
Article

Opposing Functions of Interferon Coordinate

Adaptive and Innate Immune Responses to Cancer
Immune Checkpoint Blockade
Graphical Abstract
HIGHLIGHTS
d Blocking tumor IFNG signaling increases IFNG generated by

exhausted T cells (TEX)

d Higher immune vs. cancer ISGs disable inhibitory pathways,

allows NK/ILC1s to mature

d Tumors with adequate MHC-I and antigen are killed by TEX
after checkpoint therapy

d Tumors with low/absent MHC-I or poor antigens are killed by

PD1+ TRAIL+ NK/ILC1s
Benci et al., 2019, Cell 178, 933–948
August 8, 2019 ª 2019 Elsevier Inc.
https://doi.org/10.1016/j.cell.2019.07.019
Authors

Joseph L. Benci, Lexus R. Johnson,

Ruth Choa, ..., Jedd D. Wolchok,

Taku Kambayashi, Andy J. Minn

Correspondence
andyminn@upenn.edu

In Brief

The opposing effects of interferon-

gamma in terms of regulating immune

function but also driving T cell exhaustion

through PDL1 is explained by its

differential effects in tumor and immune

cell populations.

mailto:andyminn@upenn.edu
https://doi.org/10.1016/j.cell.2019.07.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2019.07.019&domain=pdf


Article
Opposing Functions of Interferon
Coordinate Adaptive and Innate Immune Responses
to Cancer Immune Checkpoint Blockade
Joseph L. Benci,1,7,8,15,16 Lexus R. Johnson,1,8,15 Ruth Choa,4 Yuanming Xu,1,8 Jingya Qiu,1,8 Zilu Zhou,9 Bihui Xu,1,8

Darwin Ye,1,8 Katherine L. Nathanson,2,6 Carl H. June,4,6,7,8 E. John Wherry,3,5,6,7 Nancy R. Zhang,9 Hemant Ishwaran,10

Matthew D. Hellmann,11,12,14 Jedd D. Wolchok,11,12,13,14 Taku Kambayashi,4,6 and Andy J. Minn1,6,7,8,17,*
1Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
3Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
4Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia,

PA 19104, USA
5Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania,

Philadelphia, PA 19104, USA
6Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
7Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
8Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
9Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
10Division of Biostatistics, Department of Epidemiology and Public Health, University of Miami, Miami, FL 33136, USA
11Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
12Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
13Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
14Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
15These authors contributed equally
16Present address: Bristol-Myers Squibb, Princeton, NJ 08540, USA
17Lead Contact

*Correspondence: andyminn@upenn.edu
https://doi.org/10.1016/j.cell.2019.07.019
SUMMARY

Interferon-gamma (IFNG) augments immune func-
tion yet promotes T cell exhaustion through PDL1.
How these opposing effects are integrated to
impact immune checkpoint blockade (ICB) is un-
clear. We show that while inhibiting tumor IFNG
signaling decreases interferon-stimulated genes
(ISGs) in cancer cells, it increases ISGs in immune
cells by enhancing IFNG produced by exhausted
T cells (TEX). In tumors with favorable antigenicity,
these TEX mediate rejection. In tumors with neoanti-
gen or MHC-I loss, TEX instead utilize IFNG to drive
maturation of innate immune cells, including a
PD1+TRAIL+ ILC1 population. By disabling an inhib-
itory circuit impacting PD1 and TRAIL, blocking tu-
mor IFNG signaling promotes innate immune killing.
Thus, interferon signaling in cancer cells and im-
mune cells oppose each other to establish a regula-
tory relationship that limits both adaptive and innate
immune killing. In melanoma and lung cancer pa-
tients, perturbation of this relationship is associated
with ICB response independent of tumor mutational
burden.
INTRODUCTION

Immune checkpoint blockade (ICB) of the inhibitory receptors

CTLA4 and PD1 can result in durable responses in multiple can-

cer types (Ribas andWolchok, 2018). Resistance and relapse are

common and can be influenced by factors inherent to immune

cells, cancer cells, or both (Patel and Minn, 2018). Important

immune features include the status of T cell infiltration and the

differentiation or activation state of T cells and innate immune

cells. Features intrinsic to cancer cells that can impact ICB

outcome include their repertoire of neoantigens, the ability to

present antigens on major histocompatibility complex class

one (MHC-I), and the expression of inhibitory receptor ligands.

The clinical relevance of these immune and cancer cell factors

is highlighted by common biomarkers for ICB response such

as type I or II interferon (IFN) stimulated genes (ISGs) (Ayers

et al., 2017; Harlin et al., 2009), tumor mutational burden (TMB)

(Rizvi et al., 2015; Snyder et al., 2014), and expression of PDL1

(Taube et al., 2012; Tumeh et al., 2014).

Both IFN-gamma (IFNG) and type I IFN (IFN-I) are among

the known pathways that have critical roles in anti-tumor immu-

nity. IFN enhances immune function by inducing expression of

MHC-I (Dighe et al., 1994), which is constitutively expressed

onmany tissues including cancer cells, and by enabling dendritic

cells (DCs) to cross prime T cells (Diamond et al., 2011; Fuertes

et al., 2011). In this way, IFNs are important in the early phase of
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antigen recognition and the interaction between adaptive and

innate immune cells. Accordingly, loss-of-function mutations

and genomic alterations in the IFN signaling pathway have

been associated with clinical ICB resistance and/or relapse

(Gao et al., 2016; Shin et al., 2017; Zaretsky et al., 2016), and

unbiased genetic screens have identified this same pathway as

being important for immunotherapy response in certain mouse

models (Manguso et al., 2017; Mezzadra et al., 2017). In

contrast, some patients have tumors with mutations in the IFN

pathway that nonetheless respond to ICB (Hellmann et al.,

2018; Sade-Feldman et al., 2017) or have high serum levels of

IFNG that associates with ICB progression (Huang et al.,

2017). These apparently ‘‘paradoxical’’ observations may repre-

sent feedback inhibition properties of IFN signaling (Snell et al.,

2017). In the context of chronic pathogen infection, persistent

IFN signaling and ISGs dampen immune responses to prevent

immune-mediated pathology while allowing for a host-pathogen

stalemate (Cheng et al., 2017; Teijaro et al., 2013; Wilson et al.,

2013). In cancer, this dichotomous function of IFN is exploited

through chronic signaling by tumor cells that can promote resis-

tance to ICB (Benci et al., 2016). IFN-driven resistance can be

inhibited by genetic ablation of the IFNG receptor (IFNGR) and/

or IFN-I receptor (IFNAR) in cancer cells, resulting in a decrease

in PDL1, other inhibitory ligands, and the GzmB antagonist

SERPINB9 (Jiang et al., 2018). Expansion of exhausted T cells

(TEX) can then ensue to restore ICB response through unknown

mechanisms. Together, these observations highlight the impor-

tance of understanding how the opposing functions of IFN

signaling impact cancer immunotherapy.

Loss of the beta-2 microglobulin (B2M) subunit of MHC-I ap-

pears to be a common resistancemechanism to ICB (Sade-Feld-

man et al., 2017). However, diminished expression or loss

of B2M can also occur in patients who respond to ICB (Rizvi

et al., 2018; Rodig et al., 2018), suggesting that innate immune

cells might contribute to ICB response in some cases. Indeed,

conventional NK cells and innate lymphoid cells (ILCs) are

capable of destroying cancers through either perforin-mediated

cytotoxicity or TNF-family death receptors such as TRAIL (Spits

et al., 2016). NK/ILC effector function is regulated through

cellular maturation, combinations of activating and inhibitory re-

ceptors, and possibly immune checkpoint receptors like PD1,

TIM3, and TIGIT (Gao et al., 2017; Zhang et al., 2018). Recent

evidence indicates that type one ILCs (ILC1s) can participate in

anti-tumor immunity or cancer immune surveillance. This in-

cludes ILC1-like populations (Dadi et al., 2016) and intratumoral

ILC1s that are generally poorly cytotoxic (Cortez et al., 2017; Gao

et al., 2017). Although the ability of NK/ILC1s to eradicate tumors

with diminished MHC-I and/or a poor neoantigens is of signifi-

cant interest, how to mobilize these innate immune cells to facil-

itate tumor response is unclear.

RESULTS

ISGs Expressed by Cancer Cells Predict Resistance to
Immune Checkpoint Blockade while ISGs Expressed by
Immune Cells Predict Response
A large proportion of human cancers differentially express a sub-

set of ISGs that can predict resistance to radiation and chemo-
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therapy (Weichselbaumetal., 2008).Coincidentally, this ISG resis-

tance signature (ISG.RS) is also associatedwith resistance to ICB,

as demonstrated by elevated expression in murine tumors from

Res 499 melanoma cells (Figure 1A), which were derived from an

ICB-resistant B16-F10 tumor (Twyman-Saint Victor et al., 2015).

In contrast, ISGs can also predict clinical ICB response, especially

ISGs typically associated with IFNG signaling (Ayers et al., 2017).

To begin reconciling these seemingly disparate observations, we

examined the ISG.RS and genes from the IFNG hallmark gene

set (IFNG.GS) by dividing them into two non-overlapping subsets

(Figure 1B and Table S1) and creating a metagene (the average

scaled expression of all genes in the set). The expression of these

ISG metagenes was then examined across different cellular pop-

ulations in human melanomas using previously published single-

cell RNA-seq data (Tirosh et al., 2016). This revealed that the

IFNG.GS is predominantly expressed by intratumoral immune

cells such as T cells, NK cells, and macrophages (Figures 1B

and S1A). In contrast, the ISG.RS is predominantly expressed in

cancer cells, albeit with variable expression.

To understand the potential consequences of these differ-

ences in IFNG.GS and ISG.RS expression patterns, we analyzed

bulk RNA-seq data combined from two cohorts of melanoma pa-

tients treated with anti-PD1 (Figure 1C) (Hugo et al., 2016; Riaz

et al., 2017). As expected, the majority of genes in the IFNG.GS

are depressed in the majority of tumors from non-responders to

anti-PD1 (Figure S1B). However, like ICB-resistant murine Res

499 tumors, most ISG.RS genes are enriched in tumors from

non-responders (Figure S1B). Consistent with the importance

of CD8 T cells in response, tumors with high IFNG.GS but low

ISG.RS also have the greatest proportion of CD8 T cells (Fig-

ure 1D, top right quadrant) as inferred by CIBERSORT (Newman

et al., 2015) (Figure S1C). The higher frequencies of CD8 T cells

are accompanied by increased number of activated NK cells

(Figure 1D, orange regression line), which also has been associ-

ated with clinical ICB response (Riaz et al., 2017). To understand

how these immune and interferon-related variables indepen-

dently contribute to ICB response, we utilized a multivariable lo-

gistic regression model. This revealed that while higher IFNG.GS

increases the odds ratio for response, ISG.RS independently

decreases the likelihood (Figure 1E). The significance of both

of these variables are independent of tumor mutational burden

(TMB) status, which expectedly correlates with response. In

contrast, neither the abundance of CD8 T cells nor NK cells are

significant in the model. A random forest model, which does

not assume linearity and incorporates interaction effects, re-

vealed that ISG.RS exhibits a higher importance score than

either IFNG.GS or TMB (Figure S1D). In total, these data suggest

that while expression of IFNG.GS by immune cells is associated

with CD8 T cell abundance, accumulation of activated NK cells,

and ICB response, all of these effects are opposed by high levels

of ISG.RS in cancer cells.

Although the IFNG.GS and ISG.RS predict opposite clinical

outcomes, their expression is positively correlated, consistent

with IFN controlling both metagenes (Figure 1F). An explanation

for this apparent ‘‘paradox’’ lies in the relative expression of

each metagene. When expression of the ISG.RS exceeds the

IFNG.GS, resistance is favored (Figure 1F, left plot, red circles

below diagonal). In contrast, most responses occur when
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Figure 1. Distinct ISGs Are Differentially Expressed in Cancer and Immune Cells and Have Opposing Functions in Predicting Clinical ICB

Response

(A) Gene set enrichment analysis (GSEA) of resistance-associated ISGs (ISG.RS) in Res 499 cells compared to parental B16 cells, both sorted from in vivo tumors.

Heatmap of scaled expression (red is high, blue is low) and enrichment plot are shown along with the normalized enrichment score (NES) and p value.

(B) Venn diagram of genes in the ISG.RS along with hallmark IFNG-related genes (IFNG.GS) partitioned into non-overlapping gene sets (color-coded) and used to

create individual metagenes. Cell types from scRNA-seq data of pooled human melanoma tumors are shown in the tSNE plot along with expression of the ISG

metagenes.

(C) Genomic and clinical features associated with anti-PD1 response in melanoma patients. Shown are tumor mutational burden (TMB), prior treatment with

ipilimumab (Ipi), relative frequency of CD8 T cells and activated NK cells (activated minus resting) inferred by CIBERSORT, and bulk tumor expression of the ISG

metagenes.

(D) Difference in the proportion of activated and resting NK cells versus CD8 T cells stratified by low/high IFNG.GS and ISG.RS expression. Regression line

(orange), Pearson correlation and p value, and/or percent CD8 T cells in each quadrant are shown.

(E) Odds ratio and 95% confidence intervals from a multivariable model for clinical anti-PD1 response.

(F) Expression of each metagene (left plot), and the predicted probability of anti-PD1 response (right plot) from a model using TMB and the ratio of IFNG.GS over

ISG.RS (dISG). Odds ratios are shown in the inset. Circle color indicates response and size indicates TMB.

(G) Summary of cancer and immune cell relationships inferred by statistical modeling and how ISGs impact probability of ICB response.

(H) GSEA for ISG.RS genes after KO of IFNGR, IFNAR, or both (IFNA/GR) in Res 499 tumors.

See also Figure S1.
IFNG.GS is similar to or greater than ISG.RS (Figure 1F, blue cir-

cles). Based on these findings, we combined the twometagenes

into a ratio of IFNG.GS over ISG.RS (or, the difference of these

twometagenes in log transformed space). By logistic regression,

this composite variable (dISG) is strongly associated with

response and is independent of TMB (Figure 1F, right plot and
inset). Specifically, the probability of response is low when either

the ratio or TMB is low but increases when either increase.

Furthermore, random forest machine learning and bootstrapping

revealed that the ISG ratio has the highest robustness and

average variable importance compared to TMB and multiple im-

mune features (Figure S1E).
Cell 178, 933–948, August 8, 2019 935



In total, the single-cell and bulk RNA-seq analysis suggests

that distinct ISGs differentially expressed by cancer and immune

cells can oppose each other to influence CD8 T cell infiltrate and

NK activation and can be combined into a ratio that predicts ICB

response independent of TMB (Figure 1G). Motivated by these

findings, we sought to understand the mechanistic underpin-

nings inferred by these statistical relationships.

Models Differing in MHC-I, TMB, and Neoantigen Status
for Examining the Effect of Blocking Tumor IFN
Signaling on ICB Response
If the probability of ICB response is influenced by the ratio of

IFNG-related ISGs expressed by immune cells over inhibitory

ISGs expressed by cancer cells, one way to enhance the ratio

in favor of response is to prevent IFN signaling in cancer cells.

We first confirmed whether the ISG.RS, which is elevated in

ICB-resistant Res 499 tumors, is regulated by IFN signaling in

cancer cells (hereafter referred to as tumor IFN signaling).

Indeed, CRISPR knockout of IFNGR and/or IFNAR significantly

diminishes ISG.RS levels (Figure 1H). However, loss of tumor

IFN signaling can render cancers less responsive to immuno-

therapy due to compromised MHC-I and antigen processing

(Manguso et al., 2017; Zaretsky et al., 2016), suggesting that

the impact from ablating tumor IFN signaling might be context

dependent. In light of this, we surmised two situations whereby

the benefit of inhibiting IFN-driven resistance could outweigh

the potential negative impact on MHC-I. The first is when consti-

tutive MHC-I is high, minimizing effects that loss of IFN-inducible

MHC-I has on CTL-mediated killing. A second situation is when

tumors have depleted or poor neoantigens. Here, diminished

CTL recognition presumably makes MHC-I status less conse-

quential for T cell-mediating killing, but interference with IFN-

driven resistance might improve killing by NK or other innate

lymphoid cells.

We first characterized various mouse tumor models for differ-

ences in MHC-I expression, TMB, and predicted neoantigen sta-

tus (Figure 2A). Of these, CT26 colorectal cancer has the highest

TMB (Figure 2B) and maintains high MHC-I in the absence of

IFNG signaling (Figures 2C and 2D). Similarly, TSA-derived Res

237 breast cancer cells also have high IFNG-independent base-

line MHC-I but exhibit lower TMB (Figures 2B–2C and S2A). In

contrast, B16 and/or Res 499 melanoma have intermediate

TMB and low constitutive MHC-I and rely on IFNG for high

MHC-I expression (Figures 2B–2D and S2B). Since Res 499 orig-

inated from an abscopal B16 tumor that relapsed several weeks

after radiation (RT) plus anti-CTLA4 (Twyman-Saint Victor et al.,

2015), we surmised that Res 499 may additionally have under-

gone immunoediting prior to relapse. Recent evidence suggests

that neoantigens that have clonal or near-clonal representation

are predominantly targeted by the immune system, while neoan-

tigens at low clonal fractions can remain immunologically silent

(Gejman et al., 2018; McGranahan et al., 2016). In accord with

this notion, there is a significant decrease in the cumulative fre-

quency of predicted high affinity (< 100 nM) neoantigens with

clonal (near-heterozygous or greater) frequencies in Res 499

compared to B16 (Figure 2E, leftward shift orange curve). In

particular, a cluster of predicted neoantigens (cluster 6, Figure 2F)

are present at clonal frequencies in B16 but fall to subclonal or
936 Cell 178, 933–948, August 8, 2019
near-zero frequencies in Res 499 tumors (Figure 2F, lower right

quadrant). This cluster of neoantigens is predicted to reside in a

subpopulation of cells (subclone 3, Figure 2G) that is nearly elim-

inated in Res 499 compared to B16, consistent with immunoedit-

ing. In contrast, the subpopulation with the largest reciprocal in-

crease in Res 499 (subclone 4) is characterized by a mutation

cluster (cluster 7) with low clonal frequencies (Figure 2F, lower

left quadrant), as expected for resistant subclones. Together,

these data define several tumor models that differ in reliance on

IFNG for high MHC-I and in predicted neoantigen availability.

Blocking Tumor IFN Signaling Broadly Improves ICB
Response through CD8 T and Innate Immune Cells
We first used the CT26 model to examine whether tumors with

high constitutive MHC-I and TMB demonstrate improved

response when ISG.RS is decreased by blocking tumor IFN

signaling. Remarkably, when IFNGR or both IFNGR and IFNAR

are ablated, mice either show markedly slower tumor growth

or spontaneous regression that is CD8 T cell dependent (Fig-

ure 3A), as determined by antibody-mediated depletion (Fig-

ure S3A). The addition of anti-PD1 further improves anti-tumor

effects and survival. Both spontaneous regression and durable

response to anti-PD1 requires B2M and hence MHC-I. All mice

with complete response are also resistant to tumor rechallenge

(8 out of 8 mice), further indicative of a T cell dominant response.

Thus, decreasing ISG.RS by preventing IFN signaling in tumors

with high baseline MHC-I does not interfere with CTL-mediating

killing and markedly enhances immunogenicity.

Unlike CT26, B16 cells are reliant on IFN for high MHC-I

expression (Figure S2B). B16 tumors respond poorly to anti-

PD1 but respond to RT + anti-CTLA4, a combination that en-

hances T cell repertoire diversity and improves response over

anti-CTLA4 alone (Twyman-Saint Victor et al., 2015). Surpris-

ingly, knockout of IFNGR and IFNAR in B16 tumors does not

negatively impact the efficacy of RT + anti-CTLA4 (Figure 3B,

top left plots, red versus orange), suggesting that other im-

mune-mediated killing mechanisms may compensate for low

MHC-I and compromised CTL recognition in this context.

Indeed, partial response of IFNGR + IFNAR knockout tumors

to RT + anti-CTLA4 is maintained even after B2M is ablated (Fig-

ure 3B, top left plots, gray versus light blue). However, whenB2M

knockout is accompanied by depletion of NK1.1+ cells (Fig-

ure S3A), which are typically conventional NK cells and ILC1s,

response is completely eliminated (Figure 3B, left top and bot-

tom plots, gray versus red). In contrast to B16, Res 499 tumors

are resistant to RT + anti-CTLA4 and have relative depletion of

predicted neoantigens (Figures 2E–2G). Despite this, knockout

of IFNGR and IFNAR restores Res 499 response to levels at least

as high as parental B16 tumors (Figure 3B, right plots). Consis-

tent with loss of neoantigens and reliance on innate immune

killing, co-ablation of B2M has no discernible effect, while deple-

tion of NK1.1+ cells alone abrogates the benefit from IFNGR +

IFNAR knockout (Figure 3B, right top and bottom plots). Howev-

er, if the requirement for high MHC-I and antigen is bypassed by

using a murine chimeric antigen receptor (CAR) T cell against

ectopically expressed humanCD19 (Figure S3B), blocking tumor

IFN signaling similarly improves response of both B16 and

Res 499 tumors (Figure 3C). In the absence of CAR T cells,
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Figure 2. Mouse Models Differing in MHC-I, Tumor Mutational Burden, and Predicted Neoantigen Status

(A) Summary of key properties of mouse tumor models. N.D. is not determined.

(B) TMB for each of the indicated cell lines. The proportion of predicted neoantigens (MHC-I affinity % 500 nM) is shown.

(C and D) Constitutive (baseline) (C) and IFNG-inducible (+IFNG) MHC-I (D) on indicated tumor cells with or without IFNGR KO.

(E) Cumulative distribution function plot of the allelic frequencies for predicted high-affinity (%100 nM) neoantigens. The p value is determined by an empirical

distribution of the KS statistic from random variants.

(F and G) Allelic frequency of predicted high-affinity neoantigens in B16 and Res 499 tumors (F). Values are transformed onto a log10 scale with a near-

heterozygous value for a tetraploid genome indicated (dashed blue line). Circle size corresponds to neoantigen MHC-I affinity. Circle color corresponds to

neoantigen clusters predicted to be evolutionarily related and giving rise to (G) subclonal populations (Subclone 1-4) inferred from high quality variants and

displayed using a phylogenetic tree. Relative frequencies and standard deviations of these subclonal populations are shown.

See also Figure S2.
IFNGR + IFNAR knockout tumors grow similarly to control (Fig-

ure S3C). Thus, blocking tumor IFN signaling can impact both

CD8 T cell and NK/ILC1 effector function.

In total, these data suggest that blocking tumor IFN signaling

can improve T cell-mediated killing when antigen recognition is

not limited by inhibiting IFN function, as in the case of CT26 tu-

mors or use of CAR T cell therapy. In tumorswith lowMHC-I, pre-

venting tumor IFN signaling may compromise CTL-mediated

recognition but anti-tumor effects of NK/ILC1s can compensate

to maintain response, as in the case of B16 tumors. In tumors

such as Res 499 that are highly resistant and otherwise poorly
recognized by T cells, the dispensability of MHC-I allows for

restored response through NK/ILC1-mediated killing.

Inhibition of Tumor IFNG Signaling Enables CD8 T Cells
to Support NK/ILC1-Mediated Killing
To understand how blocking tumor IFN signaling restores ICB

response in resistant or relapsed tumors and to avoid conflating

effects of type I and II IFN, we focused on how IFNGR knockout

restores response in the Res 499 model. We also opted to use

anti-CTLA4 monotherapy given that addition of RT does not

significantly improve response over anti-CTLA4 alone (Figure 3D
Cell 178, 933–948, August 8, 2019 937
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Figure 3. Preventing Tumor IFN Signaling Promotes CD8 T Cell-Dependent and/or NK/ILC1-Dependent ICB Response

(A) Survival of mice bearing CT26 tumors with KO of IFNGR ± B2M or of both IFNGR and IFNAR (IFNA/GR) after no treatment (Cont), CD8 depletion (aCD8), or

anti-PD1 (aPD1). For each group, n = 5-15.

(B) Survival (top) and tumor volumes (bottom) after treatment with RT + anti-CTLA4 or control (Cont) formice bearing B16 or Res 499 tumorswith the indicated KO.

Unless indicated, displayed p values for survival analyses are for comparisons within each genotype (legend). For tumor volumes, only groups of interest are

shown with p values based on a two-sided t-test. Groups with no depletion: WT, n = 20-28; IFNA/GR KO, n = 10-20; IFNA/GR + B2M KO, n = 4-5. For aNK1.1

groups, n = 5.

(C) Tumor volumes for B16 and Res 499 tumors expressing human CD19 (hCD19) with or without IFNA/GR KO after a single infusion with primary murine T cells

transduced with a CAR (CART) against hCD19. P values are determined by a generalized linear mixed model.

(D) Survival of mice bearing IFNGR KO Res 499 tumors with or without concurrent B2M KO after treatment with anti-CTLA4. Effect of immune cell depletion with

anti-CD8 or anti-NK1.1 is shown. IFNGR KO, n = 5; B2M KO, n = 5; IFNGR + B2M KO, n = 10-20.

(E) Survival of wild-type (WT) or Perforin KO (Prf1 KO) mice bearing IFNGR KO Res 499 tumors after anti-CTLA4. aCTLA4, n = 7-10; Cont, n = 2-4.

P values for all survival analyses are determined by a log-rank test. See also Figure S3.
versus 3B). As expected for NK/ILC1-mediating killing, IFNGR

knockout improves response to anti-CTLA4 in the absence of

B2M (Figures 3D and S3D). This requires NK1.1+ innate immune

cells (Figures 3D and S3A), is perforin-independent (Figure 3E),

and does not generate durable immunity against tumor rechal-

lenge of mice with complete response (Figure S3E). To test if

NK/ILC1-mediated cytotoxicity may be responsible for response

after IFNGR knockout, we co-cultured poly I:C stimulated

splenic NK cells with Res 499 cells in vitro (Figure S3F). This re-

sulted in NK-mediated cytotoxicity as measured by CD107a,
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which is used as a general marker for NK effector function (Ah-

lenstiel et al., 2010). IFNG treatment of wild-type but not IFNGR

knockout Res 499 cells prior to co-culture was sufficient to in-

crease resistance even in the absence of B2M, consistent with

tumor IFNG signaling impedingNK/ILC1 killing. Thus, likewith in-

hibition of both type I and II IFN signaling, blocking tumor IFNG

signaling can restore ICB response by enhancing NK/ILC1-

mediated effector function.

Surprisingly, although depletion of NK1.1+ cells abrogates ICB

response of IFNGR knockout Res 499 tumors, depletion of CD8



T cells, but not CD4 T cells, also inhibits response (Figures 3D and

S3G). A similar requirement for both CD8 T cells and NK/ILC1s

is also observed after IFNGR knockout in the resistant TSA/237

breast cancermodel that exhibits relatively low TMBand a paucity

of predicted strong neoantigens (Figures 2B and S3H). These ob-

servations suggest that although CD8 T cells do not directly kill

IFNGRknockoutRes 499 tumors, theymayhavea supportive role.

Preventing Tumor IFNG Signaling Enhances Immune
Cell IFNG Signaling, CD8 TEX Function, and Maturation
of NK/ILC1 Cells
To examine how CD8 T cells might support NK/ILC1s, we em-

ployed single-cell RNA-sequencing (scRNA-seq) and 28-color

flow cytometry. Analysis of intratumoral CD45+ immune cells by

scRNA-seq revealed that a dominant effect of tumor IFNGR

knockout is an increase in theproportionofCD8Tcells (Figure4A).

Intratumoral CD8 T cells are typically exhausted and reside in

either a progenitor exhausted or terminally exhausted population

(Miller et al., 2019). Although terminally exhausted PD1+ CD8

T cells have limited long-termproliferative potential, they can carry

out various effector functions such as cytotoxicity and IFNG pro-

duction (Miller et al., 2019; Paley et al., 2012).Gene set enrichment

analysis (GSEA) using transcriptional signatures of these ex-

hausted subsets (defined using the LCMV infection model) re-

vealed that the expanded CD8 T cells resulting from IFNGR

knockout show a marked increase in terminal exhaustion genes

(e.g., Pdcd1, Eomes,Cd38) and a decrease in progenitor exhaus-

tion genes (e.g., Tcf7) (Figures 4BandS4A). Accordingly, there is a

per cell increase in the amount of IFNGprotein produced by PD1+

CD8 T cells (Figure S4B), and after anti-CTLA4 there is a large in-

crease in IFNG per gram of tumor (Figure 4C), which is not

observed with cytokines such as IL-6 (Figure S4C). Depletion of

CD8 T cells largely abrogates this intratumoral increase in IFNG,

highlighting the importanceof exhaustedCD8Tcells in generating

this cytokine. Accompanying the increase in IFNG is a marked in-

crease in the IFNG.GS primarily from myeloid/DC populations

(Figure 4D). Among various IFNG.GS genes that increase include

Cxcl9 andCxcl10 (Figure 4E), which are chemokines implicated in

NK cell recruitment, activation, or maturation (Pak-Wittel et al.,

2013). Thus, disrupting tumor IFNG signaling not only decreases

the ISG.RS in cancer cells but also increases production of

IFNG by terminally exhausted CD8 T cells. As an apparent conse-

quence,myeloid/DCpopulations increase expression of IFNG.GS

that include chemokines important in innate immune function.

In order to investigate how preventing IFNG signaling in tumor

cells impacts NK/ILC1 status, we re-clustered NK/ILC1 popula-

tions identified by scRNA-seq (Figures 4F and 4G). This revealed

NK populations differing in maturity and effector function (Chios-

sone et al., 2009), including an immature CD11blow population,

an intermediate CD11bint population, and a mature CD11bhigh

cluster that typically possesses the greatest effector function.

Moreover, recently described ILC1 and intermediate ILC1 (in-

tILC1) populations (Cortez et al., 2017; Gao et al., 2017) were

also identified (Figure S4D). Knockout of tumor IFNGR results

in a large shift in the NK populations toward the mature

CD11bhigh cluster and an additional shift toward the ILC1 cluster

(Figure 4F, density plots). These ILC1s exhibit relatively high

levels of Pd1 (Pdcd1) and Trail (Tfnsf10) (Figure 4G), consistent
with previously reported properties for this population. Using

28-color flow cytometry (Figures S4E and S4F), we confirmed

that tumor IFNGR knockout leads to an increase in the propor-

tion of NK/ILC1s that are CD11bhigh NK cells or PD1+ TRAIL+

ILC1s (Figures 4H–4I and S4G). Flow cytometry also confirmed

that this is accompanied by an increase in the proportion of

terminally exhausted CD8 T cells, particularly after anti-CTLA4,

as indicated by an increase in PD1+ Eomes+ CD8 T cells that ex-

press multiple inhibitory receptors and relatively high levels of

Ki67 and GzmB (Figures 4H and S4G).

Together, these results indicate that preventing tumor IFNG

signaling expands CD8 TEX toward terminal exhaustion and

increased production of IFNG. In this way, disrupting tumor

IFNGR not only decreases ISG.RS in cancer cells but conversely

increases IFNG.GS expression by immune cells. This enhanced

IFNG signaling in immune cells might then drive maturation and

function of NK/ILC1 subsets, including a PD1+ TRAIL+ ILC1 pop-

ulation that potentially contributes to ICB response.

Preventing Tumor IFNG Signaling Enables IFNG from
CD8 TEX to Drive NK/ILC1 Function while Removing
Inhibitory Feedback from PD1/PDL1 and TRAIL/
TRAILR2
Given the single-cell findings, we sought to investigate whether

IFNG produced by CD8 TEX is involved in NK/ILC1-mediated

killing and whether the PD1/PDL1 and TRAIL/TRAILR pathways,

which are implicated due to their presence on intratumoral ILC1s,

can contribute to response after IFNGR knockout. To test the role

of IFNG produced by CD8 T cells, we adoptively transferred CD8

T cells from wild-type or IFNG knockout mice into RAG-deficient

hosts and then implanted themice with Res 499 IFNGR knockout

tumors (Figures 5A and S5A). This revealed that IFNG production

by CD8 T cells is required for anti-CTLA4 response. Conversely,

when CD8 T cells are depleted, there is a decrease in the propor-

tion of mature CD11b+ NK/ILC1s (Figure S5B) as well as total NK/

ILC1s (Figure 5B). However, direct intratumoral injection of IFNG

or CXCL10 can rescue or partially rescue the loss in NK/ILC1 cells

(Figure 5B). NK/ILC1-dependent ICB response (Figure 5C, blue

boxplots) and survival (Figure S5C) that is also compromised after

depleting CD8 T cells is similarly rescued by injection of IFNG.

Thus, these results suggest NK/ILC1-dependent response result-

ing from blocking tumor IFNG signaling relies on IFNG produced

by CD8 TEX and on downstream chemokines such as CXCL10.

Although IFNGhasacritical role inpromotingNK/ILC1 function,

it also induces high levels of PDL1 on tumors. Given that PD1 is

expressed on ILC1 cells, this suggests that the PD1/PDL1 axis

may normally function as an IFNG-directed feedback inhibition

mechanism to antagonize innate immune function, similar to its

role in regulating T cell responses. If so, removal of this feedback

inhibition by IFNGR knockout may contribute to the improved

response resulting from blocking tumor IFNG signaling. To

examine this, we ectopically expressed PDL1 in PDL1 knockout

Res 499 tumors to make PDL1 levels independent of IFNG

signaling (Figure S5D). In contrast to wild-type or B2M-deficient

Res 499 tumors, the ability of IFNGR deletion to improve anti-

CTLA4 response is lost when PDL1 levels are fixed (Figure S5E).

To remove effects of PD1 from CD8 T cells, we depleted CD8

T cells but restored NK/ILC1 function in IFNGR-deficient Res
Cell 178, 933–948, August 8, 2019 939
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Figure 4. Blockade of Tumor IFNG Signaling Promotes CD8 TEX Expansion, IFNG Production, Immune Cell IFNG Signaling, andMaturation of

NK and PD1+ TRAIL+ ILC1 Cells

CD45+ immune cells from Res 499 tumors with or without IFNGR KO were profiled by scRNA-seq.

(A) tSNE plot with identified immune populations (left) and corresponding density plots (right). The percent of CD8 T cells is 6.4% and 16.8% in wild-type (WT) and

IFNGR KO tumors, respectively.

(B) GSEA on CD8 T cell clusters using T cell terminal exhaustion and progenitor exhaustion gene sets. Normalized enrichment scores and p values are indicated.

(C) Intratumoral IFNG protein levels from wild-type or IFNGR KO Res 499 tumors treated with or without anti-CTLA4. Effect of CD8 T cell depletion (aCD8) is also

shown. P value is determined by a two-sided t-test.

(D and E) Expression of IFNG.GS (D) or average expression ofCxcl9 andCxcl10 (E) across intratumoral immune cells fromwild-type or IFNGRKO tumors overlaid

on the tSNE map shown in (A).

(F) NK1.1+ and NKp46+ NK cell clusters from (A) were re-clustered. Shown is a tSNE plot with identified NK and ILC1 populations (left) and corresponding density

plots (right).

(G) Average expression of select NK/ILC1 genes for each of the indicated NK or ILC1 maturation stage.

(H) CD8 T cells and NK/ILC1 populations were identified by 28-color flow cytometry. Shown is ratio of PD1+ Eomes+ CD8 TEX that belong to Ki67+ GzmB+ clusters

over total PD1+ Eomes+ CD8 TEX (left) or the proportion of CD11bhi NK and PD1+ TRAIL+ ILC1 cells relative to total NK/ILC1s (right). P values are determined by a

one-sided t-test.

(I) Density plots of NK/ILC1 clusters and expression of indicated markers overlaid onto a tSNE plot. Points are colored by scaled MFI and overlaid with a contour

plot. Clusters 3, 9, 10, and 11 are CD11bhi NK cells, and cluster 4 is PD1+ TRAIL+ ILC1 cells.

See also Figure S4.
499 tumors by intratumoral administration of IFNG (Figure 5C, red

boxplots). Consistent with tumor PDL1 inhibiting NK/ILC1 killing,

fixing high PDL1 expression despite IFNGR knockout blunted

NK/ILC1-dependent ICB response. Conversely, improved anti-

CTLA4 response resulting from PDL1 deletion requires NK/
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ILC1s (Figure 5D). The notion that PD1/PDL1 can directly inhibit

NK/ILC1killingwasalsocorroboratedbyusingCD49a+PD1+ liver

NK cells cultured with IFNGR-deficient Res 499 cells with and

without ectopic PDL1 (Figures 5E and S5F). In total, these results

suggest that tumor IFNG signaling normally drives feedback
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Figure 5. NK/ILC1-Mediated Killing from Blocking Tumor IFNG Signaling Is Regulated by IFNG Produced by TEX, PD1/PDL1, and TRAIL/

TRAILR2

(A) Wild-type or IFNG-deficient CD8 T cells were adoptively transferred into Rag1�/�mice. Shown is survival after implantation of IFNGR KORes 499 tumors and

treatment with anti-CTLA4 (n = 4-5).

(B) Mice bearing IFNGR KORes 499 tumors were depleted of CD8 T cells followed by intratumoral injection of the indicated cytokine. Shown is the percentage of

intratumoral CD8 T cells and NK/ILC1s. P values are based on a two-sided t-test.

(C) Response of IFNGR KO Res 499 tumors in CD8 T cell-depleted mice. Mice were treated with anti-CTLA4 with or without intratumoral injection of IFNG. Effect

of concurrent depletion of NK/ILC1s with anti-NK1.1 is also shown as well as effect of high constitutive PDL1 on IFNGRKO tumors (red boxplots). Tumor volumes

are relative to initial control tumor volume. P values are determined by a generalized linear mixed model.

(D) Survival after anti-CTLA4 treatment of mice bearing Res 499 tumors with concurrent KO of PDL1 (n = 5). The effect of anti-NK1.1 is shown.

(E) In vitroNK cell killing of Res 499 IFNGRKO tumor cells with or without constitutive ectopic PDL1 expression. Both CD49a+ PD1+ andCD49b+ PD1– populations

were tested. Shown are relative proportions of CD107a+ NK cells. For each biological replicate, data are normalized to results from Res 499 IFNGR KO cells

cultured with CD49a+ PD1+ NK cells. P value is based on a one-sample t-test.

(F) In vivo TRAILR2 and PDL1 expression on Res 499 tumors with or without IFNGR KO. P values are based on a two-sided t-test.

(G) Survival after anti-CTLA4 of mice bearing IFNGR KO Res 499 tumors with (n = 14-15) or without (n = 5) concurrent KO of TRAILR2.

P values for all survival analyses are determined by a log-rank test. See also Figure S5.
inhibition through tumorPDL1 to regulateNK/ILC1 function. Thus,

ablating tumor IFNGR not only increases immune cell IFNG

signaling but also enhances innate immune killing by interfering

with the PD1/PDL1 inhibitory axis.

Besides PD1, intratumoral ILC1 cells also express TRAIL.

Since response from tumor IFNGR knockout is independent of

host perforin (Figure 3E), this suggests that tumor killing may uti-

lize the TRAIL pathway. Indeed, Res 499 tumors not only express
PDL1 but also the TRAIL receptor (TRAILR2). Unlike PDL1,

TRAILR2 decreases in direct response to IFNG in vitro (Fig-

ure S5G). Accordingly, knockout of tumor IFNGR significantly in-

creases TRAILR2 in vivo, while PDL1 decreases (Figure 5F).

Deletion of TRAILR2 in IFNGR-deficient Res 499 tumors (Fig-

ure S5H) reveals that tumor killing after anti-CTLA4 is largely

dependent on TRAIL/TRAILR2 interaction (Figure 5G). These

data suggest that IFNG controls an inhibitory feedback
Cell 178, 933–948, August 8, 2019 941
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Figure 6. Activated Bystander T Cells Support and Tregs Inhibit NK/ILC1-Dependent Response after Blocking Tumor IFNG Signaling

(A) OT-1 mice bearing Res 499 tumors with combined IFNGR and B2M KO were treated with anti-CTLA4 with or without intratumoral injection of OVA peptide.

Wild-type mice with or without CD8 T cell depletion were used as comparison.

(B and C) Tumor infiltration by CD8 T cells and NK/ILC1s (B) and growth of Res 499 IFNGR + B2M KO tumors after anti-CTLA4 (C) (95% confidence interval in

gray). P values for (B) are based on a two-sided t-test. P value in (C) is determined by a generalized linear mixed model.

(D) Proliferation status of Tregs and other intratumoral immune cells in control (WT) or Res 499 IFNGR KO tumors measured by average expression of Ki67

and Top2a.

(E) Tumor growth of Res 499 IFNGRKO tumors implanted into wild-type or FoxP3-DTRmice treated with anti-CTLA4 or diptheria toxin (DT). P value is determined

by a generalized linear mixed model.

(F) Survival of mice bearing CT26 tumors with IFNGR ± B2M KO after treatment with anti-PD1 or anti-CTLA4. For all groups, n = 5. P values are based on a log-

rank test.

(G) Top predictive features from a random forest model (and confirmed by lasso regression) for how the proportion of different intratumoral immune cells (x axis)

predicts the abundance of activated NK cells in human melanoma tumors (y axis). Standard error is in yellow.

See also Figure S6.
mechanism for NK/ILC1s not only by increasing tumor PDL1 but

also by decreasing TRAILR2. Thus, preventing tumor IFNG

signaling enables TRAIL- and NK/ILC1-dependent killing.

Adaptive Immune Cell Requirements for Innate Immune
Killing after Blocking Tumor IFNG Signaling
Despite our findings that response after IFNGR knockout of Res

499 tumors requires IFNG produced by CD8 T cells, the dispens-

ability of tumorMHC-I argues that antigen presentation by tumor

cells is not necessary for CD8 TEX to support NK/ILC1 function.

To corroborate this, we implanted Res 499 tumors deficient in

both IFNGR and B2M in either wild-type mice or OT-1 mice ex-
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pressing a transgenic T cell receptor to OVA antigen, which is not

expressed by Res 499 tumors (Figure 6A). The accumulation of

both intratumoral CD8 T cells and NK/ILC1s is reduced and

ICB response is lost in OT-1 mice compared to wild-type mice

(Figure 6B and 6C). However, intratumoral injection of OVA pep-

tide rescued the compromisedCD8 T cell frequency and partially

restored NK/ILC1 levels. Moreover, despite the absence of tu-

mor MHC-I, response to anti-CTLA4 was also partially rescued

(Figure 6C). Thus, the ability of IFNGR knockout to enhance

NK/ILC1-dependent ICB response need not depend on antigen

presentation by tumor cells themselves. Rather, cross-primed

and/or activated bystander T cells can suffice.



Although disrupting tumor IFNG signaling interferes with the

inhibitory effects of PD1/PDL1 between tumor cells and both

adaptive and innate immune cells, anti-CTLA4 appears to pro-

vide a non-redundant function to PD1/PDL1 inhibition. In mouse

models, and possibly in humans, antagonistic CTLA4 antibodies

not only block CTLA4 but can also deplete CD4+ T regulatory

cells (Tregs) (Arce Vargas et al., 2018; Romano et al., 2015;

Simpson et al., 2013). Indeed, Tregs are among the most prolif-

erative immune cells in Res 499 tumors, and this does not appear

altered by tumor IFNGR knockout (Figure 6D). To investigate the

importance of inhibiting Tregs, we used the 4F10 antibody

against CTLA4 that does not concurrently deplete Tregs (Simp-

son et al., 2013). In contrast to the Treg-depleting 9H10 antibody,

4F10 fails to elicit a response against Res 499 IFNGR knockout

tumors (Figure S6A). Conversely, depleting Tregs by stimulation

of the diptheria toxin receptor under control of Foxp3 recapitu-

lates the effects of 9H10 on IFNGR-deficient Res 499 tumors

(Figure 6E). The non-redundant effect of a Treg-depleting anti-

body with tumor IFNGR knockout is also highlighted in the

CT26 tumor model. Here, although IFNGR knockout results in

spontaneous regressions and complete responses to anti-PD1,

all mice relapsewhenB2M is ablated (Figures 6F andS6B). How-

ever, the 9H10 anti-CTLA4 antibody results in complete

response despite B2M loss, consistent with the anti-CTLA4 but

not anti-PD1 antibody allowing for more optimal NK/ILC1-medi-

ated killing. Corroborating the potential role of Tregs in sup-

pressing innate immune cell activity, abundance of activated

NK cells inversely associates with Treg abundance in melanoma

patients (Figure 6G). Thus, interfering with the suppressive ef-

fects of Tregs may be required to fully unleash both adaptive

and innate immune killing resulting from blocking tumor IFNG

signaling. These findings imply that dual therapy with anti-PD1

plus anti-CTLA4 antibodies that inhibit Tregs may promote

innate immune function better than monotherapy approaches.

Tumor Mutations in IFN Pathway Genes Predict Clinical
Response to Dual Blockade of PD1 and CTLA4
Our findings suggest that mutations predicted to reduce tumor

IFN signaling might associate with decreased ISG.RS and

improved clinical response to ICB. To investigate this, we

extended the analysis of recently described exome-sequencing

data of non-small cell lung cancer (NSCLC) patients from either

TCGA or a clinical trial using anti-PD1 plus anti-CTLA4 (Hellmann

et al., 2018). After excluding common non-disease single-nucle-

otide variants, pathogenic missense and nonsense mutations

were predicted using two algorithms, CADD and DANN, that

were trained on a catalog of benign and pathogenic variants

from the ClinVar database (Figure S7A; see STAR Methods). In-

dels were also evaluated as damaging or neutral using SIFT. In

the TCGA, there is an 8.6% incidence of patient tumors with at

least one predicted pathogenic variant in a core set of 11 type

I and II IFN pathway genes (Figures S7B and S7C). These tumors

exhibit a decrease in ISG.RS genes, consistent with an enrich-

ment for IFN pathway variants with defective signaling (Figures

7A and S7D). In the patients treated with anti-PD1 plus anti-

CTLA4, 14.7% of patients have at least one IFN pathway variant

and these patients have improved progression-free survival

(PFS) with dual ICB (Figures 7B and 7C). In contrast, only
0.58% of random gene sets of similar size yield PFS differences

that are as significant (Figure S7E), and IFN pathway variants do

not associate with survival in TCGA patients (Figure S7F),

arguing that variant status is not a general prognostic marker.

Although the presence of IFN pathway variants is associated

with higher TMB (Figure S7G), multivariable logistic regression

and random forest reveal that variant status predicts ICB

response independently of TMB and PDL1 expression (Figures

7D and S7H). Both models yield predicted probabilities of

response (CR or PR) that correlate well to actual observed re-

sponses (Figure 7E, top panel; Figure S7H, right plot). Notably,

despite a higher likelihood of response, variant-positive tumors

exhibit lower percent tumor PDL1 expression (5.4% versus

20.3%; Figure 7F), consistent with variants having a negative

impact on tumor IFN signaling. In contrast, stratification by

variant status of random genes rarely yields a difference in %

PDL1 this large (frequency 5.7 3 10�3) (Figure S7I). Notably,

one patient had a tumor withmultiple alleles of B2Mwith a frame-

shift indel or predicted pathogenic missense mutations who

nonetheless had a PR to ICB (Figure 7E, patient 40). This is

consistent with previous reports describing a NSCLC patient re-

sponding to anti-PD1 despite deleterious B2M mutations and

loss of B2M expression confirmed by immunohistochemistry

(Rizvi et al., 2018). Thus, genetic alterations of the IFN pathway

in human NSCLC are associated with decreased ISG.RS,

decreased tumor PDL1, and improved ICB response indepen-

dent of TMB status.

DISCUSSION

In this study, we describe how IFNG signaling in tumor cells an-

tagonizes both T cell and innate immune responses. This is

accomplished through an inhibitory feedback circuit orches-

trated by tumor cells whereby IFNG from immune cells not

only regulates its own inhibition but tightly controls adaptive

and innate immunity (Figure 7G). Our current and previous find-

ings suggest several main components to this IFNG circuit. First,

we previously reported that persistent IFNG signaling can initiate

epigenetic changes in cancer cells characterized by enhanced

STAT1-associated open chromatin (Benci et al., 2016) that in-

cludes loci for ISGs belonging to ISG.RS genes (unpublished

data). Since resistance caused by persistent IFNG signaling

can take several weeks to establish, these results suggest that

the first component of the feedback circuit is the establishment

of an epigenetic landscape in cancer cells that is permissive

for enhanced ISG.RS expression. The second component is

enforcing T cell exhaustion through high levels of PDL1 and

likely other inhibitory ligands, which may include HVEM,

LGALS9, and others (Benci et al., 2016). How the increase in

these inhibitory ligands are mechanistically related to the epige-

netic changes is currently unclear. Nonetheless, the end result is

interactions between cancer and immune cells that favor an ex-

hausted T cell state characterized by decreased IFNG and CTL

function. The third component is inhibition of innate immunity

by impeding NK/ILC1 effector function and differentiation.

IFNG signaling in cancer cells not only increases PDL1 but de-

creases TRAILR2, which is the receptor for TRAIL expressed

by ILC1 cells. Consequently, cytotoxicity from PD1+ TRAIL+
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Figure 7. Tumor Mutations in the IFN Pathway Predict Decreased ISG.RS and Increased Survival in Lung Cancer Patients Treated with Anti-

CTLA4 and Anti-PD1

(A) GSEA of ISG.RS genes comparing TCGA NSCLC patients with and without a predicted pathogenic variant in the IFN pathway (IFN Path Var). Normalized

enrichment score and p value are indicated.

(B) CADD, DANN, and SIFT scores for IFN Path Var from a cohort of 75NSCLCpatients treatedwith anti-CTLA4 + anti-PD1. Variant type (color), optimal cut points

for classification (dashed line), and mean value for benign ClinVar variants (solid line) are shown.

(C and D) Progression-free survival (with log-rank p value) after anti-CTLA4 and anti-PD1 (C), and odds ratios for response (D) (with 95%confidence intervals) from

multivariable logistic regression.

(E) Response (top plot), clinical features (middle two plots), and variant allele frequency (VAF; bottom plot) of tumors with IFN Path Vars. The mean/median values

are indicated by dashed lines. Top plot shows predicted probability of response (from logistic regression) and observed best overall response (NE is

nonevaluable).

(F) Boxplot of %PDL1 staining and response. P value is based on a two-sided t-test.

(G) Model for how the opposing roles of IFN signaling in immune and tumor cells regulate ICB response in tumors differing in neoantigen and MHC-I status.

See also Figure S7.
NK/ILC1 cells is antagonized. Additionally, the decreased pro-

duction of IFNG by T cells further safeguards against innate

immune killing by stalling NK/ILC1 recruitment and/or matura-

tion. This may be at least partly due to diminished expression

of CXCL9/10 from myeloid cells. Thus, IFNG signaling in cancer

cells orchestrates feedback inhibition on multiple levels to limit

both adaptive and innate immune function.

By preventing tumor IFNG signaling, both adaptive and innate

immune functions are unleashed (Figure 7G). However, the de-

gree to which each of these effector arms contribute to response
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is context dependent. In tumors that are less reliant on IFNG

for high MHC-I expression and antigen presentation (e.g.,

CT26 and TSA), blocking tumor IFNG signaling enables TEX to

coordinate both CTL- and NK/ILC1-mediated responses. For tu-

mors with low baseline MHC-I that are reliant on IFNG to elevate

MHC-I expression (e.g., B16), a decrement in CTL killing is likely;

however, the presence of innate immune killing can help tomain-

tain overall response. For tumors such as Res 499with poor neo-

antigens and low MHC-I, or for tumors that have lost B2M,

compromised IFN-inducible MHC-I is likely inconsequential.



Here, enhanced IFNG production by cross-primed TEX or

possibly activated bystander T cells increases IFNG signaling

in immune cells and maturation of NK/ILC1s. Ablating tumor

IFNG signaling may particularly help activate otherwise poorly

cytotoxic PD1+ TRAIL+ ILC1 cells (Cortez et al., 2017; Gao

et al., 2017) by increasing tumor TRAILR2, decreasing PDL1,

and/or altering other inhibitory pathways present on NK cells

and/or ILC1s (Figure 4G). Thus, preventing tumor IFNG signaling

enhances both adaptive and innate immune effector function but

the magnitude that each contributes to response is context-

dependent—in particular, MHC status and antigen availability

are likely key determinants.

Besides cell-intrinsic properties that influence the extent to

which adaptive and innate immunity contribute to response

after tumor IFNGR knockout, another important determinant

is the impact of therapy on Tregs. In our mouse models, intra-

tumoral Tregs are highly proliferative, consistent with recent

evidence from human tumors (Li et al., 2019). Preventing

tumor IFNG signaling does not appear to impact the abun-

dance or proliferative status of Tregs. Yet, inhibiting Tregs

seems to be an important requirement to fully enable ICB

response after tumor IFNGR knockout, particularly response

driven by innate immune cells. This may explain why response

can be worse when IFNG signaling is crippled in B16 models

using anti-PD1-based combination therapies (Manguso et al.,

2017). Here, therapeutic efficacy is likely CTL-dominant and

IFNG is needed to increase low baseline MHC-I levels. Primar-

ily relying on enhanced CTL killing through PD1 blockade

becomes inadequate because MHC-I levels are insufficient

for T cell recognition, and NK/ILC1 killing is not effective

without concurrently inhibiting Tregs. This notion is illustrated

using CT26 tumors that have high baseline MHC-I and is

responsive to both anti-PD1 and anti-CTLA4. Here, durable

response of IFNGR knockout CT26 tumors to anti-PD1 is

abrogated by B2M loss but maintained when using a Treg-

depleting anti-CTLA4 antibody. This interpretation may explain

why mutations in the IFNG signaling pathway can associate

with relapse to anti-PD1 monotherapy if baseline MHC-I levels

are inadequate (Zaretsky et al., 2016). In such instances,

inhibiting Tregs might promote tumor response through NK/

ILC1-mediated killing. Such non-redundant effects between

anti-PD1 and potential Treg targeting antibodies may provide

insight into why MHC-I levels appear not to correlate with clin-

ical response in patients treated with combination nivolumab

and ipilimumab (Rodig et al., 2018). Notably, our cohort of

lung cancer patients that show IFN pathway variants can

predict improved survival was treated with nivolumab and

ipilimumab.

Even if CD8 T cells are not able to effectively mediate direct

cytolytic tumor killing, the ability of TEX to generate IFNG is

important to promote NK/ILC1 function. Preventing tumor

IFNG signaling both enhances CD8 T cell abundance and drives

them toward terminal exhaustion, a state characterized by high

IFNG production compared to progenitor TEX. Our studies also

suggest that IFNG produced by cross-primed and/or activated

bystander T cells might be sufficient to sustain NK/ILC1 matura-

tion and NK/ILC1-dependent tumor killing. These findings have

relevance for bystander T cells to common viruses and other
non-tumor antigens that not only are abundant in human tumors

(Simoni et al., 2018) but can be leveraged for immunotherapy

(Rosato et al., 2019). One reason why antigen-restriction may

not be required is because the stimulatory effects of IFNG on

NK/ILC1s are indirect. IFNG from CD8 T cells appear to increase

IFNG.GS expression predominantly in DC andmyeloid cells, and

IFNG.GS genes such as Cxcl10 then influences intratumoral NK/

ILC1 abundance. In melanoma patients, IFNG.GS is also highest

in macrophages (Figures 1B and S1A) and M1 macrophage

abundance positively correlates with the proportion of activated

intratumoral NK cells (Figure 6G). Thus, tumor-specific TEX or

activated bystander T cells can enhance innate immune re-

sponses against cancer when tumor IFNG signaling is blocked.

Besides tumor IFNG signaling, inhibiting IFN-I signaling in

tumor cells also diminishes the expression of resistance-associ-

ated ISGs and in some cases results in greater anti-tumor re-

sponses than IFNGR knockout alone (Benci et al., 2016). Thus,

how IFN-I contributes to IFN-driven resistance and differs from

IFNG requires additional investigation, as do the roles of individ-

ual ISGs in ICB resistance.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of the

University of Pennsylvania. Five- to seven-week-old female C57BL/6 (stock# 027) and BALB/c (stock# 28) were obtained from

Charles River Laboratory. Five- to seven-week-old female C57BL/6 (stock# 000664), Perforin knockout (C57BL/6-Prf1tm1Sdz/J;

stock# 002407), IFNG knockout (B6.129SJ-Ifngtm1Ts/J; stock # 002287), RAG1 knockout (B6.129S7-Rag1tm1Mom/J; stock#

002216), OT1 (C57BL/6-Tg(TcraTcrb)1100Mjb/J; stock# 003831), FoxP3-DTR (B6.129(Cg)-Foxp3tm3(DTR/GFP)Ayr/J; stock# 016958)

were ordered from Jackson Laboratory (Bar Harbor, ME). Mice were maintained under specific pathogen free conditions and

randomly assigned to each experimental group.

Cell Lines
B16-F10 melanoma cells (male C57BL/6 mouse), TSA breast cancer cells (female BALB/c mouse), and resistant sublines were

derived and cultured as previously described (Twyman-Saint Victor et al., 2015). CT26 colorectal cancer cell lines (female BALB/c

mouse) were purchased from ATCC and similarly cultured.

METHOD DETAILS

CRISPR gene targeting
Gene targeting by CRISPR/Cas9 was accomplished by co-transfection of a Cas9 plasmid (Addgene, 41815), the guide sequence

(selected using ZiFit Targeter) cloned into the gBlock plasmid, and a plasmid with the puromycin selection marker. Successful tar-

geting of the gene(s) of interest was determined by treating cells with andwithout 100 ng/mL of IFNG (PeproTech), 1000 units/mL IFN-

beta (PBL Assay Science), or both depending on the target gene, and examining PDL1, B2M, or TRAILR2 surface expression by flow

cytometry. Knockout cells were sorted from a bulk knockout population using Fluorescence Activated Cell Sorting (FACS) on the Aria

(BD) or FACSJazz (BD) to maintain the diversity of the parent cells. The gene block contains 20 bp target size (N), U6 promoter, gRNA

scaffold, and a termination signal. The common gene block sequence is:
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TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTACCAAGGTCGGGCAGGAAGAGGGCCTATTTCC

CATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTAC

AAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTA

ACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGNNNNNNNNNNNNNNNNNNNGTTTTAGA

GCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCTAGACCCAGC

TTTCTTGTACAAAGTTGGCATTA

The guide sequences used are previously published (Benci et al., 2016) or listed in the Key Resources Table.

In vivo mouse studies
Tumor injection and treatment schedule were done as previously described (Twyman-Saint Victor et al., 2015). Except for some

experiments to measure immune cell infiltration, both flanks were implanted. Antibodies against CTLA4 (9H10), PDL1 (10F.9G2),

or PD1 (RMP1-14) were given on days 5, 8, and 11 unless otherwise specified. Anti-CD8, anti-NK1.1., and anti-Asialo-GM1 were

given on days �2, 0, 4, 8, 12, and 16. All antibodies were administered intraperitoneally at 200 ug/dose. Isotype controls were

used to confirm the lack of non-specific effects and a similar response and survival to untreated mice.

Whole exome sequencing
Genomic DNA was isolated and purified from sorted cancer cells from mouse tumors using Purelink Genomic DNA Kit (Fisher).

Exome libraries were prepared using the SureSelectQXT Kit (Agilent) with SureSelectXT Mouse All Exon bait. Libraries were

sequenced on an Illumina HiSeq 2500 with 100 base paired end reads.

Single Cell Sequencing Preparation
Tumors were harvested on day 17 and viable CD45+ cells were FACS sorted. Single-cell emulsions were obtained using the

10x Genomics Controller and the v2 Library and Gel Bead kit (10X Genomics). RNA-sequencing libraries were prepared as instructed

by the 10x 30 v2 kit protocol. Resulting libraries were sequenced on an Illumina NextSeq using a NextSeq 500/550 v2.5 High

Output Kit.

Flow cytometry
Tumors were harvested at day 13-15 post tumor implantation. Single-cell suspensions were prepared and red blood cells were lysed

using ACK Lysis Buffer (Life Technologies). For in vitro cell lines, untreated or sub-confluent cells treated for 16 hours with 100 ng/mL

of IFNG (PeproTech) were harvested and single-cell suspensions prepared. Live/dead cell discrimination was performed using

Live/Dead Fixable Aqua Dead Cell Stain Kit (Life Technologies). Cell surface staining was done for 30 min at 4 degrees. Intracellular

staining was done using a fixation/permeabilization kit (eBioscience). Data acquisition was done using an LSR II (BD) or FACSCalibur

(BD) and analysis was performed using FlowJo (TreeStar) or the flowCore package in the R language and environment for statistical

computing. For high-dimensional flow cytometry, a FACSymphony (BD) was used for data acquisition and data analysis was done

using the cytofkit R package and a custom analysis pipeline described in Quantification and Statistical Analysis. For quantitation of

immune infiltration, tumors were harvested and weighed and the entire tumor section was dissociated and stained. All events were

collected on a flow cytometer and the total number of events of a given immune cell type were divided by the weight of the tumor. The

antibodies used in flow cytometry are provided in the Key Resources Table.

Intratumoral cytokine assay
Approximately 200 ug of tumor was harvested, weighed, and placed in complete RPMI media for 4 hours at 37 degrees. The media

was then harvested, spun to remove any remaining cells, and analyzed for cytokine expression (Luminex) according to the manufac-

turer’s instructions. Resulting cytokine levels were then divided by the initial tumor weight for each sample.

In vivo cytokine rescue studies
All mice were pre-treated with anti-CD8 two days before tumor injection. Either 1 ug IFNG or 100 ng CXCL10 was mixed in the

PBS/tumor cell suspension prior to injection of the tumor. Mice then continued receiving 500-1000 ng IFNG or 100 ng CXCL10

intra/peritumorally every 3 days post-tumor implantation. For flow cytometry experiments, mice were harvested at day 13 to examine

the effects of cytokine addback on immune recruitment in the absence of CD8 T cells. For survival experiments, intra/peritumoral

injections continued every 3 days for the remainder of the experiment.

OT1 and FoxP3-DTR mice studies
Transgenic OT1 mice or littermate wild-type mice were implanted with tumors using Res 499 cells with IFNGR and B2M knockout.

Groups receiving Ova peptide had 50 ng of peptide mixed into the suspension prior to tumor injection and continued to receive intra/

peritumoral injections on days 3, 6, 9, and 12. For flow cytometry experiments, mice were harvested on day 13. For FoxP3-DTR

mice studies, mice were implanted with Res 499 IFNGR knockout tumors and diptheria toxin was administered intraperitonally at

1 ug/dose/mouse on days 5, 8, and 11 post-injection.
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Murine chimeric antigen receptor T cells
B16-F10 or Res 499 tumor cells were transduced with pCLPs-hCD19 lentivirus to express a truncated human CD19 antigen that is

unable to drive intracellular signaling. Cells were double sorted for stable expression. 5x104 tumor cells in log phase growth were

implanted into flanks of B6 mice. Murine T cells were stimulated with CD3/CD28 Dynabeads (Invitrogen) for 24 hours and then

transduced with pMSGV-h19BBz retrovirus. At 48 hours after transduction, CAR-expressing T cells were quantified and 5x106

CAR-expressing T cells were injected i.v. in mice bearing B16- or Res499-hCD19 tumors 5 days after tumor implantation. Controls

were either mock PBS-injected or control transduced CAR T cells, which gave comparable results.

Adoptive transfer of mouse T cells
T cells from spleens of wild-type or IFNG knockout mice were isolated by negative selection, and 8 3 106 cells were adoptively

transferred i.v. into RAG1�/� mice. Recipient mice were allowed to reconstitute for 4 weeks, verified for reconstitution, and then

were injected with flank tumors and treated with ICB as described above.

In vitro NK cell assays
Mice were injected i.p. with poly I:C 18 hours prior to NK cell isolation from mouse spleens or livers by negative selection. NK cells

were then cultured with tumor cells for 6 hours. Flow cytometry was performed to assess the effector function and activation status of

NK cells by examining CD49a, CD49b, PD1, and/or CD107a.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of tumor growth, survival, and group differences
Tumor volumes were determined by caliper measurements. Differences in survival were determined for each group by the Kaplan-

Meier method and the overall p value was calculated by the log-rank test using the survival R package. For mouse studies, an event

was defined as death or when tumor burden reached a pre-specified size tominimizemorbidity. Using theMASSRpackage, amixed

effect generalized linearmodel with lognormal distribution for tumor volume datawas used to determine differences in growth curves.

The significance of all two-way comparisons was determined by a two-sample two-tailed t test, or by a one-tailed t test when appro-

priate. For non-parametric data, a Wilcoxon rank-sum test was used.

Gene set enrichment analysis
RNA-sequencing data from Res 499 resistant cells and B16-F10 parental cells flow sorted from untreated tumor-bearing mice were

used for gene expression analysis. Previously described upregulated ISGs associated with cancer and therapy resistance (Weich-

selbaum et al., 2008) were confirmed to be enriched in Res 499 compared to B16 by gene set enrichment analysis (GSEA) and

denoted the ISG Resistance Signature (ISG.RS). For genes associated with IFNG signaling, the IFNG gene set from the Hallmark

gene sets was used (IFNG.GS). GSEAwas performed and the normalized enrichment scores and p values calculated using the fgsea

Rpackage. For some genes like OAS1, orthologs were usedwhen converting betweenmouse and human gene names. See Table S1

for a list of genes in the ISG.RS and IFNG.GS.

Analysis of genomic features from clinical melanoma samples
Processed bulk RNA-seq data from two different cohorts of melanoma patients treated with anti-PD1 (Hugo et al., 2016; Riaz et al.,

2017) were downloaded from the GEO. CIBERSORT (Newman et al., 2015) was used to infer relative frequencies of immune cells in

the tumor. For immune cell types with values for both resting and activated states, the values for the resting state were subtracted

from values for the activated state. To calculate metagenes, gene expression data were centered and scaled using the sample mean

and standard deviation, respectively. Then, the average expression of the genes in each gene set was calculated for each sample to

give the metagene value. For tumor mutational burden, the provided values were log10 transformed.

Single-cell RNA-sequencing analysis
Single-cell RNA-sequencing data from melanoma patients were downloaded from the GEO (Tirosh et al., 2016) and converted to

TPM values. Several filtering steps were performed including, eliminating genes with low average expression and genes with greater

than 20%zero values. This resulted in 8213 genes that was then imputed using theSAVERRpackage (Huang et al., 2018) followed by

log2 transformation. Dimensionality reduction was performed using tSNE as implemented in the Rtsne R package and resulting clus-

ters were annotated using the provided cell type labels. The expression of each ISG metagene for cells belonging to each cell type

was calculated and compared by two sample t test. For single-cell immune cell data from mouse tumors using the 10X Genomics

platform, data were first processed using the Cell Ranger pipeline (10X Genomics). This included demultiplexing BCL files into

FASTQ, performing alignment with STAR, UMI counting, and aggregating replicates of the same condition. Cells that had fewer

than 500 genes detected, over 10%mitochondrial content, or over 3.5 times themedian UMI count were removed. Genes expressed

in less than 1% of cells were also removed. After these QC steps, UMI counts were imputed with SAVER. Seurat was then used to

normalize data to sequencing depth using a LogNormalize implementation, and mitochondrial contamination and cell cycle effects

were regressed out. Clustering was performed using Seurat’s graph-based clustering approach and visualized with tSNE. Clusters
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were classified using a collection of manually curated immune marker genes (Table S2). Metagene values for IFNG.GS was deter-

mined similarly to the clinical analysis. The average scaled values for Mki67 and Top2a, and the average scaled values for Cxcl9

and Cxcl10 were used to calculate the proliferation and Cxcl9/10 metagene, respectively. For visualization purposes, metagene

values less than or greater than 2.5 times the interquartile range were removed. Comparison of expression values between groups

was done using aWilcoxon rank-sum test. GSEAwas performed using the fgseaR package. Gene sets for LCMV terminal exhausted

T cells, progenitor exhausted T cells, and intratumoral ILC1 populations were curated from previously published reports (Gao et al.,

2017; Miller et al., 2019).

Multivariable classification, regression, and survival analysis
Random forest (RF) for classification, regression, and survival analysis is a multivariable non-parametric ensemble partitioning tree

method that can be used to model the effect of all interactions between genes on a response variable (Breiman, 2001; Chen and

Ishwaran, 2012). We used the randomForestSRC package version 2.5.1.14 and the following parameters: 5000 trees, node size

of 2, and default values for mtry. The default splitting rule was used for classification and the log-rank slitting rule was used for survival

analysis. The default value for nsplit was used except for models containing both two-level factor variables and continuous variables.

In this case, the nsplit parameter was set to 2 in order to prevent bias against the factor-level variables. Importance scores were

calculated using the random ensemblemethod. For classification problemswhere the two classes were imbalanced, a random forest

quantile-classifier approach was employed. Response was defined as complete or partial response. All predicted values, error rates,

and importance scores were based on cross-validation using out-of-bag samples. For variable selection and assessing variable

robustness, we considered the set of immune cell frequencies (inferred by CIBERSORT), TMB, IFNG.GS, ISG.RS, and/or the differ-

ence between IFNG.GS and ISG.RS (dISG) in a model for immune checkpoint blockade response. Prior treatment status and cohort

were included to ensure the lack of confounding from these variables. Balanced undersampling of the majority class was performed

and variable selection was determined using minimal depth (Ishwaran et al., 2010). The frequency that each variable was selected

and its associated importance score were averaged over 100 iterations.

To complement the RF approach for modeling probability of clinical response to immune checkpoint blockade, we also performed

multivariable logistic regression. From this, odds ratios and 95% confidence intervals were determined for each log10 increase in

TMB or 0.5 unit increase in metagene expression values. To complement RF variable selection using minimal depth, we performed

lasso regression using the glmnet R package. Both RF and linear regression methods yielded comparable results.

High-dimensional flow cytometry analysis
Fluorescence intensity data were analyzed using the flowCore R package and transformed using the logicle method. After excluding

debris, dead cells, doublets and CD45– cells, CD8 T cells and NK/ILC1 cells were gated and separately analyzed. CD8 T cells were

identified as TCRB+ and CD8+, while NK/ILC1 cells were identified as TCRB– and NK1.1+. For each population, an aggregate data

matrix from random sampling of 1000 events from each sample was used for dimensionality reduction and for clustering analysis.

Clusters were identified using Phenograph (Levine et al., 2015) as implemented in the cytofkit R package and visualized by tSNE.

Using cluster membership as class definitions, a RF classifier was developed using the same aggregate data matrix. After confirming

a low misclassification error rate for each class, this RF classifier was used to assign all cells in all samples to one of the clusters.

Using the two-dimensional tSNE coordinates, a RF classifier was also developed and used to assign all cells to the tSNE map, al-

lowing the distribution and frequencies of immune cells across clusters to be estimated for each sample. To analyze which immune

clusters are strongly associated with wild-type or IFNGR knockout tumors, the frequencies of immune cells within each cluster were

used as features in a RF model, and the resulting importance scores were examined.

Whole exome sequencing and neoantigen prediction
Preprocessing and variant calling were done with the Genome Analysis Toolkit (GATK) version 4.0.2.1 following its Best Practices

workflow. In brief, raw paired-end reads were aligned to the reference mouse genome GRCm38 release 68 using the bwa-mem

algorithm from BWA version 0.7.17. Duplicates were marked using MarkDuplicates from Picard tools version 2.17.11. Systematic

errors in base quality scores were detected and recalibrated using GATK’s BaseRecalibrator and ApplyBQSR. Known variants for

recalibration were downloaded from the Mouse Genome Project SNP and Indel release version 5. Somatic SNVs and indels were

then called with Strelka andMuTect2 using a matched normal germline of either C57BL/6 or BALB/c mice, and only variants shared

by both methods were kept. Variants were then filtered with FilterMutectCalls using GATK’s preset thresholds that are tuned for

diploid somatic analyses. Based on gene expression from RNA-seq data, variants from transcripts that were not detectably ex-

pressed were removed. The MHC-I binding affinities of variants were then predicted using NetMHC version 4.0 for H-2-Kb and

H-2-Db using peptide lengths from 8 to 11. To examine the genomic contraction of variants in Res 499 compared to parental

B16, the variant allele frequencies were analyzed for variants with near-heterozygous frequency (0.2 for a tetraploid genome) in

one cell line but subclonal frequency in the other. Significance between the distribution of allelic frequencies between the two groups

was estimated by a KS-test and compared to 1000 random variants. In addition, subclonal structure and their frequencies within the

tumor were examined using the Canopy R package (Jiang et al., 2016). High quality variants that meet all the following criteria were

used for the analysis: 1) affects only single nucleotides, 2) resides in autosome exonic regions, 3) exhibits VAF variance greater than

0.01, and 4) has mutation calling QUALs that exceed 50. The number of subclones were selected based on a Bayesian information
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criterion (BIC) after 100000 rounds of simulation across 20 chains. The configuration with the highest posterior likelihood was utilized

to generate a phylogenetic tree and the corresponding frequencies of the subclonal populations were determined.

Variant analysis of clinical lung cancer tumors
Weused previously published processed data for somatic non-synonymous variants from non-small cell lung cancer patients treated

with anti-PD1 and anti-CTLA4 (CheckMate-012 study) or from TCGA (Hellmann et al., 2018). Variants in one of 11 genes involved in

type I or II IFN pathway signaling (IFNGR1, IFNGR2, IFNAR1, IFNAR2, JAK1, JAK2, TYK2, STAT1, STAT2, IRF9, and B2M) were

examined. To exclude likely normal or benign variants, missense variants were annotated with ANNOVAR. Any missense variant

found in all individuals in the ExAC database at a relative frequency greater than 0.0001 was removed. In order to predict benign

from pathogenic missense or nonsense variants, two algorithms for scoring deleterious variants were used that included DANN, a

deep learning algorithm, and CADD, a machine learning algorithm. For each method, an optimal cut point was selected by training

on ClinVar data. Here, ClinVar variants classified as likely benign were considered benign and those classified as likely pathogenic

were classified as pathogenic. The optimal cut points based on ROC accuracy were then applied to test accuracy in predicting these

labels. Any variant below the ROC cut points for both DANN and CADD was categorized as benign. This yielded an overall accuracy

of 0.80, sensitivity of 0.95, and specificity of 0.54. This criterion was then applied to the TCGA lung cancer data and the lung cancer

tumors from CheckMate-012. For indels, SIFT was used for evaluation and non-frameshift indels and indels predicted to be neutral

were excluded. Based on available variant scores, any patient with at least one predicted pathogenic missense variant, pathogenic

nonsense mutation, or deleterious indel resulting in a frameshift was classified as IFN pathway variant positive. If scores were not

available (one case) the variant was considered positive to avoid potentially excluding pathogenic variants.

The progression-free survival (PFS) of patients stratified by IFN pathway variant status was determined by Kaplan-Meier survival.

The likelihood of response was determined by a multivariable logistic regression using variant status, log10 transformed values for

TMB, and a previously used %PDL1 staining cut off of greater than or equal to 1%. The p value for odds ratios was calculated by

bootstrapping. In addition, a non-parametric model for response employing multivariable random forest was also used and without

the need to transform any of the variables. The out-of-bag error rate and importance scores from this random forest model was then

determined. To evaluate the significance of the observed association between IFN pathway variant status with PFS and decreased%

PDL1 staining, the variant status of random sets of 11 genes were evaluated and used to stratify patients. Then, the hazard ratio for

PFS and the associated p value, and the %PDL1 staining for variant-positive and negative patients were recorded for 10,000 itera-

tions and compared to the observed values.

DATA AND CODE AVAILABILITY

All software used in this study are open source and/or publicly available. The datasets generated or used in this study are available at

the Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo, provided as supplemental data from cited studies, or

available through other cited public repositories.

Software
The R language and environment for statistical computing and graphics (https://www.r-project.org) was used for statistical and

bioinformatics analysis. R packages described in methods were obtained from Bioconductor (https://www.bioconductor.org) or

from CRAN (https://cran.r-project.org/web/packages/). These packages and additional software for processing, alignment, and

analysis of sequencing data are listed in the Key Resources Table.

Data Resources
Mouse sequencing data

The RNA sequencing data for sorted Res 499 tumor cells is available from the GEO under accession number GSE83848. The single-

cell RNA sequencing data for immune cells from Res 499 tumors and whole-exome sequencing data from sorted B16 and Res 499

tumors have been deposited under accession number GSE131927.

Human gene expression data

Normalized transcriptomic data, summarized exome analysis, and annotations for human melanoma patients treated with anti-PD1

were previously described (Hugo et al., 2016; Riaz et al., 2017) and downloaded from theGEO under accession number GSE78220 or

on GitHub at https://github.com/riazn/bms038_analysis. Single-cell RNA-sequencing data from melanoma patients (Tirosh et al.,

2016) were downloaded from the GEO under accession number GSE72056.

Human lung cancer variant data

Processed variant data from non-small cell lung cancer patients treated with anti-PD1 and anti-CTLA4 and from TCGA have been

previously described and made available as supplementary information (Hellmann et al., 2018).

ClinVar data

All available data from ClinVar were downloaded from the FTP link available at the website (https://www.ncbi.nlm.nih.gov/clinvar).
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Supplemental Figures

Figure S1. ISGs and Immune Cell Populations Expressed in Human Melanoma, Related to Figure 1

(A) Boxplots of ISG metagene expression in immune cell populations determined by single-cell RNA-seq of human melanoma. The width of the boxplots for the

indicated cell types are proportional to the population size (of note, immune and cancer cells were sorted before sequencing). P values for comparisons between

cancer cells and each immune population are p < 0.001. (B) Gene set enrichment analysis of cancer and resistance-associated ISGs (ISG.RS) and IFNG-related

ISGs (IFNG.GS) in melanoma patients treated with anti-PD1. Shown are enrichment plots along with the normalized enrichment score (NES) and p value. The

leading edge for the ISG.RS is labeled. (C) Relative frequencies of immune populations in the melanoma tumors inferred by CIBERSORT. For immune cell types

with both resting and activated populations, the difference between activated and resting was used. (D) Multivariable random forest model for probability of

response for melanoma patients treated with anti-PD1. Shown are the adjusted effects of model variables on the probability of response (left plots, yellow

boundaries indicate one standard error) and average variable importance scores with standard deviations (right plot). Predictor values are metagene expression

values for ISG.RS and IFNG.GS or log10 frequency for TMB. Variable importance score represents the increase in classification error rate when the variable is

perturbed. The classification error rate for the model is 36%. (E) Random forest model with variable selection based on minimal depth was performed on

bootstrapped samples. Variables include inferred frequencies of various immune populations (based on CIBERSORT), the ratio of IFNG.GS to ISG.RS (dISG),

TMB, and other control variables. Shown are the relative frequencies that each variable was selected based onminimal depth after resampling versus the average

variable importance score (VIMP) (with standard deviations). The inset shows the distribution of the number of variables in each bootstrapped model. Similar

results were also obtained with lasso and logistic regression.



Figure S2. Effect of Blocking Tumor IFN Signaling on Baseline and Inducible MHC-I Expression, Related to Figure 2

Constitutive and IFNG-inducible expression of MHC-I on (A) TSA/237 breast cancer cells and (B) B16 melanoma cells in vitro.



Figure S3. Immune Cell Requirements for Response after IFNGR Knockout, Related to Figure 3

(A) Representative density plots of tumor infiltrating CD45+ lymphoid cells that are either NK1.1+ or CD8+ after control (top) or depletion with anti-NK1.1 (bottom

left) or anti-CD8 (bottom right). (B) Ectopic expression of human CD19 on B16 and Res 499 melanoma cells. (C) Tumor growth of B16 and Res 499 tumors

expressing human CD19 with (IFNA/GR KO) and without (Cont) concurrent IFNGR + IFNAR knockout. P values are determined by a generalized linear mixed

model. (D) Baseline and IFNG-inducible expression of MHC-I and PDL1 on Res 499 cells with or without knockout of IFNGR and/or B2M. (E) Survival after tumor

rechallenge of mice with initial complete responses to anti-CTLA4 (n = 7). Res 499 cells with IFNGR knockout were used for both initial transplantation and

rechallenge. (F) In vitro NK-mediated cytotoxicity of Res 499 cells with B2M or IFNGR knockout after pre-treating tumor cells with IFNG prior to co-culture.

CD107a expression by NK cells was used as a surrogate for engagement of cytotoxic function. P values are based on a one-sided t-test. (G) Median (dot) and the

25th and 75th percentile survival of mice bearing IFNGR knockout Res 499 tumors following treatment with anti-CTLA4 (aCTLA4) or control (Cont). Shown are

effects of NK/ILC1 depletion with an anti-NK1.1 antibody (aNK1.1) and of CD4 or CD8 T cell depletion with an anti-CD4 (aCD4) or anti-CD8 antibody (aCD8).

P values are determined by a log-rank test. (H) Survival of mice bearing TSA/Res 237 tumors with IFNGR knockout after anti-CTLA4 and prior depletion of CD8

T cells or NK/ILCs with either anti-CD8 (aCD8) or anti-Asialo-GM1 (aAGM), respectively. For all groups, n = 5-10. On the left is a representative scatterplot of CD3–

NKp46+ intratumoral immune cells after control and depletion with anti-Asialo-GM1.



Figure S4. Improved TEX Function and NK/ILC1 Maturation after Blocking Tumor IFNG Signaling, Related to Figure 4

(A) Violin plots showing expression of the indicated genes in CD8 T cells from Res 499 wild-type (WT) or IFNGR knockout (KO) tumors. P values are determined by

a two-sidedWilcoxon test. (B) Intracellular IFNG expression in tumor-infiltrating CD44+ PD1+ CD8+ T cells and (C) intratumoral IL6 protein levels fromwild-type or

IFNGR knockout Res 499 tumors treated with or without anti-CTLA4. Effect of antibody-mediated CD8 T cell depletion (aCD8) on IL6 levels was also examined. P

values are determined by a two-sided Wilcoxon test. (D) GSEA comparing ILC1 cluster to other NK cell clusters using genes increased or decreased in ILC1s

relative to conventional NK cells. Normalized enrichment scores and p values are indicated. (E) Dimensionality reduction and cluster identificationwere performed

on TCRB+ CD8+ T cells or TCRB– NK1.1+ NK/ILC1s. Shown are heatmaps of the scaledMFI for each of the indicatedmarkers across the identified clusters (labels

below heatmap). For CD8 T cells, clusters representing PD1+ Eomes+ TEX are denoted in red. For NK/ILC1s, clusters in red denote CD11bhigh innate immune cells.

(F) Contour plots showing the distribution of CD8 T cells after anti-CTLA4 (top) or of NK/ILC1s at baseline (bottom) in either wild-type or IFNGR knockout Res 499

tumors. Individual cells corresponding to the contour plot are overlaid and colored by the scaled MFI of the indicated marker. (G) Density plots of CD8 T cells or

NK/ILC1s in wild-type or IFNGR knockout Res 499 tumors treated with or without anti-CTLA4. The left plot is a tSNE map. For CD8 T cells, clusters for PD1+

Eomes+ TEX with low or high expression of GzmB and Ki67 are color-coded and numbered. For NK/ILC1s, clusters enriched for CD11bhigh NK cells or PD1+

TRAIL+ ILC1 cells are color-coded and numbered. The cluster numbers correspond to the cluster labels shown in the heatmap from (E).



Figure S5. Regulatory Roles for IFNG, PD1/PDL1, and TRAIL/TRAILR2 after Tumor IFNGR Knockout, Related to Figure 5
(A) Representative scatterplots for the percent of peripheral CD8 andCD4 T cells after adoptive transfer of T cells from either wild-type or IFNG-deficient mice into

Rag1 knockout hosts. The plot on the far left is from a wild-type mouse and is shown for comparison. Percentages relative to CD45+ cells are indicated. The

percentage of peripheral CD4 and CD8 T cells after adoptive transfer for all mice are also shown (right plot). Values from the same mouse are connected. (B)

Proportion of mature CD27– CD11b+ NK/ILC1s in Res 499 IFNGR KO tumors after CD8 T cell depletion (aCD8). Representative flow cytometry contour plots are

shown. P values in (A) and (B) are based on a two-sided Wilcoxon test. (C) Survival of CD8 T cell-depleted mice after treatment with anti-CTLA4 with or without

intratumoral injection of IFNG. Effect of anti-NK1.1 treatment to deplete NK/ILC1s is also shown. P value is determined by a log-rank test. For each group, n = 5.

(D) Expression of ectopic PDL1 and baseline or IFNG-induced MHC-I in Res 499 cells with or without IFNGR knockout. (E) Survival benefit from anti-CTLA4

conferred by IFNGR knockout in Res 499 tumors. Shown are hazard ratios and standard errors for wild-type tumors, tumors with ectopic expression of PDL1

(PDL1hi), or concurrent knockout of B2M. (F) Expression of PD1 on CD49b– CD49a+ or CD49b+ CD49a– liver NK cells. (G) In vitro TRAIL receptor (TRAILR2)

expression after IFNG treatment on Res 499 cells with or without IFNGR knockout. (H) Expression of TRAILR2, MHC-I, and PDL1 in Res 499 cells with or without

concurrent knockout of TRAILR2 and IFNGR. Baseline and IFNG-inducible expression are shown.



Figure S6. Role of Treg Depletion in Response after Tumor IFNGR Knockout, Related to Figure 6

(A) Survival of mice bearing Res 499 IFNGR knockout tumors treated with either a Treg-depleting (9H10) or non-depleting (4F10) anti-CTLA4 antibody. P values

are determined by a log-rank test. For each group, n = 5. (B). Expression of MHC-I on CT26 cells after IFNGR + B2M double knockout.



Figure S7. Tumor Variants in IFN Pathway Genes Predict Improved Response and Survival of Lung Cancer Patients after Anti-CTLA4 and

Anti-PD1, Related to Figure 7

(A) CADD andDANN,which predict deleteriousmissense/nonsense variants, were used onClinVar data to classify benign versus pathogenicmissense/nonsense

variants. Shown is the ROC accuracy as a function of algorithm score. The cut point giving the highest accuracy (dashed line) is shown. (B) Predicted pathogenic

non-synonymous variants in one of 11 core IFN pathway genes (IFN Path Var) from 710 NSCLC tumors from TCGA. Variant type is indicated by color. For

missense/nonsense variants, scores from CADD and DANN are shown (top two plots). For frameshift indels, SIFT confidence scores are shown (bottom plot).

SIFT information for two indels was not available. The mean value for benign ClinVar variants is indicated (solid line) as are the optimal cut points for classification

as a pathogenic missense/nonsense variant (dashed line). (C) Tumor variant allele frequency (VAF) for IFN Path Vars (represented by circle size). (D) Expression of

IFNG.GS across TCGA patients. The IFN Path Var status is shown above the heatmap. (E) Univariate hazard ratios and p values for progression-free survival of 75

NSCLC patients treated with anti-CTLA4 + anti-PD1 stratified by the presence or absence of a variant in at least one of 11 random genes. Density plots show

results from 10,000 bootstrap samples. Dashed lines represent observed values from IFN pathway variant positive patients. The relative frequency of samples

that exceed these observed values is indicated. (F) Survival of TCGANSCLC patients stratified by IFN Path Var status. P value is determined by a log-rank test. (G)

Boxplot of TMB for 75 NSCLC patients treated with anti-CTLA4 + anti-PD1 stratified by IFN Path Var status. The best overall response for each patient is color

coded. P value is determined by a two-sided t-test. (H) Average variable importance scores and stardard deviations (left plot) from a multivariable random forest

model for clinical response to anti-CTLA4 + anti-PD1 (unbiased error rate of 30.1%) and predicted out-of-bag (OOB) probability of response (right plot). OOB

predicted probabilities are from samples not used to generate themodel. Actual observed response is color-coded. (I) Percent PDL1 for NSCLC patients stratified

by the presence or absence of a variant in at least one of 11 random genes. Density plots show results from 10,000 bootstrap samples. Dashed lines represent

observed values from IFN pathway variant positive patients. The relative frequency of samples that exceed these observed values is indicated.
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