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Abstract

Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of

atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk

factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial

fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and

their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly

time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases.

The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained

through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic

Surgery Clinical Trials Network.
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1 Introduction

Arrhythmias are cardiac disorders effecting the regular rhythmic beating of the heart. Atrial fibrillation, one type
of arrhythmia, involves different parts of the atria emitting uncoordinated electrical signals. This irregularity
causes the heart to beat unevenly and too fast, which also prevents the heart from fully contracting. An
estimated 2.5 million Americans are living with atrial fibrillation and estimates indicate as many as 12 million
people will have the condition by 2050 (Lloyd-Jones et al.1). This makes it the most common serious heart rhythm
abnormality. Though atrial fibrillation is not life threatening, if left untreated it may lead to serious heart related
issues, such as stroke or congestive heart failure. Traditionally, atrial fibrillation has been medically treated with
Aspirin or Warfarin. More recently, surgical intervention or catheter ablation has gained widespread acceptance,
particularly in patients having concomitant cardiac surgery.

The pathogenesis of atrial fibrillation is incompletely understood and the mechanism(s) of atrial fibrillation vary
among affected individuals. The mechanisms are probably more complex than the discrete, well-characterized
causes of most other arrhythmias (Gillinov2). With this in mind, we focused on assessing the time-varying
probability of atrial fibrillation as a binary response, and endeavor to identify patient risk factors whose
influence may also be time varying.
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1.1 Literature review

Longitudinal methods have been widely used in medicine and epidemiology to study the patterns of time varying
variables, such as disease progression or trends of health status. In observational studies, one often encounters
unbalanced longitudinal data, where each subject can have different number of measurements measured at
different time points. In such situations, the correlation among the observations within a subject can be
accounted for by using the unobservable random effects. Further, with patient data, it is also an important aim
to study patient-specific profiles to improve the quality of patient management. Laird and Ware3 introduced linear
random effects models (mixed effects model) for analyzing continuous response data. However, most of the
temporal progression of biological events or biomarkers are nonlinear in nature.4–6 A thorough overview of the
research literature on nonlinear mixed effects modeling, especially with a continuous response, can be found in
Davidian and Giltinan7 and Vonesh and Chichilli.8 As link functions used for non-normal responses are already
nonlinear in nature, most of the literature in nonlinear mixed effect modeling does still involve linear predictor
relations. A comprehensive overview of the generalized linear and nonlinear mixed effects modeling for non-
normal responses can be found in Molenberghs and Verbeke9 or Vonesh.10

Nonlinear longitudinal models have been widely used to model time-varying clinical data. Most modeling
approaches are based on nonparametric methods where, for example, an intercept coefficient is modeled as a
function of time using a cubic spline (Guo11). ‘‘Compartmental’’ or ‘‘multi-phase’’ models to fit pharmacokinetic
data (Pinheiro,12 Vonesh13 Molenberghs and Verbeke9 chap. 20), bi-phase exponential decay model proposed by
Wu14 to fit a temporal trend of virus load in an AIDS study, and a multiphase model proposed by Rajeswaran and
Blackstone15 to fit a temporal trend of longitudinal continuous lung function data are examples of parametric
nonlinear models where random effects enter the model nonlinearly. Faes et al.16 used a nonlinear mixed effects
model for binary response data.

Another important aspect of statistical analyses of longitudinal data is to evaluate the effect of covariates where
the influence may change with time; coefficients are time-varying. Many time-varying coefficient models use
nonparametric approaches.17–19 Most of the proposed models are for continuous longitudinal responses. Here
again, coefficients related to each covariate are modeled as a function of time. However, when the number of
covariates in a model is large, as is the case in most observational studies, this approach becomes computationally
expensive. In our model, we identify a set of covariates for each time phase, and the influence of these covariate is
modulated by the corresponding nonlinear time function. The proposed model for binary longitudinal data is an
extension of nonlinear mixed effects model for continuous data proposed by Rajeswaran and Blackstone.15

1.2 Contribution and outline

In this paper, we present a parametric, nonlinear mixed effects model to fit longitudinal binary data with two
major aims in mind: (i) we use multiple, ‘‘over-lapping’’ nonlinear functions of time to explicitly identify the time
varying odds/probability of a longitudinal binary response; (ii) we identify patient risk factors whose influence on
the binary response may or may not change with time.

In our binary response model, random effects enter the model nonlinearly and can be extended to other
response types by changing the link function. The layout of the rest of the paper as follows:

In Section 2, we detail the Cardiothoracic Surgery Clinical Trials Network (CTSN) data that motivated the
development of the proposed nonlinear mixed effects temporal decomposition model. In Section 3, we introduce a
logistic nonlinear mixed effects model. In Section 4, we discuss the model parameter estimation process. We then
demonstrate the application of this model using the longitudinal binary outcome for atrial fibrillation data in
Section 5, and in Section 6 we perform a simulation study to assess the model performance. Concluding remarks
are given in Section 7.

2 The atrial fibrillation study

We investigate data obtained from an NIH sponsored multicenter randomized clinical trial being conducted by the
CTSN involving 214 patients enrolled from January 2010 to July 2013. All patients with non-paroxysmal atrial
fibrillation undergoing mitral valve procedure were eligible for this trial. The details of the study design are given
in Gillinov et al.20

The presence atrial fibrillation or normal sinus rhythm was assessed by weekly Trans-telephonic Monitor
(TTM) recording. Patients were requested to transmit rhythm data through normal telephone lines every week
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for 12 months. Patients who did not transmit at their weekly date were contacted by a research nurse and rhythms
were obtained at that time. All the rhythm strips were adjudicated by a research nurse to identify the type of
rhythm as atrial fibrillation (AFIB) or normal sinus rhythm (NSR). A total of 6709 rhythm records were available
for the 214 patients with 20% of the patients have 50 or more records. The frequency plot in Figure 1 represents
the number of patients against the number of TTM recordings for each patient.

Based on the trial protocol, each patient should have a maximum of 52 binary measurements (AFIB: yes/no).
However, at the time of the data extraction for analysis, we found that some patients had not completed a full one-
year follow-up, and some had transmitted more frequently than every week and some less frequently. We also note
that most rhythm data were not obtained at exact weekly intervals. Hence, as typical of observational studies, each
patient may have a different number of longitudinal measures at varying points in time. This issue is illustrated in
Figure 2, where we show repeated measures of binary TTM response data for 40 patients randomly selected from
the full cohort of 214.

We use a crude binned averaging procedure to investigate of the shape of the time varying probability of
atrial fibrillation. Figure 3 is constructed by partitioning follow-up times into a number of disjoint groups and
taking mean probability of atrial fibrillation. A loess nonparametric method is used to smooth the probability
curve. Note that this binned averaging procedure does not take the repeated nature of this data into the
account.

Figure 3 indicates that there is a higher probability of AFIB immediately after ablation which peaks around
week two. The probability then decreased gradually to about 50% by six months and appears to only slightly
decrease thereafter. We interpret this as the odds of atrial fibrillation peaking around two weeks after the
procedure and gradually decreased until six months post procedure. The odds stayed relatively constant or
increased thereafter at a slower rate if at all. From this, it appears that there may be two phases of odds; an
early peaking phase followed by a constant or increasing phase of odds of AFIB.

To investigate the association between baseline covariates and the odds/probability of AFIB, we show the trend
of probability of AFIB over time, similar to Figure 3, stratified by selected baseline variables in Figure 4. The
figure shows that there is no appreciable difference in the probability of AFIB between age groups split at 75 years.
Further, while BMI, diabetes and congestive heart failure (CHF) groups do not have much effect on the early
probability, there is a large difference in the later probability of AFIB. The figure then supports the hypothesis that
the effect of some risk factors change over time. With Figures 3 and 4 as the motivation, in Section 3, we propose a
logistic nonlinear mixed effects model to identify the constituents of temporal decomposition of the nonlinear
trend and risk factors whose effects are modulated by the trends.
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Figure 1. Frequency of patients with number of post-operative Atrial fibrillation TTM recordings.
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3 A logistic nonlinear mixed effects model

Let Yij be a binary response observed at time tij ð j ¼ 1, . . . , kiÞ for ith subject ði ¼ 1, . . . , nÞ, each with an associated
set of covariate vector Xi of length p. We define the conditional probability �ij ¼ EðYijjuiÞ, where ui is a subject-
specific vector of random effects. Suppose the time-varying odds for subject i can be decomposed into L
overlapping time phases attenuated by possibly different sets of covariates Xil with corresponding regression
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Figure 2. Repeated rhythm (binary) data for 40 randomly selected patients in the descending order of date of surgery (from most

recent at the top). Repeated rhythm data are shown horizontally with one row for each patient. Symbols depict normal sinus rhythm
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coefficients bl ðl ¼ 1, . . . ,LÞ, then we write a nonlinear mixed effects model in the odds domain as follows

�ij
1� �ij

¼
XL
l¼1

�lðXil, bl, uilÞ�l ðtij,!l Þ ð1Þ

where �l ðtij,!l Þ ð4 0Þ is a flexible parametric function depending only on time t and a shaping parameter vector
!l ¼ ð�, �, t1=2Þ; and �l ðXi, bl, ul Þ is a set of log linear mixed effects models such that
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Figure 4. Probability of AFIB based on the binned smoothers stratified by baseline covariates.
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Figure 3. Probability of atrial fibrillation based on the binned smoothers.
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�l ðXil, bl, uilÞ ¼ expfXilbl þ uilg. Here, ui ¼ ðui1, . . . , uiLÞ
>
� N ð0,�Þ, a vector of phase-specific random effects for

subject i, and Yijjui � Binaryð�ijÞ are conditionally independent.
Formulation of Model (1) indicates that the L multiple overlapping time phases of risk are additive in the odds

domain, with each phase shaped by a function of time �l ðt,!l Þ and scaled by a multiplicative function of
concomitant information �l ðXil, bl, uilÞ. This is similar to a formulation of a dynamic multiplicative-additive
regression model to analyze survival data, as detailed in Martinussen and Scheike.21

Further, by introducing phase specific random effects, we allow the possibility of different variability within
different time phases. We rewrite the random effects for patient i across the phases such that the random effects
differ proportionally. Here, ui ¼ ða1ui, . . . , aLuiÞ

>, where al is the random effect coefficient and ui � Nð0, �
2Þ.

Hence, the variability of the random effect within each time phase l is given by a2l �
2, and for the identifiability

purpose, we set a1¼ 1. Suppose al¼ 1, for all l 2 ð1, . . . ,LÞ, then model (1) reduces to a simple random intercept
model, with one common random effect.

Suppose there is a variable (or set of variables), such that a coefficient vector bc is common to all L phases, then
model (1) can be further simplified and the proposed logistic nonlinear mixed effect model is give as

logitð�ijÞ ¼ log
�ij

1� �ij

� �
¼ Xicbc þ log

XL
l¼1

�lðXil, bl, al, uiÞ�l ðtij,!l Þ

 !
ð2Þ

3.1 Time function ,ðt,!Þ

We use a generic family of nonlinear functions of time that was originally used to model the cumulative mortality
by Blackstone et al.22 and Hazelrig et al.23 as the time function �ðt,!Þ in our model. The generic family is given by

Gðt,!Þ ¼
j�j � �

2j�j
þ
�

j�j
1þ �ð�Þ

j�j � �

2j�j
þ
j�jt

�

� ��1=�" #�1=�
ð3Þ

where �4 0 and/or �4 0, �ð�Þ ¼ � if �4 0, and �ð�Þ ¼ �1 if �5 0. Shaping parameter vector ! � ð�, �, t1=2Þ, and
� is a function of t1=2, �, and �. We define the parameter t1=2 as the time point t such that Gðt1=2Þ ¼ 1=2. Natural
constraints of G are that Gð0,!Þ ¼ 0 and Gðt,!Þ ! 1 as t!1. When �5 0 and �5 0,Gð0Þ 6¼ 0. This violates the
constrain and hence equations (3) does not exist for �5 0 and �5 0. Hence, the formulation (3) simplifies into three
cases when �4 0 and �4 0; �4 0 and �5 0; �5 0 and �4 0 (see supplementary materials available at http://
smm.sagepub.com).

The motivation to use this type of time function in our modeling is that time-varying odds of the AFIB in
Figure 3 has a similar shape as a time-varying hazard of death after a cardiac surgery. Further, this generic family
can almost handle any shapes. The function Gðt,!Þ or any of its transformations can be used as �l ðt,!l Þ. In our
data analysis experience, the most frequently used early and late phase functions are gðt,!Þ ¼ @Gðt,!Þ

@t and
hðt,!Þ ¼ gðt,!Þ

1�Gðt,!Þ, respectively. Note that in ‘survival’ terminology, suppose Gðt,!Þ is cumulative hazard, gðt,!Þ
is the hazard. On the other hand, if Gðt,!Þ is cumulative distribution function, hðt,!Þ is the hazard function. In our
data analysis experience, most of the nonlinear trends can be modeled using only two phases and very rarely we use
three phases. Detailed description of equations, limiting behavior and the shapes of some possible functions are
given in the supplementary material.

Development of the generic equation (3) took place over more than a decade in the 1970s, and represents a
differential equation that Blackstone and colleagues23,24 formed from apparently disparate dynamic models of
biochemical reaction rates, physical laws of thermodynamics, allometric growth, ecologic predator-prey
phenomena, and population growth. They also established the relationship to certain statistical models. Special
case models are found by setting exponents to �1 and 0=1 that lead to linear and various non-linear models, all
nested by dint of the common generic differential equation.

Thus, the models not only simplify (usually substantially), but have robust statistical properties useful in
nonlinear iterative unbounded optimization. The idea of multiple phases arose out of the Makeham–Gompertz
law of mortality (which has an age-dependent and an age independent component), from 1860. The three-phase
model for the time to event response, proposed by Blackstone et al.,22 permits multiple streams of concomitant
information (including the same variables) to be estimated simultaneously. In the present paper, we have extended
the approach to accommodate longitudinal response with the number of components on phases is unlimited. This
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permits us to characterize the temporal pattern and then independently modulate the pattern by phase-specific risk
factors as well as modulating the entire course.

Further, the present formulation for longitudinal data differs from that was developed for survival (Blacksone
et al.3) in that we have used a single flexible component (equation (3)) for all phases, because by setting the
exponents to various values, the equation reduces to a constant, to a Weibull-type increasing, to a decreasing or
peaking function or combination of these. Further, these are the shapes that we frequently observe in a temporal
trend of biomakers or biologic mechanisms, such as AF, after cardiac surgery.25–29

4 Estimation

Shaping parameters and concomitant information coefficients are estimated by the method of marginal maximum
likelihood (Diggle et al.30: 172). Let b ¼ ðbc, b1, . . . , bLÞ, a ¼ ða1, . . . , aLÞ and ! ¼ ð!1, . . . ,!LÞ, then the
likelihood function for the unknown parameter � ¼ ðb, a,!, �2Þ is

Lð�jyiÞ ¼
Yn
i¼1

Z 1
�1

f ðyijuiÞ f ðui; �
2Þdui

¼
Yn
i¼1

Z 1
�1

Yki
j¼1

�
yij
ij ð1� �ijÞ

yij�ðuij0, �
2Þdui

ð4Þ

where f ðyijuiÞ is the conditional density of the binary longitudinal response, and f ðui; �
2Þ is the density of the

random effect, ui, assumed to be a normal distribution with mean 0 and variance �2 , �ð�j0, �2Þ. Note that
equation (4) is merely the marginal distribution Y obtained by integrating the joint distribution of Y and U with
respect to U. The maximum likelihood estimates are obtained using the marginal likelihood function. For the
Logistic mixed effects model (2), since the random effects is a nonlinear function of the conditional mean, there is no
closed form solution for equation (4). In general, except for some special cases, equation (4) does not have closed-
form solution. Hence, it involves numerical integration. Note that, by assuming distribution of the random effect U
a Beta distribution, Kleinman31 obtained a closed form solution, a beta-binomial distribution. McCulloch32

provides some details on using an extension of the EM algorithm for parameter estimation in generalized linear
mixed effects models. Laplace approximation is another popular method for parameter estimation in nonlinear
mixed effects models. However, Joe33 cautioned in using this approach in non-normal scenario. For generalized
linear mixed effects model, another estimation approach is to use Taylor series expansion around regression
coefficient and/or around random effects (see for example, Breslow and Clayton34). In general, there are ‘‘exact’’
and ‘‘approximate’’ methods available for parameter estimation. The ‘‘approximate methods’’ such as Taylor series
or Laplace approximation avoid integration. However, for non-normal responses, these methods may lead to
biased estimation (see for example, Wu35: chap. 2). Higher-order approximations are proposed to improve the
estimation (see for example, Lee et al.36). We use Gauss-Hermite quadrature, which is an ‘‘exact’’ method, for
integration of equation (4) with respect to the random effect to determine the marginal likelihood function.
However, it should be noted that this method is computationally expensive, and at times unfeasible when the
dimension of random effect is large. In our model, however, we have kept the dimension of the random effect at
1. We implemented the parameter estimation using PROC NLMIXED (SAS�, Inc., Cary, NC). Note that the
implementation of this SAS procedure is mainly based on Pinheiro and Bates.12

Note that, by using equation (2), we can estimate the conditional probability dEðYijjuiÞ ¼ d�ijðuiÞ. If one is also
interested in estimating the marginal probability dEðYj Þ from this model, one can integrate the conditional
probability over the distribution of random intercept ui (Fitzmaurice et al.37) to obtain the marginal estimates.
Then

dEðYj Þ ¼ Eu
dðEðYijjuiÞÞ ¼

Z 1
�1

d�ijðuiÞf ðui; �2Þdui
where f ðui; �

2Þ is the density function of ui. Note that, one can approximate the dEðYj Þ �
1
n

Pn
i¼1

dEðYijjuiÞ.

5 Data analysis

In this section, we first focus on the problem of explicitly modeling the nonlinear time-varying trend of odds/
probability of AFIB. We then focus on the factors associated with odds/probability of AFIB after the ablation
procedure. In the multivariable analysis, we consider the following ten covariates: age at the time of the procedure;
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gender; race; histories of congestive heart failure, cardiovascular disease, hypertension, diabetes; creatinine,
diastolic and systolic blood pressure, and international normalized ratio.

5.1 Temporal decomposition and trend

In this section, we consider model (2) without covariates and the focus is on the estimation of shaping parameters
!s. Without covariates, model (2) can be written as

logitð�ijÞ ¼ log
XL
l¼1

�lð	0l, al, uiÞ�l ðtij,!l Þ

 !
ð5Þ

where 	0l is phase specific intercept (fixed effect).
Temporal trend analysis yields a bi-phase model: An early peaking and a late increasing phase. Figure 5 shows

the temporal decomposition of time varying odds for a ‘‘typical patient’’ or ‘‘average patient’’, decomposition
when ui¼ 0. Although the late increasing phase is very small for the ‘‘typical patient’’, it can increase for some
patients through the estimates of ui. The estimates and the standard error of the shaping parameters and standard
deviation of distribution of ui are given in Table 1.

It can be noted here that the estimated standard deviation of the random effect in the early peaking phase is 3.0
and that of late increasing phase is 12.5. This suggests that there is a larger variability in subject-specific profiles in
late time phase than in the early time phase. Based on the estimates in Table 1, the estimated multiphase temporal
trend equation for odds of AFIB can be simplified as in equation (6)

�̂ij
1� �̂ij

¼ expð2:6þ uiÞ
0:73

t2ij expð0:73=tijÞ
þ expð4:2uiÞ

0:22

ð0:16tijÞ
2:3 ð6Þ

Remark: We have used �1ðt,!1Þ ¼ gðt,!Þ under the limiting Case 1 (see supplementary material) as the early phase
equation with shaping parameters � and � are fixed at 1 and 0, respectively. We then used �2ðt,!2Þ ¼ hðt,!Þ under
the limiting Case 1 as the late phase equation, with � is a positive value and � is fixed at 0. To get mathematically
tractable stable functions, when the estimate of � or � is almost 0, we use one of the limiting cases and when the
estimate of � and/or � is almost 1 (not significantly different from 1), we simplify the Gðt,!Þ by fixing � and/or � at
1. Further, since in the transformed function hðt,!Þ, t1=2 acts as the scalar, to avoid redundancy in the
parametrization of covariate information in �ð�Þ, whenever one uses hðt,!Þ as the time function we take the 	0
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Figure 5. The exact decomposition of temporal trend in odds domain for a typical patient (ui¼ 0).
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as 0. Hence, phase identification and parameter estimation are determined by the data in an ad hoc manner.
The process is briefly as follows: based on the overall binned smoother trend (Figure 3), we started with two
phases: an early phase using gðt,!Þ with a smaller value (1 month) for t1=2; and a late phase using hðt,!Þ with a
larger value (six months) for t1=2 as starting values. For � and �, we have tried three possible combinations (1, �1),
(1, �1) and (1, 1) as starting values for both phases and observed which combination gives a stable estimation with
larger likelihood. For both phases, it turns out to be that the estimate of � is almost 0. For �, early phase estimate
is almost 1 (not significantly different from 1) and for the late phase, it is a positive value different from 0 or 1.

Figure 6 shows the patient-specific profiles and the average of the profiles and Figure 7 depicts the average of
the profile superimposed on the binned smoothers. It can be noted from Figure 2 that some patients do not have
data as follow-up gets longer. Therefore, not all the patients contribute to the binned averages as follow-up gets

Figure 6. Patient-specific probability profiles and the average of the profiles.

Table 1. Estimates of shaping parameter of the temporal trend of odds of AFIB.

Parameter Estimate� SE P

Early peaking phase

	̂01 2.6� 0.23 <0.0001

� 1 –

� 0 –

t̂1=2 1.05 –

Late increasing phase

	̂02 0 –

�̂ 0.76� 0.33 0.02

� 0 –

t̂1=2 7.9 –

Random effect coefficients

a1 1 –ba2 4.2� 0.69 <0.0001dvarðuÞ ¼ b�2 8.9� 1.7 <0.0001

Note: In the early phase, �¼ 0 means �ðt,!Þ ¼ gðt,!Þ when �4 0 and � ! 0þ and in the late phase � ¼ 0 means

�ðt,!Þ ¼ hðt,!Þ when �4 0 and � ! 0þ (see supplementary material further details). Further note that 	̂02 is set to 0

when using hðt,!Þ as �ðt,!Þ.
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longer. However, average curve is obtained by averaging all patient-specific curves at each time point. This may
explain the deviation between the estimated curve and the binned averages in Figure 7. Although the probability
based on the average of the patient-specific profiles increased from about 0.45 to about 0.75 within a month after
the ablation and gradually decreased to about 0.45 by month 6 and remained constant thereafter, there is a large
variability in the patient-specific probability profiles of AFIB after ablation. By one year, around 45% of the
patients have the probability less than 5%, and 30% have the probability greater than 95%.

An alternative model: Using Akaike Information Criteria (AICc), we have compared model (5) with the
following simpler alternative model

logitð�ijÞ ¼ log
XL
l¼1

�lð	0lÞ�l ðtij,!l Þ

 !
þ vi ð7Þ

where V � Nð0, 
2Þ. Here, instead of patient-specific random effects for each phase, we simplify the model with
patient-specific random intercepts.

Based on the AICc values (Main Model (5): AICc¼ 3300.8; Alternative Model (7): AICc¼ 3395.7), model (5)
which has subject-specific random effects for each phase, is better than alternate model, a random intercept model
(7), which has one common random effect.

5.2 Factors associated with temporal change odds of AFIB

We now illustrate the multivariable analysis to identify phase-specific baseline covariates that are associated with
AFIB after ablation using some selected variables. We have considered the following variables in the analyses:
Demography (age, gender, race, body mass index (BMI)), cardiac comorbidity (congestive heart failure – (CHF),
cardio vascular disease (CVD), hypertension (HTN)), non-cardiac comorbidity (diabetes, serum creatinine,
diastolic and systolic blood pressure, international normalized ratio (INR)). Our objective here is to identify
variables (1) that are associated with the early outcomes; (2) that are associated with the late outcomes; (3)
that influence the outcome regardless of the time phase. Because of limited built-in capability of performing
variable selection using PROC NLMIXED, we have used an ad hoc selection strategy as follows: we first force
in a variable in each phase and noted its significance and the magnitude of the regression coefficients. If the
magnitudes are at least approximately equal and are significant in at least one phase, we move this variable as a
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Figure 7. Average of the patient-specific profiles and binned averages. Binned averages are the average of available data at various

follow-up time intervals without taking into the consideration of the possibility that some of these observations are correlated,

provided here as a crude verification of model fit.
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common variable. If it is, on the other hand, significant in both phases with different magnitudes, we will keep this
variable in both phases. Finally, if the variable is significant only in one phase, we keep that variable only in that
phase. We continue this ‘‘forward-selection like’’ process until we consider all the variables in the model.

Table 2 shows the patient-specific estimates of regression coefficients of the selected covariate that are
significantly associated with post ablation probability of AFIB.

Figure 8 depicts the estimated probability stratified by BMI, diabetes and congestive heart failure variables for a
‘‘typical patient’’. Based on the limited variable selection and analysis, among the patient demographics, while
larger body mass index is associated with early elevated risk of having AFIB, its direction of effect appears to
change in the late odds of AFIB (top row – Figure 8). Notably, neither age nor gender has any impact on the
likelihood AFIB. Having history of congestive heart failure and diabetes also appear to be associated with late
elevated odds of having AFIB. Particularly, diabetes appears have a larger impact on the likelihood of late AFIB
(bottom row – Figure 8).

6 A simulation study

We assess the performance of model (2) using a focused simulation study. The major objective of this study is to
assess performance of the shaping parameters and the regression coefficient estimators. The simulation study does
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Figure 8. Estimated probability of post-op AFIB for a ‘‘typical patient’’ (ui¼ 0) stratified by different baseline covariates.

Table 2. Patient-specific risk factors associated with AFIB.

Parameter Estimate� SE P

Overall

None – –

Early peaking phase

BMI 1.6� 0.67 0.02

Late increasing phase

BMI �1.5� 0.55 0.008

Diabetes 9.6� 2.4 <0.0001

Congestive Heart Failure 6.0� 1.9 0.002
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not focus on model building; instead, given a model, we would like to assess how well the parameters are
estimated.

We generated a binary longitudinal response for 250 subjects. Mimicking the data described in Section 2
(Figure 2), we assumed that the first 150 patients have complete follow-up data and the remaining 100 patients
have partial follow-up based on the staggering study entry (assumed linear). For the first 150 patients, we
generated the data at the following 18 time points over a 12-month period: one-day, two-day, three-day, five-
day, one-week, two-week, and 12-monthly time points at month 1 through month 12. For the remaining 100
patients, assuming they have a minimum of three months of follow-up, we generated data at the first nine time
points in the first three months and then depend on the study entry, we generated the remaining data. We have
generated 1000 simulated datasets with sample size of 250.

For the temporal trend, we assume a bi-phase model with �1ðt,!Þ ¼ gðt,!Þ, with ! ¼ ð� ¼ 1, � ¼ 0, t1=2 ¼ 1Þ as
the early phase (limiting Case 1 in supplementary material) and �2ðt,!Þ ¼ hðt,!Þ, with
! ¼ ð� ¼ �0:5, � ¼ 0, t1=2 ¼ 5Þ as the late phase (limiting Case 3 in supplementary material). Equation �1ðt,!Þ
with the selected values for the shaping parameters shows an early peaking function and �2ðt,!Þ with the selected
values gives a late increasing function (Figure 9). For simplicity, we generate three covariates as follows
V1 � Binaryð0:25Þ, V2 � Nðmean ¼ 0, sd ¼ 0:5Þ, and V3 � Binaryð0:4Þ. V1 is an early phase factor that
positively associated with the response; V3 is a late phase factor that positively associated with the response; V2

positively associated with the response in both phases with higher influence in early than in the late. The random
effect ui � Nðmean ¼ 0, sd ¼ 3Þ with coefficients ða1 ¼ 1, a2 ¼ 2Þ with a1 is fixed at 1 and a2 is estimated.

6.1 Simulation results

We now assess the performance of the logistic multiphase nonlinear mixed effects model based on simulated data

using the following summary measures: Average Bias: %Bias ¼ 100� ð� �
�̂
�Þ=j�j, where B is the number of

simulated datasets, � is the true value, �̂i is the estimate from the ith simulated dataset and
�̂
� ¼ 1=B

PB
i¼1 �̂i;

average within standard error, AvgSE¼
PB

i¼1 SEð�̂iÞ=B, where SEð�̂iÞ is the estimated standard error of �̂i;

empirical standard error, EmpSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðB� 1Þ	

PB
i¼1 ð�̂i �

�̂
�Þ2

q
; 95% coverage probability, CP.

The summary measures of the shaping and regression coefficients of the covariates based on the 1000 simulated
data with sample size 250 are given in Table 3.
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Figure 9. True shapes of the phases for temporal trend in the simulated model for a typical patient (ui¼ 0). Dash lines depict the

shapes of the early and the late phases and the solid line depicts total odds.
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All the estimated parameters, except the t1=2 in the early phase and V2 in the late phase, have smaller bias.
However, other summary measures of V2 appear to be closer to the expected values. This suggests, in general, our
logistics nonlinear mixed effect model performs as expected in estimating the parameters.

6.2 Varying sample size

In this simulation scenario, we simulate three sample sizes: n¼ 500 – a large sample size; n¼ 250 – a moderate
sample size; and n¼ 100 – a small sample size, and compare the influence of varying sample sizes on the
performance of parameter estimation.

Table 4 shows the summary estimates for three different sample sizes. In general, as sample size decreases, there
appears to be some increase in bias and standard error of the parameter estimates. This is apparent, particularly

Table 4. Summary measures of the parameter estimates based on the 1000 simulated data with varying sample size.

Sample size

n¼ 500 n¼ 250 n¼ 100

Parameter

True

value Bias (%) AvgSE EmpSE CP Bias (%) AvgSE EmpSE CP Bias (%) AvgSE EmpSE CP

Early peaking phase

V0 �1 �0.768 0.2921 0.2855 0.954 2.96 0.4244 0.4406 0.934 11.9 0.6961 0.7532 0.928

V1 1 �0.085 0.2313 0.2358 0.942 �1.55 0.3382 0.3448 0.956 �1.36 0.5738 0.5902 0.961

V2 1 0.793 0.3444 0.3450 0.944 �0.892 0.4992 0.4965 0.953 �2.45 0.8406 0.8616 0.954

Shaping parameters

� 1 0.984 0.1102 0.1085 0.943 1.74 0.1581 0.1698 0.924 4.40 0.2433 0.2845 0.848

t1=2 1 �1.39 0.2491 0.2610 0.932 �5.09 0.3926 0.4403 0.874 �18.8 0.8868 1.111 0.790

Late increasing phase

t1=2 5 1.07 0.8576 0.8578 0.922 �1.71 1.264 1.355 0.927 �16.6 2.439 3.191 0.941

V2 0.5 9.17 0.5808 0.5730 0.952 6.22 0.8261 0.8224 0.950 10.1 1.348 1.467 0.934

V3 0.5 0.691 0.3866 0.3918 0.946 3.77 0.5552 0.5837 0.940 �12.3 0.9148 0.9376 0.954

Shaping parameters

� �0.5 0.183 0.0140 0.0143 0.942 �0.356 0.0199 0.0197 0.946 0.272 0.0311 0.0332 0.933

Random effect

VarðUÞ ¼ �2 9 1.81 1.679 1.658 0.946 �1.48 2.472 2.581 0.928 �8.55 4.289 4.689 0.925

Coefficient – a2 2 0.265 0.1993 0.2003 0.933 0.528 0.2872 0.2990 0.921 �1.80 0.4972 0.5322 0.938

Table 3. Summary measures of the parameter estimates based on the 1000 simulated data with sample size 250.

Parameter True value % Bias AvgSE EmpSE CP

Early peaking phase

V0 �1 2.96 0.4244 0.0.4406 0.934

V1 1 �1.55 0.3382 0.3448 0.956

V2 1 �0.892 0.4992 0.4965 0.953

Shaping parameters

� 1 1.74 0.1581 0.1698 0.924

t1=2 1 �5.09 0.3926 0.4403 0.874

Late increasing phase

t1=2 5 �1.71 1.264 1.355 0.927

V2 0.5 6.22 0.8261 0.8224 0.950

V3 0.5 3.77 0.5552 0.5837 0.940

Shaping parameters

� �0.5 �0.356 0.0199 0.0197 0.946

Random effect

VarðUÞ ¼ �2 9 �1.48 2.472 2.581 0.928

Coefficient – a2 2 0.528 0.2872 0.2990 0.921
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when the sample size is 100. One reason may be that our model has larger number of parameters (12, in this
simulated model) to be estimated. As a result, there may be decrease in efficiency with decreased sample size. To
have a better performance in the parameter estimation, we may need at least a moderate sample size.

6.3 Influence of random effect coefficient

In this simulation scenario, we illustrate the influence of the random effect coefficient. We know that if the random
effect coefficients are all equal to 1, the model can be simplified into a random intercept model. However, when the
true coefficient is different from 1, the performance of the model under the assumption that the coefficients are all
equal to 1 is not clear. We simulated data based on a bi-phase model as described at the beginning of this section
with sample size equal to 250, but under two scenarios of random effect coefficient: (i). a2 ¼ 2 and (ii). a2 ¼ 1. We
then assess the model performance under the assumption of a2 ¼ 1.

Table 5 shows the summary estimates based on the assumption of random intercept model (a2 ¼ 1), for data
simulated under two different true values of a2. As expected, when the true value of the coefficient is 1, the random
intercept model performs very well. However, when the true value of the coefficient is 2, the random intercept
model perform very poorly as this is equivalent to misspecifying the correlation structure.

7 Conclusion

In this article, we have proposed and demonstrated a nonlinear multiphase mixed effects model to analyze
longitudinal binary data. Our model is different from classical generalized linear mixed effects model in that,
the time varying odds of an event can be decomposed into multiple overlapping linear or nonlinear time phases,
thus explicitly identifying the linear or nonlinear time-varying trend. Further, each phase can have its own stream
of concomitant information and patient specific random effect. In medical science, these two features are
important components in patient management after a procedure. Knowledge of the both patient-specific/overall
time-varying temporal trend of an event and of the phase-specific (time specific) factors that influence the early and
late events would enable a physician to tailor the post-procedure patient management according to patient risk
factors. For example, in our data analysis, we have shown that higher body mass index is an early risk factor and
diabetes is a late risk factor. Based on this information, a physician can closely monitor an obese patient right after
the procedure and for diabetes patients, set up more follow-up visits, say, after three months. Further, the

Table 5. Summary measures of the parameter estimates based on the 1000 simulated data with different random effect

coefficients.

True Random Effect coefficient for phase 2

a2 ¼ 2 a2 ¼ 1

Parameter

True

value Bias (%) AvgSE EmpSE CP Bias (%) AvgSE EmpSE CP

Early peaking phase

V0 �1 54.8 0.5421 0.6030 0.806 1.93 0.3351 0.3384 0.946

V1 1 �37.4 0.4369 0.5110 0.83 �1.60 0.3119 0.3141 0.949

V2 1 �46.1 0.7519 0.7603 0.908 �0.871 0.4581 0.4544 0.952

Shaping parameters

� 1 10.0 0.1552 0.1984 0.785 0.467 0.1034 0.1105 0.924

t1=2 1 �3.18 0.4524 1.606 0.780 �2.70 0.2535 0.2772 0.907

Late increasing phase

t1=2 5 17.3 0.8516 0.9273 0.704 �1.56 0.6373 0.6414 0.946

V2 0.5 10.0 0.6769 0.6826 0.947 2.33 0.4299 0.4264 0.954

V3 0.5 27.8 0.3876 0.4700 0.881 �0.458 0.2708 0.2695 0.954

Shaping parameters

� �0.5 8.52 0.0172 0.0169 0.288 �0.548 0.0189 0.0190 0.959

Random effect

VarðUÞ ¼ �2 9 �160 3.482 3.301 0.000 0.618 1.235 1.261 0.929
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multiphase model we proposed is similar to time-varying coefficient models. However, when analyzing this type of
cardiac data, the main advantage of the multiphase model over the time varying coefficient models is that, with
time varying coefficient models, coefficient for each covariate in the model is a smooth function of time and this
may pose computational difficulties when there are many covariates. On the other hand, the multiphase model still
works with large number of covariates, but with more restrictive model assumption that the covariates within a
phase have similar shape of time varying effect. However, these assumptions are likely to be satisfied for cardiac
data.25–29

We have demonstrated the application of this model using a readily available software and this feature is
another advantage of our model. Further, by reparameterization of patient specific random effects in each
phase, we have reduced the dimension of random effects to one, regardless of number of phases. This has
greatly reduced computational difficulties arising from numerical integration being used in parameter estimation.

We have used the cumulative mortality function used by Hazelrig et al.23 as the generic time function for our
analysis. This is a very flexible family of functions that can handle almost any shapes. In our data analysis
experience in cardiac surgery, models with two phases are the most frequent, very rarely, a three-phase model.
We have never encountered a model with four phases. Hence, although the process of variable selection is ad hoc,
having to deal with only two (or at most three) phases makes the data analysis plausible and tractable. Variable
selection in longitudinal models is an active area of research.

The model (2) can be easily extended to accommodate other type of longitudinal data – continuous, ordinal,
and nominal – by changing the link functions related to the corresponding conditional distributions, and, in the
case of ordinal data, introducing cut-off parameters. These extensions are currently under active research in our
group. Further, another active area of research currently under consideration is the extension of model (2) to
handle multivariate longitudinal data of same type (for example, all continuous) or different types (continuous and
binary).
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