCLE). Data are normalized but not centered and expression is color-coded as indicated in the legends. White

empty cells indicate absence of expression.

(G) Statistical summary from biological replicates of TCIR ligands in Res 499 tumors from mice after 4 days of treatment with a JAK inhibitor (JAKi) or control.
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