Pattern Recognition 172 (2026) 112727

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Variable priority for unsupervised variable selection et

Lili Zhou, Min Lu

Division of Biostatistics, Miller School of Medicine, University of Miami, 33136, Miami, FL, USA

, Hemant Ishwaran & *

ARTICLE INFO ABSTRACT

Keywords:
Autoencoder forest
Release region
s-dependent variable
Signal variable

In unsupervised settings where labeled data is unavailable, identifying informative features is both challenging
and essential. Although numerous methods for unsupervised feature selection have been proposed, significant
opportunities for improvement remain. This paper introduces a new method that extends the supervised Vari-
able Priority (VarPro) framework to the unsupervised domain. The central idea is to recast feature selection as
a collection of localized two-class classification problems, where class labels are defined by membership in re-
gions derived using decision tree rules and their corresponding releases. This transformation introduces a form
of implicit supervision without requiring outcome labels and is combined with lasso-based regression to encour-
age sparsity and mitigate noise in high-dimensional settings. Extensive experiments on synthetic benchmarks
demonstrate consistent improvements over existing methods across a range of latent, correlated, and clustered
scenarios. Real-world validation in biological and image data further confirms the method’s effectiveness, in-

cluding recovery of known cancer-associated genes and improved clustering in lung cancer subtyping.

1. Introduction

Feature selection is a cornerstone of data preprocessing in machine
learning, especially in high-dimensional domains such as bioinformat-
ics, text mining, and image analysis. Removing irrelevant or noisy vari-
ables can improve model accuracy, reduce computation, and enhance
interpretability. The challenge becomes especially difficult in unsuper-
vised settings, where no outcome labels exist to guide the search. Un-
like supervised methods that assess importance by association with a
response, unsupervised approaches must rely entirely on relationships
hidden within the features themselves. Yet the need is just as pressing,
since effective unsupervised feature selection can improve clustering,
visualization, and change detection while reducing overfitting.

This raises a basic question: what does it mean for a variable to be in-
formative without labels? Simple heuristics such as variance ranking or
cluster separation often overlook complex dependencies. A more prin-
cipled answer arises from statistical dependence, where a variable is
informative if it helps explain the joint distribution of the data. Under
this view, signal variables are those that capture dependence among
features, while noise variables can be removed without altering the dis-
tribution. This parallels the Markov blanket in graphical models [1],
in which a minimal subset of variables renders all others conditionally
independent.

Guided by this perspective, we introduce Unsupervised Variable Pri-
ority (UVarPro), an extension of the VarPro framework [2,3] to the un-

* Corresponding author.

supervised setting. UVarPro operationalizes this dependence view by
testing whether variables contribute to local conditional relationships
in the feature space. At the same time, it bridges supervised and unsu-
pervised paradigms: supervised methods identify variables predictive of
an outcome, while unsupervised methods reveal dependencies among
the features themselves. UVarPro combines these ideas through a series
of localized classification tasks that provide implicit supervision derived
directly from the structure of the data.

To implement this framework, UVarPro generates the localized tasks
by partitioning the feature space into simple, rule-defined regions using
an unsupervised forest composed of many decision trees. Each region
R (a terminal node from a tree) corresponds to a set of conditions that
define a compact portion of the feature space. To assess the role of a
variable s, UVarPro relaxes the condition on that variable, creating a
slightly expanded release region. The portion extending beyond R forms
the near-miss set, containing observations that almost, but not quite, sat-
isfy the same rule. The resulting two-class problem asks whether a sam-
ple lies inside R or in its near-miss set. UVarPro trains a localized clas-
sifier on this contrast, measuring how strongly each variable helps sep-
arate the two groups. Variables that consistently improve classification
performance across many such local tasks are identified as driving key
dependencies in the data. Although UVarPro uses tree rules, these are
derived entirely from the unsupervised forest structure and serve only to
define geometric partitions of the feature space, not to predict a target
label. Fig. 1 illustrates the framework and provides simple geometric

E-mail addresses: 1xz516@miami.edu (L. Zhou), m.Ju6@umiami.edu (M. Lu), hishwaran@miami.edu (H. Ishwaran).

URL: https://ishwaran.org (H. Ishwaran)

https://doi.org/10.1016/j.patcog.2025.112727

Received 22 May 2025; Received in revised form 6 November 2025; Accepted 7 November 2025

Available online 15 November 2025

0031-3203/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
https://orcid.org/0000-0002-1386-1315
https://orcid.org/0000-0003-2758-9647

s

K

R

s

R

R

$s=2$

$\ell _{1}$

s

$\Xs {1}, \ldots , \Xs {p}$

p

$\X = (\Xs {1}, \ldots , \Xs {p})$

$S \subseteq \{1, \ldots , p\}$

$\Xbs {S} = \{\Xs {j}\}_{j \in S}$

$\Xnots {S} = \{\Xs {j}\}_{j \notin S}$

$\ss \subseteq \{1, \ldots , p\}$

$\Xbs {\ss }$

$\Xbs {\ss }$

$\X $

$\ss \subseteq \{1,\ldots ,p\}$

$\Xbs {\ss }$

$\ss $

\begin {equation*}\Xs {j} \perp \Xs {k} \mid \Xbs {\ss },\forall \, \{j, k\} \not \subseteq \ss .\end {equation*}

\begin {equation}\begin {aligned} f_\X (\x) &= f_{\Xnots {\ss }\mid \Xbs {\ss }}(\xnots {\ss })\, f_{\Xbs {\ss }}(\xbs {\ss }) \\ &= \left (\prod _{j \notin \ss } f_{\Xs {j}}(\xs {j} \mid \Xbs {\ss })\right) f_{\Xbs {\ss }}(\xbs {\ss }). \end {aligned} \label {joint.factorization}\end {equation}

$\nn := \{1,\ldots ,p\} \setminus \ss $

Z

$\Xs {1}, \Xs {2}, \Xs {3}$

\begin {equation*}\Xs {j} \perp \Xs {k} \mid Z, \quad \text {for all } j \neq k \in \{1,2,3\}.\end {equation*}

Z

Z

$\Xs {1}, \Xs {2}, \Xs {3}$

Z

$\Xs {1}$

Z

$\Xs {2}$

$\Xs {3}$

Z

$\Xs {1}$

$\Xs {2}$

$\Xs {3}$

$\ss = \{1\}$

$\ss $

$\that = \{i,j\}$

\begin {align}&\forall k\notin \ss \cup \that , \text { we have } \Xs {k} \perp \Xs {i}\mid \{\Xbs {\ss \setminus \that },\Xs {j}\} \text { and } \nonumber \\ &\quad \Xs {k} \perp \Xs {j}\mid \{\Xbs {\ss \setminus \that },\Xs {i}\}.\label {interchange}\end {align}

$\Xs {i}$

$\Xs {j}$

$\ss $

$\Xs {i}$

$\Xs {j}$

$\ss $

$\ss $

$\ss := \ss \cup \{i,j\}$

$\ss $

$\ss $

j

\begin {equation}\Xs {j} = \phi (\Xbs {\ss }) \hskip 10pt \text {for some real-valued function } \phi .\label {redundant}\end {equation}

$\ss $

$\ss := \ss \cup \{j\}$

V

$p > 2$

\begin {equation*}\Xs {1} = \e _1,\qquad \Xs {2} = \delta \Xs {1} + \e _2,\qquad \Xs {3} = \e _3,\ldots ,\Xs {p} = \e _p,\end {equation*}

$\e _1, \ldots , \e _p$

$\delta \in \{-1, +1\}$

$\e _1$

$\Xs {2}$

$\Xs {1}$

V

$(\Xs {1}, \Xs {2})$

$\Xs {1}$

$\Xs {2}$

$\Xs {1}$

$\Xs {2}$

$\ss = \{1, 2\}$

V

$\delta _2, \delta _3 \in \{-1, +1\}$

\begin {align*}&\Xs {1} = \e _1,\quad \Xs {2} = \delta _2 \Xs {1} + \e _2,\quad \Xs {3} = \delta _3 \Xs {1} + \e _3,\\ &\Xs {4} = \e _4,\ldots ,\Xs {p} = \e _p,\end {align*}

$\e _1, \ldots , \e _p$

$\Xs {1}$

$\Xs {1}$

$\Xs {2}$

$\Xs {3}$

$\delta _2$

$\delta _3$

$\Xs {2}$

$\Xs {3}$

$\Xs {1}$

\begin {equation*}\Xs {3} \not \perp \Xs {1} \mid \Xs {2}, \qquad \Xs {2} \not \perp \Xs {1} \mid \Xs {3}.\end {equation*}

$\Xs {1}$

$\Xs {2}$

$\Xs {3}$

$\ss = \{1\}$

$\e _1, \e _2, \e _3, \e _4$

\begin {align*}&\Xs {1} = \e _1,\quad \Xs {2} = \e _2,\quad \Xs {3} = \Xs {2} + \e _3,\quad \Xs {4} = \Xs {2} + \e _4,\\ &\Xs {5} = (\Xs {1})^2.\end {align*}

$\Xs {1}$

$\Xs {2}$

$\Xs {3}$

$\Xs {4}$

$\Xs {2}$

$\Xs {5}$

$\Xs {1}$

$\ss = \{1,2,5\}$

$\e _1, \e _2, \e _3, \e _4$

\begin {align*}&\Xs {1} = \e _1,\quad \Xs {2} = \Xs {1} + \e _2,\quad \Xs {3} = \Xs {1} + \e _3,\\ & \Xs {4} = \Xs {1} + \Xs {2} + \Xs {3} + \e _4.\end {align*}

$\ss = \{1\}$

$\Xs {2}$

$\Xs {3}$

$\Xs {1}$

$\Xs {4}$

$\e _2$

$\e _3$

$\Xs {2}$

$\Xs {3}$

$\Xs {1}$

$\Xs {2}$

$\Xs {3}$

$\Xs {4}$

\begin {equation*}\Xs {2} \not \perp \Xs {4} \mid \Xs {1}, \qquad \Xs {3} \not \perp \Xs {4} \mid \Xs {1}.\end {equation*}

$\Xs {4}$

$\ss = \{1, 4\}$

$\e _1, \e _2, \e _3$

\begin {equation*}\Xs {1} = \e _1,\quad \Xs {2} = (\Xs {1})^2,\quad \Xs {3} = \Xs {1} + \Xs {2} + \e _2,\quad \Xs {4} = \Xs {3} + \e _3.\end {equation*}

$\Xs {2}$

$\Xs {1}$

$\Xs {3}$

$\Xs {4}$

$\Xs {1} \perp \Xs {4} \mid \{\Xs {2}, \Xs {3}\}$

$\Xs {2} \perp \Xs {4} \mid \{\Xs {1}, \Xs {3}\}$

$\{1,2,3\}$

$\ss = \{1,2,3\}$

$\zeta $

$\zeta $

\begin {equation*}R(\zeta) \;=\; \bigcap _{j \in A(\zeta)} \{ \x :\; \xs {j} \in \mathcal {I}_{j}(\zeta) \},\end {equation*}

$A(\zeta)$

$\mathcal {I}_{j}(\zeta)$

j

$S \subset \{1,\ldots ,p\}$

$\zeta ^{S}$

S

\begin {equation*}R(\zeta ^{S}) \;=\; \bigcap _{j \in A(\zeta)\setminus S} \{\x :\; \xs {j}\in \mathcal {I}_{j}(\zeta)\}.\end {equation*}

$R(\zeta)$

$R(\zeta ^{S})$

$R(\zeta ^{S})$

S

$R(\zeta)$

$R(\zeta ^{S})$

Y

$R(\zeta)$

$R(\zeta ^{S})$

S

$\X $

$\zeta $

$\zeta $

$s \in A(\zeta)$

$\Xs {s}$

\begin {equation*}R(\zeta ^{s}) \;=\; \bigcap _{j \in A(\zeta)\setminus \{s\}} \{\x : \xs {j} \in \mathcal {I}_{j}(\zeta)\},\end {equation*}

$\mathrm {rel}_{s}(\zeta) = R(\zeta ^{s}) \setminus R(\zeta)$

\begin {equation*}Y_{s,\zeta }(\x) \;=\; \begin {cases} 0, & \x \in R(\zeta), \\ 1, & \x \in \mathrm {rel}_{s}(\zeta). \end {cases}\end {equation*}

$\X $

$\Xs {s}$

$Y_{s,\zeta }$

$\Xnots {s}$

$R(\zeta)$

s

$\Xnots {s}$

$\Xs {s}$

$\Xs {s}$

$\Xs {s}$

$\zeta _{1}, \ldots , \zeta _{B}$

B

$s \in \nn $

$\z $

\begin {equation}\PP \{Y_s = 1 \mid \Xnots {s} = \xnots {s}\} = \PP \{Y_s = 1 \mid \Xbs {\ss } = \xbs {\ss }\},\label {cond.prob.weak}\end {equation}

$Y_s = 1$

$\Xs {s}$

$\Xbs {\ss }$

\begin {equation}Y_s \perp \Xs {j} \mid \Xbs {\ss }, \forall j \in \nn \setminus \{s\},\label {key.ident}\end {equation}

Y_s

s

s

$\Xs {s}$

$Y_s = 1$

$\Xs {s}$

$\Xs {j} \perp \Xs {s} \mid \Xbs {\ss }$

$j \in \nn \setminus \{s\}$

$\Xs {j}\perp Y_s \mid \Xbs {\ss }$

s

s

$s \in \ss $

$\ss _s \subseteq \ss $

s

$\ss \setminus \ss _s$

$\Xs {s}$

$\ss _s$

\begin {equation*}\Xs {j} \perp \Xs {s} \mid \Xbs {\ss _s \setminus \{s\}}, \quad j \in \ss \setminus \ss _s.\end {equation*}

s

$\ss _s$

s

$\Xs {j} \perp \Xs {s} \mid \Xbs {\ss _s}$

$j \in \ss \setminus \ss _s$

$\ss _s$

s

s

s

$\ss \setminus \ss _s$

s

s

s

s

s

$\ss _s$

$s \in \ss $

\begin {align}& \PP \{Y_s = 1 \mid \Xnots {s} = \xnots {s}\} \nonumber \\ &\ \ = \PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}, \Xbs {\nn } = \xbs {\nn }\} \nonumber \\ &\ \ = \frac {\PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}, \Xbs {\nn } = \xbs {\nn }\}}{\PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}\}}\nonumber \\ &\qquad \times \PP \{Y_s = 1 \mid \Xbs {\ss _s \setminus \{s\}} = \xbs {\ss _s \setminus \{s\}}\}. \label {cond.prob.signal.final}\end {align}

$\ss \setminus \ss _s$

s

$j \in \ss \setminus \ss _s$

$\Xs {j} \perp \Xs {s} \mid \Xbs {\ss _s \setminus \{s\}}$

Y_s

$\Xs {s}$

j

$\PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}\}\break = \PP \{Y_s = 1 \mid \Xbs {\ss _s \setminus \{s\}}\}$

s

$\nn _s \subseteq \nn $

s

$\nn \setminus \nn _s$

s

$\nn \setminus \nn _s$

$\Xs {j} \perp Y_s \mid \Xbs {\ss \setminus \{s\}}$

$j \in \nn \setminus \nn _s$

s

$Y_s = 0, 1$

s

$X^{(1)}$

$X^{(2)}$

$X^{(3)}$

Y_s

s

$s=1$

$X^{(4)}$

$X^{(5)}$

$X^{(6)}$

s

\begin {equation*}\frac { \PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}, \Xbs {\nn _s} = \xbs {\nn _s}\} }{ \PP \{Y_s = 1 \mid \Xbs {\ss \setminus \{s\}}\} } \times \PP \{Y_s = 1 \mid \Xbs {\ss _s \setminus \{s\}} = \xbs {\ss _s \setminus \{s\}}\}.\end {equation*}

s

s

s

s

$\nn _s$

$\ss \setminus \{s\}$

s

$\nn _s = \emptyset $

$\ss _s \setminus \{s\}$

$\Xs {s}$

s

$\ss _s$

$\Xs {s}$

s

$\ss \setminus \{s\}$

$\Xs {s}$

$\zeta _b$

$R(\z _b^{\,s})$

$Y_{s,\zeta _b}(\X)$

$\Xnots {s}$

$\Xs {s}$

\begin {align*}&(\hat \beta _{0,s,b},\hat \b _{s,b}) \\&=\argmin _{\beta _0\in \RR ,\ \b \in \RR ^{p-1}}\left \{ \sum _{\x _i\in R(\z _b^{\,s})} \ell \!\left (Y_{s,\z _b}(\x _i),\ \beta _0+\Xnots {s}(\x _i)^\top \b \right) +\lambda _{s,b}\,\|(\beta _0,\b)\|_{1}\right \},\end {align*}

$\ell $

$\lambda _{s,b}$

$\hat \b _{s,b}$

$\i _{s,b}\in \{0,1\}^p$

s

$\i _{s,b}(j)=1$

$j\neq s$

$\Xs {s}$

B

$\i _s=B^{-1}\sum _{b=1}^B \i _{s,b}$

$\Xs {s}$

p

$p\times p$

\begin {equation*}\I = \begin {bmatrix} \i _1\\ \i _2\\ \vdots \\ \i _p \end {bmatrix} = \begin {bmatrix} i_{11} & \cdots & i_{1p} \\ \vdots & \ddots & \vdots \\ i_{p1} & \cdots & i_{pp} \end {bmatrix},\end {equation*}

$\i _s$

$\Xs {s}$

\begin {equation*}\Is {s} = \sum _{k=1}^p i_{ks}.\end {equation*}

$\Xs {s}$

$\I $

$|\b _s^{\text {local}}|$

$\I $

$I^{\text {local}}(s)$

$\zeta _b$

$\Xs {s}$

$\beta _s^{\text {local}}$

s

$\I $

V

X

p

p

B

B

B

$\textit {ytry}=p$

$\textit {ytry}<p$

$B = 200 \times (\text {rules per tree})$

p/n

\begin {align*}&Y = 10 \sin (\pi \Xs {1}\Xs {2}) + 20(\Xs {3}-0.5)^{2} + 10\Xs {4} + 5\Xs {5} + \varepsilon ,\\ & \Xs {j} \sim U(0,1), \ \varepsilon \sim N(0,1),\end {align*}

\begin {align*}& Y = \frac {1}{1 + \exp \!\left (-30 \bigl (\Xs {1} + (\Xs {4})^{3} + \Xs {9} + \sin (\Xs {2}\Xs {8}) + \varepsilon - 0.38 \bigr) \right)},\\ &\Xs {j} \sim \U (-0.25,1), \ \varepsilon \sim \N (0,0.1^{2}),\end {align*}

\begin {align*}\textit {nodesize} &= \max \{\,n/10,\; \min (n,20)\,\}, \\ \textit {ytry} &= \sqrt {p}, \\ \textit {ntree} &= 200, \\ \textit {rules per tree}&= 10.\end {align*}

$ytry = p$

p/n

n

200

2000

p

20

500

(Y,\X)

Y

$\ss \subset \{1,\ldots ,p\}$

\begin {align*}&Y = g\big (\Xbs {\ss }, \varepsilon \big),\quad \Xs {1},\ldots ,\Xs {p}\ \text {are mutually independent},\\ &\quad \varepsilon \ \text {is independent of } \X .\end {align*}

$Y \perp \Xnots {\ss }\mid \Xbs {\ss }$

$(Y,\Xbs {\ss })$

\begin {align*}&f_{\Xnots {\ss }\mid Y,\Xbs {\ss }}\big (\xnots {\ss }\mid y,\xbs {\ss }\big) = f_{\Xnots {\ss }\mid \Xbs {\ss }}\big (\xnots {\ss }\mid \xbs {\ss }\big)\\ &= f_{\Xnots {\ss }}(\xnots {\ss }) = \prod _{j\notin \ss } f_{\Xs {j}}(\xs {j}),\end {align*}

$(Y,\Xbs {\ss })$

(Y,\X)

$\X $

$\ss $

p/n

p/n

p

p/n

p

n

p

p

$n=100$

$p=100$

$10{,}000$

$ytry=p$

p

$O(ntree \cdot n \log n \cdot p)$

$n/nodesize \le C$

$O(np)$

$O(ntree \cdot n/nodesize)$

$ntree$

$n/nodesize \le C$

$O(Kp)$

K

$K < p$

p

$n=1000$

p

0.9

Y

p

$\ell _{1}$

$\ell _{1}/\ell _{2}$

$\alpha =0.5$

$C=1$

$n=1000$

p

p

p

p

p

l

k

$w_{ij}=\exp \!\big (-\|x_i-x_j\|^2/(\sigma _i\sigma _j)\big)$

l

$k \in \{5,10,15\}$

l

m

$m\in \{20, 40, 60, 80, 100,\break 120, 140, 160, 180, 200\}$

m

n

p

$n>p$

m

0.511

10

m

m

s

p

$p \times p$

mailto:lxz516@miami.edu
mailto:m.lu6@umiami.edu
mailto:hishwaran@miami.edu
https://ishwaran.org
https://doi.org/10.1016/j.patcog.2025.112727
https://doi.org/10.1016/j.patcog.2025.112727
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2025.112727&domain=pdf

L. Zhou et al.

GV

Parallel loops

(B) A
Grow unsupervised forest =SS I/{
Jhdh)

5 g Ry
o T
¢ o | e ~
8 S5 | Rule region

Pattern Recognition 172 (2026) 112727

| (/s»released region
(C) I |

-5 < (a términa\ node from a tree)
55 o<
4 <,
A® NS o
° 0
(D) 12
. .
B
8 &——————————=Classlabel 0"
- o
0 . .
.
P N . ry
< . wqn
X o o °®m, Class label 1
o 5 8 -
s - o
0
- o o0 .

.

v
¢ %%
-4 0 4 8 12

X0

Fig. 1. Overview of the UVarPro framework. (A) Unsupervised forest pipeline: the feature space is partitioned into rule-defined regions, release regions and pseudo-
labels are generated for each variable, local lasso classifiers are fit, and variable importances are aggregated into a global ranking. (B) Example of unsupervised trees
defining geometric partitions without outcome guidance, where rule regions (green) are obtained by randomly sampling terminal nodes from the trees. (C) Three-
dimensional illustration of a rule region (green cube) and its s-released extension (gray slab, including the green cube), showing how relaxing a variable expands the
region (here s = 2). (D) Two-dimensional schematic of the same concept, classifying samples inside the rule region (dark green, label “1”) versus the near-miss set
(gray, label “0”). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

examples showing how relaxing a variable expands a rule-defined re-
gion to form the release and near-miss sets used for local classification.
Below we summarize the key contributions of our work.

1. We propose a formal criterion for defining signal variables in the unsu-
pervised setting, framed in terms of conditional independence. This
criterion separates informative features that participate in the joint
dependence structure from noise features that do not.

2. We introduce UVarPro, a novel task-driven framework that trans-
forms unsupervised feature selection into a collection of localized
classification problems, creating implicit supervision from the ge-
ometry of the feature space itself.

3. Weincorporate 7, -regularized logistic models within each local task,
which shrink irrelevant variables to zero and retain only those with
predictive power. This embedded regularization enforces sparsity,
suppresses noise, and stabilizes importance assessment, leading to
robust and scalable feature rankings.

4. We develop a theoretical foundation showing that UVarPro recovers
the true signal set under a property we term s-dependence, where a
variable is s-dependent if it appears in at least one conditional de-
pendency within the joint distribution of the features. This formalism
connects the algorithmic design of UVarPro to the underlying condi-
tional independence factorization.

1.1. Outline

The paper is organized as follows. Section 2 reviews related work,
grouping existing unsupervised feature selection approaches by method-
ological theme and discussing their strengths and limitations in rela-
tion to our framework. Section 3 introduces a formal definition of in-
formativeness in the absence of labels, using conditional independence
to derive a factorization that separates signal from noise variables. We
also discuss why the signal set need not be unique and explain how
the formulation remains valid under natural generalizations. Section 4
develops the theoretical foundation of UVarPro and details the algorith-
mic construction, including the integration of lasso regularization within

each local task. Section 5 presents synthetic simulations illustrating how
the method distinguishes signal from noise in controlled settings, while
Section 6 benchmarks UVarPro against competing approaches on real-
world datasets from multiple application domains. Section 7 concludes
with a summary of contributions and directions for future work.

2. Related work

Unsupervised feature selection has been a longstanding topic in ma-
chine learning, with methods developed from diverse theoretical per-
spectives. Existing approaches can be broadly grouped into: (1) vari-
ance based and redundancy based criteria [4]; (2) graph, clustering, and
manifold preserving formulations (e.g., structure preserving or graph
aware filters) [5,6]; (3) dependence and relationship based analysis [7];
(4) reconstruction and joint learning frameworks that couple selection
with latent structure discovery (including multiview settings) [8,9]; and
(5) unsupervised learning pipelines that embed feature selection within
broader workflows such as clustering, segmentation, and change detec-
tion. Below we review these categories, emphasizing their methodolog-
ical principles and limitations in relation to our proposed method.

2.1. Variance and redundancy based methods

Early methods focus on maximizing variance or minimizing redun-
dancy among selected variables. Forward Selection Component Analysis
(FSCA) [10] sequentially adds variables that explain the greatest portion
of total variance, analogous to a greedy PCA. Its extension, Lazy-FSCA
(L-FSCA) [11] adopts a lazy greedy evaluation [12] to substantially re-
duce computations while delivering selection performance that is em-
pirically comparable to FSCA; the frame potential approach (FSFP) [13]
greedily minimizes the frame potential (the squared Frobenius norm of
the Gram matrix of the selected columns), thereby indirectly discourag-
ing redundancy by selecting the feature that causes the smallest increase
in total squared pairwise correlations. These criteria are computation-
ally efficient but depend solely on second order structure, making them

L. Zhou et al.

less effective in capturing nonlinear or multimodal dependencies. Re-
cent work also advances redundancy aware selection via maximum rel-
evance and minimum global redundancy selection, improving discrimi-
nation while explicitly penalizing global redundancy [4].

2.2. Clustering and manifold preserving methods

A major branch of research connects feature relevance to clustering
or geometric structure preservation. Laplacian Score [14] ranks features
by their ability to preserve local neighborhood structure, while SPEC
[15] generalizes spectral criteria to integrate local and global geometry.
More sophisticated graph based approaches follow two related patterns.
MCEFS [16] selects features via a spectral embedding followed by sparse
regression, whereas UDFS [17] and NDFS [18] jointly optimize feature
weights and latent cluster indicators with sparsity and orthogonality
constraints to better align features with cluster structure. Recent work
continues this trend: higher order, view specific similarity graphs for
multiview selection (DCVSG) further strengthen geometric fidelity [19],
while dual space fuzzy graphs with orthogonal basis clustering enhance
robustness to ambiguous neighborhoods [5]. In parallel, structure pre-
serving filters learn feature weights to retain neighborhood relations in
the feature subspace [6]. Although powerful for revealing latent clus-
ters, these methods often rely on assumptions of smooth manifolds or
prespecified neighborhood scales, which may limit adaptability in het-
erogeneous data.

2.3. Dependence and causal approaches

Dependence based methods identify relevant variables through mea-
sures of association or conditional independence. The PC-simple algo-
rithm [20] performs sequential tests of conditional independence be-
tween each feature and the response, removing variables that become
independent given small conditioning sets; it is inspired by the PC al-
gorithm but targets supervised variable selection rather than full causal
skeleton recovery. Measures such as the Maximal Information Coeffi-
cient (MIC) [21] and HHG [22] provide flexible, nonparametric depen-
dence detection that can uncover nonlinear relationships. While con-
ceptually appealing, these procedures are sensitive to estimation noise
and scale poorly with dimensionality, motivating approaches that in-
tegrate dependence with structure learning. Complementing classical
dependence measures, robust relationship learning formulations have
been shown to improve selection in the presence of outliers and hetero-
geneous local structure [7].

2.4. Reconstruction and joint learning frameworks

A complementary line of work embeds feature selection within re-
construction or subspace learning objectives. JAMEL [23] preserves
manifold geometry while learning an embedding for feature selection,
whereas nonnegative Laplacian embedding [24] exploits pseudo-labels
and regularized objectives for more discriminative subsets. Similarly,
SCUFS [25] integrates representation based subspace clustering and iter-
ative refinement to retain features aligned with latent subspaces. These
approaches offer strong geometric interpretability but require matrix
factorization or spectral decomposition steps that scale quadratically or
cubically with data size. Multiview joint formulations that marry low
rank reconstruction with graph learning also report gains on high di-
mensional benchmarks, e.g., tensor RPCA with consensus graph learning
[9]. Joint formulations that learn cluster structure and feature weights
concurrently have recently been explored, yielding gains on high dimen-
sional benchmarks [8].

2.5. Unsupervised learning paradigms

Another line of work, prominent in remote sensing and change detec-
tion, situates feature selection considerations within broader pipelines

Pattern Recognition 172 (2026) 112727

that include unsupervised or weakly supervised components (e.g., pixel
clustering, object based segmentation, and multitemporal differencing).
Recent studies combine handcrafted spectral and texture descriptors
with classical classifiers to evaluate performance across sensors, spatial
resolutions, and temporal settings [26-29]. These pipelines underscore
the importance of segmentation scale and spatial context for accurate
mapping, but explicit unsupervised feature selection is rarely incorpo-
rated; most approaches retain all descriptors or rely on ad hoc pruning.
From a feature selection standpoint, the resulting feature spaces are high
dimensional and strongly redundant, motivating the integration of prin-
cipled selection criteria. Embedding geometry preserving or dependence
based filters within such workflows could reduce noise, enhance inter-
pretability, and improve transferability across sensors and time.

2.6. Summary and positioning of UVarPro

The methods described above emphasize either global structure
(variance and reconstruction approaches) or local neighborhood preser-
vation (graph and manifold methods), with relatively few methods link-
ing variable selection directly to local predictive capacity. Our method,
UVarPro, advances this direction by reframing unsupervised feature se-
lection as a series of localized prediction tasks derived from decision
tree rules. This task driven formulation identifies variables that drive lo-
cal dependence, allowing UVarPro to adapt to complex, heterogeneous
structures beyond global variance or smooth manifolds.

3. Notation and definition of the signal feature set

In this section we formally define what it means for a variable to be
informative without access to an observed outcome. Let X, ..., X de-
note the p observed features, and write X = (XU, ..., X®) for the feature
vector. For any subset S C {1,...,p}, let X9 = (XU} ,_¢ be the corre-
sponding subvector, and X\(9) = { X1} . ¢ its complement.

Our goal is to identify a subset . C {1, ..., p}, called the signal set,
such that conditioning on X(**) renders the remaining variables mutu-
ally independent. In this sense, X”) serves as a minimal sufficient set
for the dependence structure in X. The definition is given below.

Definition 1. A subset.” C {1,...,p} is a set of signal variables if it is a
minimal set of coordinates such that all other variables are conditionally
independent given X*). Formally, .# is any minimal set satisfying:

X9 L x0|X vk} ¢S
This condition implies a key factorization of the joint feature density:

Sx(X) = fx\exe &\ fyeon X

= < H Fxin 9 | X(y))>fx(y)(x(y))~
JjEgS

(€8]

For convenience, we refer to the complement of the signal set, N :=
{1,...,p}\ ., as the set of noisy variables. These variables contribute no
additional dependence beyond what is explained by the signal set.

As illustration, consider a latent variable model with a single unob-

served variable Z and three observed features XV, X, X®, Suppose
the joint distribution satisfies
XD L x® |z, forallj#ke{l,23).
That is, Z induces all dependence among the observed features
(see Fig. 2). Now assume XV is a deterministic function of Z, while
X and X® are noisy but conditionally independent given Z. In this
case, X() alone suffices to account for the dependence between X
and X®, meaning that .7 = {1} satisfies the conditional independence
criterion in Definition 1.

L. Zhou et al.

Fig. 2. Latent variable model with Z inducing dependence among observed
features. The features X, X®, X® are conditionally independent given Z.

3.1. Non-uniqueness and structure of the signal set

The density factorization (1) is central to our unsupervised exten-
sion of VarPro because it separates signal from noise variables. While
Definition 1 characterizes signal sets as minimal sufficient sets, such sets
need not be unique. In practice, non-uniqueness arises because some
variables play equivalent statistical roles, while others may be deter-
ministically related [1]. In these cases the signal set must be expanded
to preserve valid dependency structure. Our theoretical justification re-
mains intact so long as (1) holds for this expanded set. We next consider
two representative scenarios, interchangeability and redundancy, and il-
lustrate how they are accommodated within this framework.

3.1.1. Interchangeability
An example of non-uniqueness in . arises through the concept of
interchangeability. Consider a pair of variables § = {i, j} such that

Vk ¢ 7 U, we have X® L xO | (X(Z\D x0} and
x® 1 xOW | {X(y\é>,X(i)}. &)

This condition implies that either X&) or X) may be included in .#
without affecting the conditional independence structure of the remain-
ing variables. That is, X and X are interchangeable, and .# is not
uniquely defined. To preserve (1), we resolve this ambiguity by expand-
ing . to include both variables: .7 := .7 U {i, j}.

3.1.2. Redundancy

A second source of non-uniqueness arises when a signal variable is
redundant, meaning it is a deterministic function of other variables al-
ready in .. Specifically, if . is a valid signal set, we say variable j is a
redundant signal variable if

X9 = pX)) for some real-valued function ¢. 3)

In such cases, . should again be augmented to ensure (1) holds: . :=
S U{j}.

3.2. Examples of non-uniqueness and restructuring the signal set

Example 1. This V-cluster example illustrates a case where two vari-
ables are interchangeable. Let p > 2 and define:

x = €1, XD = 5xD 4 €, xX® = €, ... ,X(D) =e,

where ¢, ... ,€, are independent noise variables and § € {—1,+1} is in-
dependent of ¢,. The variable X® reflects a sign-flipped copy of X,
producing a V-shaped structure in (X, X®),

Only XV and X® influence dependence structure, as the remain-
ing variables are pure noise. Since X!’ and X® can be conditioned on
to explain each other, they satisfy the interchangeability condition (2).

Hence, the minimal signal set is . = {1,2}.

Pattern Recognition 172 (2026) 112727

Example 2. This modified V-cluster example shows how introducing
independent sources of latency can break interchangeability. Let 6,, 65 €

{—1,+1} be independent binary variables, and define:
XD =¢, XP=5,xD 4,

XW = €45 e ’X(P) =€,

X =6;,XD 4 ¢,

where ¢y, ..., €, are independent noise variables. Here, X(is the shared
source of dependence, making it a signal variable, while the rest are
noisy.

Despite depending on XV, neither X® nor X® is interchangeable
with it. This is because their latent signs 6, and §; are independent.
Conditioning on X® does not fully determine X®’s dependence on X,
and vice versa:
x® L x® | X(2)’ x® L x® | X,

Thus, XV cannot be substituted by either X® or X®, and the minimal
signal set is . = {1}.

Example 3. This example illustrates redundancy. Let €, e, €3, ¢, be in-
dependent, continuous random variables, and define:

1 2
XD =¢, XP =g,

x©® = (X(l))z.

X=X pey, XD =XxP1g,

Variables X' and X® are signals, as they independently influence
other features. In contrast, X® and X are conditionally independent
of all others given X® and are therefore excluded from the minimal sig-
nal set. Variable X, however, is a deterministic function of X(). By the
redundancy criterion (3), such functions must be included to preserve
the joint factorization (1). Thus, . = {1,2,5}.

Example 4. This example shows that a variable may appear irrelevant
but is required in the signal set to preserve conditional independence.
Let ¢, €5, €3, ¢4, be continuous, mutually independent variables, and de-
fine:

XD =¢, XP=xD41e, xXO=xD4e,

XD = xO 4 x® L xO yg,.

One might expect .7 = {1} to suffice, since X® and X® are condition-
ally independent given XV. However, X includes contributions from
€, and ¢;, which also affect X® and X®. As a result, conditioning only
on X does not render X® and X® independent of X®:

xX® L xX® | X(l), x® L X% | xO,

To restore conditional independence among noisy variables, X must
be included in the signal set. Thus, .7 = {1,4}.

Example 5. This example illustrates a variation of the redundancy
structure from Example 3, involving a deeper causal chain. Let ¢, ¢,, €3
be continuous, mutually independent random variables, and define:

x® = €1, xX® = (X(l))2’ X® = x4 x@ 4 e, X4 = x® 4 €.

Here, X is a deterministic function of X! and is redundant under (3).
Variables X® and X® are causally downstream. While conditional in-
dependencies like XV L X® | {X®, x®} and X® 1L x® | (xD, xO)
hold, no proper subset of {1,2,3} satisfies Definition 1. Thus, . =
{1,2,3).

4. Methodology

The goal of unsupervised variable selection is to identify the most
informative features without access to an outcome or class label. In
supervised learning, importance is measured by the change in predic-
tive accuracy when variables are perturbed or excluded. Without labels,
importance must instead be defined through the intrinsic structure of
the feature space. Our approach extends the Variable Priority (VarPro)
framework to this setting. We begin by providing background on VarPro
before describing the unsupervised extension.

L. Zhou et al.
4.1. Background on VarPro

VarPro [2,3] is a model-independent method for supervised feature
selection. It is rule-based, using decision trees to generate candidate re-
gions of the feature space, and evaluates variable importance by con-
trasting predictions across such regions. A rule { corresponds to a root-
to-leaf path in a decision tree, defined by a sequence of variable-based
splits. The associated region for ¢ is

RO = ()] tx: Ve,
JEA(0)
where A(¢) is the set of variables along the path and Z;({) the interval
associated with coordinate j.
To evaluate the contribution of a set S C {1,..., p}, VarPro defines
the released rule ¢ by removing all split constraints involving S:

RE%) = [fx:

JEADONS

XD e ;).

Importance is then measured by comparing outcome summaries on R({)
and R(¢®) using observed data. This construction generalizes the mean
decrease impurity (MDI) score, which quantifies marginal improvement
in split quality when a variable is introduced. VarPro extends this idea
from single splits to entire regions, capturing the joint contribution of
variables within a neighborhood. In doing so, it provides greater sta-
bility under correlation and interaction, while avoiding the synthetic
inputs required by permutation-based methods [30,31].

In practice, a large and diverse collection of rules is obtained by
growing a forest of trees and sampling rules across its terminal nodes.
This makes the method computationally efficient: once a forest has been
grown, R(¢®) is obtained by simply relaxing the splits involving S, and
membership in R() or R(¢S) can be checked by traversing the trees
without retraining. The same collection of rules can be reused to es-
timate a variety of outcome summaries, including conditional means,
class probabilities, or restricted mean survival time. This efficiency and
flexibility carry over directly to the unsupervised extension described
next.

4.2. Extension to unsupervised data

When no response Y is available, the supervised contrast between
R(¢) and R(¢S) used in VarPro cannot be formed. We replace it with a
local classification problem, where labels are assigned by rule member-
ship. This creates implicit supervision for assessing the importance of
S.

Two modifications are required to implement this idea. The first is
to adapt the rule-construction process by using multivariate trees that
treat the feature vector X as both input and pseudo-response. This self-
regression is conceptually similar to an autoencoder and leverages mul-
tivariate impurity splitting strategies from [32]. Each tree produces ter-
minal nodes that define candidate regions in the feature space. By grow-
ing a forest of such trees, we obtain many rules ¢, each corresponding to
the sequence of splits along the path from the root to a sampled terminal
node.

The second modification is to create surrogate labels through a non-
intersecting near-miss set. For a rule { and coordinate s € A({), remov-
ing all constraints involving X*) defines the release region

R¢H = ()
JEAO\(s}
and the near-miss set is rel,(¢) = R(¢®) \ R(¢). The binary label is

0,
Yx,{(x) = 1

These labels depend only on X and do not require observed outcomes.
To evaluate the contribution of X, we predict ¥, , from X\ us-
ing samples from R(¢) and its near-miss set. This isolates the effect of

x:xV e}

X € R(0),
x € rel (£).

Pattern Recognition 172 (2026) 112727

relaxing the constraint on coordinate s while keeping all other rule con-
ditions fixed. If X\ can reliably predict the contrast, then releasing
X changes the dependence structure, indicating that X participates
in the joint signal. Otherwise, X is likely uninformative in that neigh-
borhood. This construction is repeated across many rules drawn from the
forest. For notational clarity, we index the sampled rules as ¢}, ..., {p,
where B is the total number of rules across the forest. Outputs from these
rules are later aggregated to form variable-level importance scores.

4.3. Justification for noisy features

To justify the validity of our approach, we first consider the case
where s € N is a noisy variable; the corresponding case of a signal vari-
able is examined afterwards. Omitting dependence on the rule ¢, it fol-
lows from the joint factorization assumption (1) that

PLY, = 11 X\O =x\0) = Py, = 1| X =x), @

showing that the conditional probability of Y, = 1 given all variables
except X is equal to the probability given only the signal variables
X(*), This implies that noisy features outside the signal set do not alter
this probability.

The critical step for (4) to hold is the condition

Y, LXY X vje N\ {s}, 5)

which asserts that, conditional on the signal set, the rule membership
label Y; is independent of all other noisy variables.

This relationship holds under the assumption that s is a noisy vari-
able. Decision trees construct rules as conjunctions of univariate split
conditions, so each rule corresponds to a rectangular region defined by
inequalities involving a subset of variables. When the rule is released
along coordinate s, the original and released regions differ only in the
constraint on X, Consequently, the event Y, = 1 (indicating member-
ship in the released region) depends only on X(*). By the factorization as-
sumption (1), X9 1 X® | X() for all j € N\ {s}, which implies that
X9 Ly, | X, Thus (5) holds, validating (4).

We can strengthen the above analysis by partitioning the signal vari-
ables into s-dependent and s-independent groups. This allows us to re-
fine our understanding of how signal variables influence the classifier.

Definition 2. For a given s € ., let ., C . denote the set of s-
dependent signal variables. The complement .# \ ., consists of those
signal variables conditionally independent of X given the remaining
elements of .7, that is

XD L x| XN je g\ S

If 5 is noisy, then ., does not include s, so X¢) L X® | X(% for all
JE€S\I

The set .7, identifies the subset of signal variables that are condi-
tionally dependent on s. These are the variables that share information
with s beyond what is captured by the rest of the signal set. In contrast,
the s-independent variables in .7 \ ., are those for which the associa-
tion with s vanishes once the s-dependent variables are held fixed. This
partitioning is useful because it isolates the subset of signal variables
relevant for interpreting the effect of s in the local classifier. This leads

to the following result.

Theorem 1. Under the joint factorization assumption (1), if s is a noisy
variable, then the conditional probability in the two-class formulation de-
pends only on the s-dependent signal features, .7.

4.4. Justification for signal features

Now consider a released variable s € . that is a signal feature. The
conditional probability can be decomposed as

P{Y,=1| X\ = X\(A‘)}
=P{Y,=1]| X(fp\(ﬂ))’x(/\/) - X(N)}

L. Zhou et al.

iy

ORNO RO

x @ X ®) X (6)

Fig. 3. Graphical model of Example 2. Releasing the signal variable X" (blue)
alters the conditional distribution of the noisy variables X and X® (orange)
with respect to the proxy classification label Y,, making them s-dependent noise
(s = 1). The remaining noisy variables X, X®_ and X© (gray) however are
unaffected and are classified as s-independent noise. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)

P{Y, = 1 | XD, XNV = x(V)y
- P{Y, = 1| X(Z\sD}
XP{Y,=1]| X\ sh) = X(&’S\(s})}_ 6)

The last line follows because variables in . \ .#, are s-independent: for
any j € .7\ .7, XV L X©® | X(5\IsD, Since Y, depends only on X(“ it
is also conditionally independent of such j. Hence P{Y, = 1 | X("'\(sD}
=P{Y, = 1 | X("5\[sD} which yields the stated decomposition.

The second term in (6) depends only on s-dependent signal variables,
similar to the noisy case. However, the first term may also involve noisy
variables. To describe this contribution, we introduce the following def-
inition.

Definition 3. Define N; C NV to be the s-dependent noisy variables and
N\ N, the s-independent noisy variables, where N\ W is the largest
subset satisfying: X L Y, | X(’\sD for all j € N\ V.

Intuitively, s-dependent noisy variables are those whose distribu-
tions shift for the regions defined by Y, = 0, 1, even after conditioning
on the signal set. In contrast, s-independent noise variables remain con-
ditionally invariant. Fig. 3 illustrates this distinction.

Using Definition 3, we can rewrite (6) as

P{Y, = 1 | XD XV = x(Vo)y

1] XC\D = x(F\shy
PLY, = 1 [XZ\0D) !)

X P{Y, =

This alternate form provides useful intuition: the s-dependent noisy vari-
ables of the first term modulate the probability of entering the released
region, even after conditioning on the remaining signal features. In con-
trast, s-independent noisy variables do not affect this likelihood. From
this, we obtain the following result.

Theorem 2. Under the factorization assumption (1), if s is a signal variable,
then the conditional probability from the two-class formulation depends only
on the s-dependent noisy variables N, and the signal variables . \ {s}.
Moreover, if there are no s-dependent noisy variables (i.e., N =), then
the conditional probability depends only on .%; \ {s}.

Pattern Recognition 172 (2026) 112727

4.5. UVarPro procedure and algorithm

Theorems 1 and 2 provide the theoretical foundation for the UVarPro
procedure. When X is a noisy variable, releasing s yields a classifica-
tion problem in which only the associated signal variables .7, should re-
tain predictive power. Conversely, when X is a signal variable, classi-
fication accuracy may also reflect contributions from s-dependent noisy
variables in addition to the remaining signals .7 \ {s}. This asymmetry
allows UVarPro to distinguish signal from noise by aggregating evidence
across multiple rules and released variables.

To operationalize this idea, UVarPro constructs a classification-based
importance matrix that encodes how each variable responds to the ex-
clusion of every other. The matrix is assembled from rule-based contrasts
obtained from the forest as described below. For reference, the complete
procedure is summarized in Algorithm 1.

Algorithm 1 UVarPro for Unsupervised Variable Selection.

1: Grow a multivariate unsupervised forest in autoencoder mode and
collect terminal rules {C,,}f=l with regions R(¢},).

2: forb=1,...,Bdo

3: fors=1,...,pdo

4 Construct the s release region R(¢;’) by dropping conditions on

s; let rel () = R(,) \ R(G,) so that R(?) = R(Z,) Urel (&),

5 if |rel,(¢,)] = 0 then

6: Seti,, =0 € {0, 1}” and continue to next s.

7: end if

8: Define Y; ., (X) =0o0n R(p) and Y, Y, (X) =1 on rel(¢p).

9 Fit lasso logistic regression of Y, on X\, using samples in

R().

10: Record 1, € {0,1}? with 1,(s) =0 and, for j #s, 1,,(j) =
{5, ,(j) # 0}

11: end for

12: end for

U

13: For each s, compute 1, = % Z,il 1,, and stack I = € [0, 1717%P.

14: Return column scores I = i Yo ks fors=1,...p

4.5.1. Importance matrix construction

For each feature X and each rule ¢, generated by the unsuper-
vised forest, UVarPro fits a localized lasso logistic regression to the cor-
responding release region, R(¢,"). The pseudo-response is the binary in-
dicator Y, 5.0, X, while the predictors are the remaining features X\®®),
ensuring that X is excluded:

(ﬁO,s,b’ Bx,b)

= argmin 3 AV, 00 fo+ XNOR)TB) + Ay B0, B -

BoER, peRP~! X’GR@;)

with # denoting logistic loss and 4;, chosen by cross-validation.

The sparse solution f, is encoded as a binary selection vector
1, € {0,1}?, with coordinate s set to zero by construction and t ,(j) = 1
for j # s whenever the corresponding coefficient is nonzero. These vec-
tors capture which variables support classification when feature X
is released. Averaging across B rules yields the importance vector 1, =
B! sz=1 1,5, @ continuous measure of how often each variable is se-
lected when X is excluded. Stacking the p vectors produces the p x p
importance matrix

L

L. Zhou et al.

where each row 1, summarizes how other variables compensate when
X is released.
To obtain a single importance score for each variable, we sum its
row entries,
P

19 =3 iy

k=1

This measures how often X contributes across all release-based com-
parisons. Theorems 1 and 2 establish that signal variables are repeatedly
recovered in such tasks, even when they are not the variable being re-
leased. Summing therefore amplifies this recurrence, and elevates scores
for true signals.

4.5.2. Refinement: Matrix shrinkage

Although our theory indicates that I separates signal from noise, in-
cidental correlations and collinearity can inflate its entries in high di-
mensions. To address this, we apply a second-stage local lasso shrinkage
that reweights and filters the row-wise selections.

Algorithm 2 Local Lasso Shrinkage of the Importance Matrix.
, B} and {rel,(¢,)} from Algorithm

1: For each s, collect {1,, : b=1,...
1.

2: for s =1to pdo

3: forb=1toBdo

4 if 3,41,,() > 0 then

5: Let M= {j : 1,,())
X\ p-

6: Using only samples in rel (¢,), fit
X o x\WM)

=0} U {s}; predictors are standardized

via lasso.

7: Store ﬂif’hcal € R? with zeros on M.

8: else

9: Set ﬁlml 0.

10: end if

11: end for

12: end for

13: For each s, compute the averaged shrinkage vector ﬂiocal =
= Zb_ ﬁlocal.

14: Form 1local by the elementwise product

llocal — |ﬂiocal| o1,

s

and stack rows as in Algorithm 1.
15: Define the local column scores

»
1 .
rocalsy = - tﬁcal, s=1,...,p.

k=1

Implementation note. Predictors are standardized before fitting, and in-
tercept terms are excluded because they contain no variable-specific in-
formation. The coefficients | ﬂlf’call are applied elementwise to the cor-
responding row of I without clipping or additional normalization, and
the column averages I'°®l(s) summarize these weighted entries.

For each rule ¢,, once candidate signal variables have been identi-
fied, we run a second lasso regression within the release region, regress-
ing X on the selected features. This step removes weak or spurious
predictors that survive the first pass. The resulting coefficients are then
averaged across rules to form a local coefficient vector ﬁiOca' for each
feature s. Finally, we refine the importance matrix by scaling each row
of I according to the absolute values of these local coefficients. A full
description of the procedure is given in Algorithm 2.

5. Synthetic experiments

We evaluate UVarPro on a suite of synthetic benchmarks designed
to probe distinct properties of unsupervised feature selection. This en-

Pattern Recognition 172 (2026) 112727

Table 1
Summary of synthetic experiments.

Simulation Dimension Dimension of Signal Feature Set
Signal Features
Normal Latent Variables 18 4 {w, x,y, z}
Normal Latent Variables 27 4 {w, x,y, 2}
Correlated
Uniform Latent Variables 27 4 {w, x,y, 2}
Correlated
Normal Latent Correlated 105 12 {W, X, Y, Z}
High Dim.
Example 4 4 2 (XM, x@®}
Example 5 4 3 (XD, x@ xOy
Multivariate Normal 10 3 (X0, x®, x®)
Normal Mixture Model 5 2 (X, x®)
V-cluster 11 2 (XD, x@)
V-cluster Correlated 12 2 (XD, x@y
X-cluster 11 2 (XM, x@}
X-cluster Correlated 12 2 (XD, x@)
Non-coexistence 12 2 (XD, x@y
Non-coexistence 12 2 (XM, x@)
Correlated
Ellipse 16 6 (X0, ..., X©}
Ellipse Correlated 10 4 (XD, ., X®)

compasses four scenario families: latent factor dependence (normal and
uniform latent variables with both correlated and uncorrelated noise);
structured clustering geometries (V-cluster, X-cluster, ellipse, and non-
coexistence), each considered in original and noise-correlated versions;
redundancy and conditional independence (causal chains and function-
ally redundant signals); and higher-dimensional experiments (multivari-
ate normal with correlated noise and a normal mixture). Table 1 sum-
marizes the designs with full data-generation details provided in Supple-
mentary Materials. Results and comparative summaries are presented in
the subsections that follow.

5.1. Monte carlo replications and performance evaluation

Each simulation scenario is defined by a known data-generating
model with an oracle signal set, the subset of features that truly de-
termine dependence in the joint distribution. Because the oracle model
is known, independent datasets can be generated where the identity of
signal and noise variables is specified exactly, enabling objective evalu-
ation of each method’s ability to recover the true signal set.

We performed 100 independent Monte Carlo replications, each us-
ing a fresh dataset drawn from the oracle model. All methods, includ-
ing UVarPro, were fit entirely within the generated sample. No cross-
validation, tuning splits, or data reuse occurred, as each replication
represents a fully independent, out-of-sample evaluation with known
ground truth, eliminating any possibility of information leakage. Perfor-
mance was measured by the Area Under the Receiver Operating Char-
acteristic Curve (AUC-ROC), quantifying each method’s ability to dis-
tinguish oracle signal from noise features. Results are reported over the
100 independent replications.

5.2. Comparison procedures

The following competing methods were included for comparison:
FSCA [10], L-FSCA [11], and FSFP [13], implemented in R based on
the original algorithm descriptions. PC-simple [33] was run using the
pcalg package in R. MIC was implemented using the minerva pack-
age, and the HHG test via the HHG package. For MCFS [16], UDFS [17],
SPEC [15], and Laplacian score (LapScore) [14], we used the Python-
based scikit-feature repository. UVarPro and the UVarPro-lasso were
run in autoencoder mode, with other parameters set at defaults (see
Section 6.2). Comparison methods were run using recommended default
configurations.

L. Zhou et al.

Normal Latent Variables Sim
1.00-—— ——

o

Example 4 Sim

0.75
0.50
0.25

0.00
Example 5 Sim

1.00-— —
0.75
0.50 ——— — —
0.25

S

©0.00 —

V-cluster Sim

I
o)
S1.00-—

Normal Latent Correlated Sim

T hhe

V-cluster Correlated Sim

<
0.75 o e e
0.50

Pattern Recognition 172 (2026) 112727

Uniform Latent Correlated Sim Normal Latent Correlated HD Sim

__ + ﬁ#_¢ __a ++é&%—

Multivariate Normal Sim

I I I T , f
X-cluster Sim X-cluster Correlated Sim

— . ARG S i II =

Normal Mixture Sim

0.25
0.00
Non-coexistence Sim Non-coexistence Correlated Sim Ellipse Sim Ellipse Correlated Sim
1.00-—— == - - 1T - - -
0.75 _* @]@] é + i
0.50 E==== @] ﬁ
0.25 * L
0.00 L.
COTITIT L0290 2 QO0.X.I.TWOO92902 Q0 LO0O09299090 Q905 Y200,990 9
TEOOORISTLEL S TELEEY ISTEEL S CESSSISTELL S TEOLL ISTLELL $
AQ%\@Q@#@%@_(;%®§J§é20_,o§/\(o@§g)%ro§$¢§§(ggo§/\q,@%@%@§ TESES ¢ FLLPELSTLEES
S Vg §&S O I SO Jadd SO I ®
& &R v R £Q g £Q ~ g £Q ~
Y « Ny « g « Y &
S S N N
B UVarPro B L-FSCA BMIC ®UDFS

B UVarPro-lasso 8 FSFP-FSCABHHG & SPEC

B FSCA

B PC-simple & MCFS & LapScore

Fig. 4. AUC-ROC performance values over synthetic simulations for UVarPro, UVarPro-lasso, and competing unsupervised feature selection methods. Higher values

indicate better identification of the ground truth signal set.
5.3. Empirical results

Fig. 4 summarizes performance across the simulations. In the Latent
Variable Simulation series (first row), which includes the normal, cor-
related, uniform, and high-dimensional designs, both UVarPro methods
consistently achieve perfect AUC-ROC scores. PC-simple also performs
well, but its accuracy is affected by correlation. Greedy search proce-
dures, similarity-based approaches, and sparse learning methods are
generally ineffective across this group, while dependency-based tech-
niques such as MIC and HHG show early promise but degrade with cor-
relation.

The second row considers more structurally complex settings.
Examples 4 and 5, which involve redundancy and nonlinear interac-
tions, are difficult for most baseline methods, yet the proposed method
achieves perfect or near-perfect performance. In the Multivariate Nor-
mal Simulation, where noise variables are correlated with all signals,
most methods exhibit a sharp drop in accuracy, but UVarPro remains
highly effective. In the Normal Mixture Simulation, even though noise
is independent, marginal structure alone is not enough for many com-
petitors; only UVarPro, HHG, and MIC maintain reliable accuracy.

Several additional designs are organized as paired structures: V-
cluster, X-cluster, Non-coexistence, and Ellipse, each with independent
and correlated noise versions. These settings probe stability under corre-
lation among noise variables. UVarPro continues to deliver near-perfect
accuracy throughout, whereas competing approaches degrade substan-
tially when noise correlation is present, with HHG, MIC, and PC-simple
most affected.

To consolidate these findings across all designs, we used critical dif-
ference (CD) plots [34] at the 5 % significance level, ranking methods by
average AUC and applying the Nemenyi test (see Fig. 5). UVarPro and
UVarPro-lasso rank at the extreme left, well separated from all competi-
tors. These rankings are consistent with the patterns seen in individual
simulations: PC-simple frequently identifies only part of the signal set,
MIC and HHG are sensitive to correlated noise, greedy search struggles
when noise variables have variances comparable to those of the signals,
and similarity or sparsity-based methods designed for high-dimensional
clustering tasks perform poorly in structured low-dimensional
problems.

Although UVarPro and its lasso extension perform similarly overall,
some differences emerge in specific settings. In designs such as the Nor-
mal Mixture and X-cluster, UVarPro’s direct elevation of group-level de-
pendencies provides a natural advantage, with little added benefit from
shrinkage. On the other hand, in the Non-coexistence Correlated and
Ellipse Correlated simulations, where signals are weak and collinear-
ity is strong, the extra regularization helps filter surrogates and gives
UVarPro-lasso a slight edge. These differences are modest, however, and
both procedures are highly effective across experiments.

6. Real-World data experiments

This section evaluates UVarPro across a diverse collection of real-
world datasets from multiple application domains, supplemented by
two challenging synthetic benchmarks (Cobra8 and Friedmanl) used
to assess runtime, scalability and robustness. The analysis is organized

L. Zhou et al. Pattern Recognition 172 (2026) 112727
AUC-ROC
2 3 4 5 78 9 10

UVarPro—-lasso ——— FSCA

UvarPro ——— LapScore

HHG FSFP-FSCA

PC-simple UDFS
MIC SPEC
L-FSCA —MCFS

Fig. 5. Average rank of each method across the synthetic simulations, based on AUC-ROC for each dataset. Lower ranks indicate stronger overall performance.
Critical difference (CD) plots are shown at the 5% significance level; methods not connected by a horizontal bar differ significantly.

into four parts: (i) a parameter sensitivity study on real data to eval-
uate robustness under different configurations; (ii) experiments on Co-
bra8 and Friedmanl examining performance relative to CPU runtime,
dimensionality scaling, memory usage, and robustness to feature cor-
relation, as well as the effect of the subtask learner; (iii) assessment of
feature-selection accuracy on labeled real datasets by comparing vari-
ables identified by UVarPro with those selected by supervised meth-
ods; and (iv) clustering benchmarks on six publicly available high-
dimensional datasets, followed by a detailed biological case study with
external validation.

6.1. Tuning parameters

This analysis examines how key parameters in unsupervised forests
affect the accuracy of selected features, focusing on the size of terminal
nodes, the number of rules, and the choice of response coordinates at
each split. In the autoencoder configuration of Algorithm 1, the feature
vector serves as both input and response, so all p features are used si-
multaneously when evaluating splits, and multivariate impurity is com-
puted over the full set of coordinates. In the more general framework
of [32], which we investigate here, only a random subset of size ytry is
drawn from the p coordinates at each node. Impurity is then computed
using this subset, and the predictor-side split variable is chosen to max-
imize impurity reduction. The splitting rule itself is unchanged, but the
number of response coordinates influencing it varies with ytry.

Two other parameters refine the structure of trees and the stability
of importance scores. The nodesize parameter sets the minimum num-
ber of observations in a terminal node, with smaller values producing
deeper trees and finer partitions, and larger values yielding broader re-
lease regions with more observations for local contrasts, which can re-
duce variance. The number of sampled rules, B, controls the precision
of the aggregated importance measure: larger B values reduce variabil-
ity in importance scores, but at the cost of increased computation time.
The trade-off between stability and efficiency is examined further in
Section 6.2.

We evaluated performance over a grid of B, ytry, and nodesize values,
comparing full response sampling (ytry = p, autoencoder mode) with re-
duced pseudo-response sampling (ytry < p), and examining how termi-
nal node size, the number of rules, and the choice of response coordi-
nates affect feature selection accuracy.

6.1.1. PeakVO2 data

The analysis is applied to the PeakVO2 survival dataset, which in-
cludes 2231 observations and 41 variables. The data were collected from
patients with systolic heart failure who underwent cardiopulmonary
stress testing. The endpoint of interest is all-cause mortality. Additional
details on the dataset and study design are provided in [2].

6.1.2. Tuning parameter results
In earlier synthetic simulations we measured performance using
AUC-ROC. For the PeakVO2 study and the higher-dimensional settings

considered later, we instead report AUC-PR, which is more reliable when
informative variables are sparse and represent only a small fraction of
the features. To define a reference set of signals, we use the supervised
VarPro method [2], introduced in Section 4, and take the variables it
selects as the ground truth.

Fig. 6 reports performance relative to this supervised standard. Each
panel corresponds to a different ytry value. The horizontal axis shows
the minimum terminal node size (nodesize), varied from 10 to 200, and
lines within each panel indicate the number of rules per tree (1, 5, 10,
20). With the forest size fixed at 200 trees, the total number of sampled
rules is B = 200 X (rules per tree); larger values provide more aggrega-
tion and typically improve stability, though at additional computational
cost. Curves display mean AUC-PR over 100 repetitions where each rep-
etition used a fresh 75 % data subsample (without replacement).

The results highlight the influence of both nodesize and ytry on fea-
ture selection accuracy. Increasing nodesize stabilizes local contrasts and
improves performance, while higher ytry values consistently raise AUC-
PR by providing more response coordinates at each split. The number
of rules per tree also matters: performance is poor when only a single
rule is used but improves markedly with two or more, after which gains
are minimal.

6.2. Performance versus CPU runtimes

We next examined how hyperparameter choices affect both feature
selection accuracy and computational cost, with the aim of identifying
practical settings that balance performance and efficiency. CPU times
were recorded in seconds, and accuracy was measured by AUC-PR with
the true set of signal variables defined by the simulation models. To
make results comparable across problems, we summarize them in terms
of the complexity ratio p/n (number of features relative to sample size).

We considered two well-known regression simulations. The first is
the Friedmanl model,

Y = 10sin(zX VX @) +20(X® - 0.5 + 10XW +5XO + ¢,
XY ~U(,1), e ~ N©, 1),
a nonlinear function with five signal variables. The second is Cobra8,

1
T 14exp(=30(XD + (XD + XO +5in(XOX®) + ¢ —0.38))

XU ~U(=0.25, 1), & ~ N(0,0.12),

which is more challenging due to strong nonlinear interactions and
higher-order terms. More details regarding these models can be found
in [2].

A default configuration was defined as

nodesize = max{ n/10, min(n,20) },
ytry =/p.
ntree = 200,

rules per tree = 10.

L. Zhou et al.

ytry =10
0.6
0.5
0.4
1
T
8 ytry =30
<
0.6 ; 2 ;
0.5
0.4

50 100 150

200
Nodesize

Pattern Recognition 172 (2026) 112727

ytry = 20

i

ytry =40

i

50 100 150

rues —1—5-—10-—20

Fig. 6. Feature selection performance on the PeakVO2 dataset measured by AUC-PR. Each panel corresponds to a distinct ytry value. The horizontal axis shows the
minimum terminal node size (nodesize), and lines trace AUC-PR as the number of rules per tree varies (1, 5, 10, 20).

Variations of this baseline were also considered: (i) autoencoder mode,
with ytry = p; (ii) double, with nodesize doubled relative to the default;
and (iii) the combination of autoencoder and double. Thus, four condi-
tions were evaluated in total.

Complexity values (p/n) were obtained by varying both sample size
and dimension across a grid of values, with » ranging from 200 to 2000
and p ranging from 20 to 500.

6.2.1. A note about independence

Because the simulated features are generated independently, there
is no intrinsic dependence structure to reveal signal variables. To make
the unsupervised analysis meaningful, we therefore treat the augmented
collection (Y, X) as the feature vector and include the outcome Y as an
observed coordinate. Let . C {1, ..., p} index the coordinates on which
the outcome depends, where

Y = g(X(y),e),

¢ is independent of X.

XM, Xx® are mutually independent,

Under these conditions ¥ 1 X\¢*) | X(*)| and the remaining coordi-
nates become mutually independent when conditioning on the pair
(Y, X)), Equivalently,

)] y,x))| x(9)

Fxveny xen (x° = fxxen (xV

= fon &) = I £xo D),
jES
so (Y, X)) is a valid signal set for the augmented feature vector (Y, X)

in the sense of Definition 1. In reporting performance, we record recov-
ery of the X coordinates in .7.

6.2.2. CPU and performance results

Results for the unsupervised analysis are shown in Fig. 7. The top row
displays AUC-PR, with Cobra8 on the left and Friedman1 on the right.
AUC-PR decreases with increasing complexity (p/n), with a sharper de-
cline for Cobra8. The four hyperparameter conditions yield clearly sepa-
rated curves. For Cobra8, autoencoder + double has the largest AUC-PR.

For Friedman1, autoencoder + double again performs best, with autoen-
coder a close second.

The bottom row of Fig. 7 shows CPU runtimes. Runtimes initially in-
crease with complexity, then decrease and stabilize. This pattern is due
to sparsity induced by lasso regularization. As dimensionality grows,
many coefficients are shrunk to zero, reducing the set of predictors that
enter the second local lasso step, thereby lowering computation. Overall,
the default setting produces the lowest runtimes, while double produces
the longest runtimes due to the cost of fitting larger terminal nodes. Au-
toencoder increases runtimes further because each split considers all p
variables. Interestingly, the autoencoder + double setting is often faster
than autoencoder alone. The likely explanation is that the larger nodes
in the double configuration reduce the number of candidate rules avail-
able for random selection, which partially offsets the added cost of au-
toencoder splitting.

In summary, if runtimes are not an issue we recommend autoencoder
or even using autoencoder + double. For large-scale applications, the de-
fault setting is a sensible and practical starting point. If accuracy under
the default is inadequate, performance could be improved by increasing
ytry towards autoencoder if computations allow.

6.3. Computation and memory costs

The stabilization of runtimes observed in Fig. 7 raises a natural ques-
tion about dimension scalability. In those plots the horizontal axis is
expressed as p/n, so both p and n vary. This mixing of sample size and
dimensionality effects makes it difficult to isolate the dependence of
runtime on p.

To disentangle these factors, we conducted additional large-p exper-
iments using Cobra8 and Friedmanl with sample size fixed at n = 100
and feature dimension ranging from p = 100 to 10,000 (Supplementary
Figure SF1). A full derivation of runtime and memory requirements is
provided in the Supplementary Materials; here we summarize the main
results. Under the most aggressive autoencoder mode with ytry = p, CPU
time increases linearly in p, dominated by the O(ntree - nlogn - p) cost of

L. Zhou et al.

Performance vs Complexity

Pattern Recognition 172 (2026) 112727

Cobra8 Friedman1
1.00
0.75
14
o
& 0.50
-]
<
0.25
0.00
0.0 0.5 1.0 1.5 2.0 25 00 0.5 1.0 1.5 2.0 25
Complexity (p/n)
CPU vs Complexity
Cobra8 Friedman1
50
40 /_/
< 30
-]
o
O 20
10 %&
0.0 0.5 1.0 1.5 2.0 25 00 0.5 1.0 1.5 2.0 25
Complexity (p/n)

— default — autoencoder — double — autoencoder + double

Fig. 7. Performance and CPU runtimes as a function of complexity (p/n) for Cobra8 (left) and Friedmanl (right) simulations. Top row: AUC-PR decreases with
increasing complexity, with autoencoder + double yielding the strongest performance and autoencoder a close second on Friedman1. Bottom row: CPU runtimes rise

with complexity and then decline due to lasso-induced sparsity.

forest construction. Local tasks remain bounded so long as n/nodesize <
C, for some fixed constant, as is the case here.

Memory requirements are modest. Data storage is O(np), while for-
est storage is O(ntree - n/nodesize), which remains constant in ntree if
n/nodesize < C. The importance matrix requires O(K p) in sparse form,
with at most K nonzeros per column (K < p). Peak memory during the
local lasso steps is determined primarily by the size of the working set
rather than by p itself.

6.4. Performance in correlated feature spaces

As noted in Section 3, when variables have overlapping roles the
signal set is not unique, so recovery should be understood at the group
rather than the individual level. To explore this empirically, we revis-
ited the Friedmanl and Cobra8 simulations under a dense correlated
design using autoencoder +double mode. The sample size was fixed at
n = 1000, p was varied, and performance was measured by AUC-PR.

The experimental setup was the same as in the original benchmarks,
except that signal variables were replaced with correlated versions.
Specifically, the uniform signals were resampled from a Gaussian copula
with exchangeable correlation 0.9 and uniform margins. This created
strong dependence among the signals while preserving their marginal
distributions and their functional relationship with Y.

Results in Fig. 8 show that strong correlation among signals reduces
performance. AUC-PR is consistently lower than in the independent de-
sign. For Cobra8 the decline is smaller, and even with one or two hun-
dred variables the method remains reasonably accurate, likely because
the larger pool of signals increases the chance that some remain dis-
tinguishable. Thus, UVarPro can still identify informative variables in
correlated spaces, but reliable recovery requires a sufficiently large sig-
nal set.

6.5. Effect of the surrogate learner

Our default surrogate for the release-region classifier is logistic re-
gression with an 7, penalty (lasso). To examine sensitivity to this choice,

11

we compared three alternative learners: an elastic net (logistic regres-
sion with mixed #, /¢, penalty, a = 0.5), an unpenalized logistic regres-
sion (GLM), and a linear support vector machine (SVM) with regular-
ization parameter C = 1, which controls the trade-off between margin
width and misclassification error.

For each rule-release task, the pseudo-labels distinguishing a region
from its near-miss set were classified using the same collection of rules,
ensuring that differences reflect only the surrogate learner. Variable
scores from each task were aggregated to form global importance rank-
ings. We used the Friedman1 and Cobra8 simulations with » = 1000 and p
varying from 20 to 100; each experiment repeated for 100 independent
Monte Carlo replications.

Fig. 9 summarizes AUC-PR results versus p. Two consistent patterns
emerge. (1) Logistic lasso and elastic net achieve the highest AUC-PR
values across all dimensions, indicating that embedded regularization
stabilizes small-sample fits and suppresses noisy predictors. (2) The un-
penalized GLM is the weakest baseline, particularly as dimension in-
creases, while the linear SVM shows a clear degradation as p grows and
does not provide a systematic improvement over the penalized logis-
tic models. Because the release-region contrasts are locally simple and
often nearly linearly separable, explicit margin optimization offers lit-
tle benefit in this setting, and the absence of embedded sparsity in the
linear SVM becomes increasingly limiting with higher p.

Overall, logistic lasso provides the best trade-off between accuracy,
stability, and computational efficiency.

6.6. Performance across data modalities

We next assess how reliably UVarPro recovers informative variables
across different data modalities, using supervised methods as gold-
standard references. FSCA is included as a benchmark, and UVarPro
is run in autoencoder+double mode. The datasets considered are:
(i) Glioma, a genomic classification problem for predicting disease
subtypes; (ii) Iowa Housing, a regression task predicting sale prices
from demographic and structural characteristics; and (iii) PeakVO2,

L. Zhou et al.

Cobra8
075 X
4
N
o
-l
< 050 \
0.25

100 200 300 400

50

Pattern Recognition 172 (2026) 112727

Friedman1

g

0 100 200 300 400 5

o

0

Dimension (p)

= QOriginal = Correlated

Fig. 8. Performance under correlated signal settings. Results for Cobra8 (left) and Friedman1 (right) show that AUC-PR decreases with increasing p, with consistently
lower values when the signal variables are correlated. The gap is smaller for Cobra8 due to its larger number of signal features.

Cobra8

10 \

0.8
o
&
Sos
4

0.4

20 40 60 80

100

Friedman1

//

20 40 60 80 1

o

0

Dimension (p)

M |asso ™ elastic net m GLM = SVM

Fig. 9. AUC-PR of variable selection versus dimension p for four surrogate learners (logistic lasso, elastic net, GLM, and linear SVM), averaged over 100 replications.

Panels: Cobra8 (left) and Friedmanl (right).

a survival dataset described in Section 6.1. Further dataset details are
provided in [2].

To avoid bias from any single importance metric, we em-
ploy three supervised reference standards: VarPro; Gradient Boost-
ing, which ranks variables by cumulative loss reductions across
tree splits; and permutation-based importance (VIMP) from random
forests.

Fig. 10 summarizes AUC-PR over 100 runs per dataset using 75%
subsampling. The results from this analysis show that across all datasets
and reference standards, UVarPro consistently outperforms FSCA. Per-
formance varies with data complexity, with the lowest AUC-PR observed
for the Glioma dataset, an expected result given its high dimensionality
and multi-class structure, both of which present intrinsic challenges for
unsupervised feature selection.

L. Zhou et al.

Gradient Boosting

VarPro

Pattern Recognition 172 (2026) 112727

VIMP

1.00 4

0.75

0.50 -

0.25

ewol|o

0.00 1

1.004

0.751

0.50 1

AUC-PR

0.25 4

0.00 A

BuisnoH emo|

1.00 4

0.75+

0.50 1

0.25

0.00 1

| e
=

CONead

FSCA UVarPro FSCA

UVarPro FSCA UVarPro

Fig. 10. Comparison of feature selection precision between UVarPro and FSCA across three datasets: Glioma (classification), Iowa Housing (regression), and PeakVO2
(time-to-event). The boxplots display the precision values achieved relative to the three supervised gold standard methods: VarPro, Gradient Boosting, and VIMP.

Table 2

Summary of high-dimensional datasets used in the benchmark analysis.
Dataset Instances (n) Features (p) Clusters (/) Type
LUNG 203 3312 5 Biological
TOX_171 171 5748 4 Biological
GLIOMA 50 4434 4 Biological
ALLAML 72 7129 2 Biological
COIL20 1440 1024 20 Face Image
USPS 9298 256 10 Handwritten Image

6.7. Clustering performance in high-dimensional settings

To evaluate performance in high-dimensional contexts, we use six
well-known datasets from biology and image analysis: LUNG, TOX_171,
GLIOMA, ALLAML, COIL20, and USPS. All are drawn from the ASU Fea-
ture Selection Repository and provide a diverse testbed for unsupervised
feature selection under challenging conditions. Summary statistics and
dataset characteristics are given in Table 2.

6.7.1. Evaluation framework via clustering

Because ground truth labels are available for these datasets, we as-
sess feature selection quality by testing how well the selected features
recover the underlying cluster structure, without using labels during se-
lection. Clustering performance is evaluated in two steps. First, we com-
pare UVarPro and UVarPro-lasso with established unsupervised meth-
ods (MCFS, UDFS, LapScore, SPEC, FSCA, and MIC). Second, we test
robustness by varying both the clustering backend and the evaluation
metric, fixing UVarPro-lasso as the feature selection procedure.

Backends for Comparison Across Procedures

(i) K-means. We set the number of clusters to the true value / and run
K-means, reporting the average NMI over 20 random initializations.
(ii) sidClustering. We also use sidClustering [35], evaluated with nor-
malized entropy scores that penalize small, fragmented clusters

13

while rewarding both purity and size. Lower values indicate bet-
ter clustering performance.

Backends for Robustness Across Clustering Pipelines

(iii) Spectral clustering. We build a k-nearest neighbor graph with Gaus-
sian affinities w;; = exp(— |lx; — x;||*/(c;5,)) using self-tuning lo-
cal scales, form the symmetric normalized Laplacian, embed into
the first / eigenvectors with smallest eigenvalues, row normalize,
and run K-means in the spectral space (20 restarts). We sweep
k € {5,10,15} and report the median result.

Gaussian mixture model (GMM). We fit an /-component mixture by
EM, initialized with K-means. Both diagonal and full covariance
families are considered with a small ridge for stability, and the bet-
ter model is selected by BIC. For these backends we also report
ARI and Silhouette scores (the latter computed in the scaled fea-
ture space with Euclidean distance).

(@iv)

Protocol

For the comparison benchmarking, we evaluate clustering on
reduced feature sets obtained from each procedure where num-
ber of selected features m was varied as m € {20,40,60,80, 100,
120, 140, 160, 180,200}. Each competing procedure is tuned over its in-
ternal parameters, including UVarPro, and we report its best perfor-
mance. For the across-backend robustness study we fix the procedure
to UVarPro-lasso, where for computational speed we set tuning param-
eters to default values. Results for the comparison study are provided
in Figs. 11 and 12. Results from the cross-backend study are provided
in Table ST1 of the Supplementary Materials.

6.7.2. Findings

Comparison Across Procedures. NMI performance reported in Fig. 11
show that over LUNG and TOX_ 171, UVarPro and UVarPro-lasso dom-
inate competing methods across all values of m. On GLIOMA and AL-
LAML, UVarPro-lasso attains the highest overall performance, with
UVarPro close behind and ahead of most baselines. On COIL20, where
n and p are comparable, FSCA is competitive while UVarPro-lasso re-
mains among the top methods. On USPS, where n > p, the unpenalized
UVarPro outperforms UVarPro-lasso. Normalized entropy scores from

L. Zhou et al.

LUNG

0.5

0.4

0.3

GLIOMA

0.5

0.4

0.3

COIL20

Normalized Mutual Information

0.7
0.6
0.5
0.4
0.3

20 40 60 80 100 120 140 160 180 200

Pattern Recognition 172 (2026) 112727

TOX_171

ALLAML
0.20
0.15
0.10
0.05
0.00
USPS
0.6
0.5
0.4
0.3
0.2

20 40 60 80 100 120 140 160 180 200

Number of Selected Features

= UVarPro-lasso = MCFS = LapScore = FSCA
= UVarPro = UDFS = SPEC = MIC

Fig. 11. Clustering performance based on K-means measured by Normalized Mutual Information (NMI) across six high dimensional datasets. Higher NMI indicates

better agreement.

LUNG

e
3

<
o

<
3

COIL20

Normalized Entropy Measure

20 40 60 80 100 120 140 160 180 200

TOX_171
1.0
0.9 ‘
‘v\ Q
0 NSRRI
ALLAML
0.90
0.85
0.80
0.75

20 40 60 80 100 120 140 160 180 200

Number of Selected Features

= UVarPro-lasso = MCFS = LapScore = FSCA
= UVarPro = UDFS = SPEC = MIC

Fig. 12. Clustering performance based on sidClustering with normalized entropy scores. Lower values correspond to better clustering.

sidClustering reported in Fig. 12 are consistent with the NMI based re-
sults (note that the USPS dataset is omitted due to computational costs).

Robustness Across Clustering Backends and Metrics. Using UVarPro-
lasso and varying the clustering backend and metric, three patterns are
observed: (i) on TOX 171 and ALLAML, NMI and ARI remain low for

14

K-means and spectral; GMM improves these metrics but they remain
modest, and spectral Silhouette is near or below zero on TOX_171 and
near zero on ALLAML, indicating weak separation; (ii) on LUNG and
GLIOMA, K-means and GMM exhibit similar performance with higher
NMI and ARI than spectral and small positive Silhouette, while spectral

L. Zhou et al.

A K-means with Top 10 Selected Features
10 Accuracy: 0.788
N
5 5 e
S °) o
2 ° oo‘? @ .0
E' 0t op 0 20
a . o ° Koo
o O &
-10 0 10
Dimension 1
¢ K-means with Top 50 Selected Features
10 Accuracy: 0.828
N
5 o oo
2 ° °
2 %9 o
E’ % o’ ,° 8 g
a 5 ° o o4 0°°
° &
-10 0 10
Dimension 1
E K-means with Top 200 Selected Features
10 Accuracy: 0.700
~ e]
.& °o @) ‘oo g
5§° .; o o
7} & Q
5 A ° 0
£ 1 Vg @ o
8 ° o o % &0
5 [}) s
-10 0 10
Dimension 1

Pattern Recognition 172 (2026) 112727

B K-means with Top 20 Selected Features
10 Accuracy: 0.778
N
s s ° @0 %oq
S o o o
g ° e °°g? ° <
£ Y% o9 9
0 ® © %o 3 ° goo
o
-10 0 10
Dimension 1
D K-means with Top 100 Selected Features
10 Accuracy: 0.635
[)
P o® .% © @R Teo @
Ke] o 0 (])
g 00 o 90°2 0% o o
Q
E % op a2
8 ° o oo £ N - L
0®
°
-10 0 10
Dimension 1
F K-means with All Features
10 oBeBo Accuracy: 0.537
N
5 5 oo O
2 e .’ o
g " S o .o e ® °
£ M ° o (<}
8 ."" o o 80 © o0 ?.&...go.o
o ®
o
-10 0 10
Dimension 1

Fig. 13. K-means clustering results across different numbers of selected features by UVarPro. Points highlighted in black identify misclassified cases.

is lower on all three metrics; (iii) on COIL20 and USPS, NMI generally
increases with the number of retained features for K-means and GMM.
Silhouette is near or below zero for K-means and spectral, consistent
with non spherical clusters; GMM yields positive Silhouette at smaller
m (for example, USPS 0.511 at Top 10) with diminishing returns as m
grows.

Overall Assessment. The across backend results confirm the compar-
ison analysis: the same trends and relative performance observed with
K-means (NMI) reappear with spectral and GMM and also when evalu-
ating sidClustering by NMI. Where metrics are low (for example, NMI
ceilings and near zero or negative Silhouette), the cause is intrinsic data
geometry (weak between cluster separation, overlap among classes, and
non spherical structure) and, as m increases, added marginal or redun-
dant features inflate within cluster dispersion and blur boundaries.

6.8. Biological validation: Lung cancer case study

To evaluate performance on real-world, high-dimensional data, we
apply our unsupervised feature selection method to gene expression pro-
files from a widely cited lung cancer study [36]. The goal is to determine
whether the method recovers biologically meaningful genes that distin-
guish known lung cancer subtypes. We assess this in two ways: (i) by
measuring the proportion of selected genes previously reported in the
biomedical literature as subtype indicators, and (ii) by examining how
well the selected genes, used without outcome labels, organize samples
into distinct groups. The latter is quantified by subtype separation and
by K-means clustering accuracy, compared with results obtained using
all genes or principal components.

The dataset contains mRNA expression measurements from 203 lung
tissue samples, comprising 186 tumors and 17 normal controls. Tumors
span four major subtypes: 139 adenocarcinomas, 21 squamous cell car-
cinomas, 20 pulmonary carcinoids, and 6 small cell lung carcinomas
(SCLQC). Following the preprocessing of the original study, a standard
deviation filter reduces the initial 12,600 probe sets to the 3,312 most
variable genes.

15

6.8.1. Selected features

Table ST2 (Supplementary Materials) lists the top 20 features se-
lected by the proposed method. Twelve of these genes have been pre-
viously reported in the biomedical literature as relevant to lung cancer,
including transforming growth factor beta receptor 3, four and a half
LIM domains 1, glypican 3, tetranectin, keratin 5, IQ motif-containing
GTPase-activating protein 1, AHNAK nucleoprotein, metallothionein
1A, clone 24,651 mRNA, small inducible cytokine A5, glutathione per-
oxidase 3, and keratin 6 isoform K6E mRNA. Notably, the top five fea-
tures identified here match those from the original supervised analysis
of this dataset [36].

6.8.2. Visualization of clustering results

To evaluate the impact of our unsupervised feature selection method
on clustering performance, we visualize the structure of the high-
dimensional lung cancer dataset under dimensionality reduction strate-
gies. Given the multi-class complexity of this dataset, visualization offers
intuitive insights into the quality of the resulting clusters.

6.8.3. Visualization of clustering results

We next examine how unsupervised feature selection affects clus-
tering by visualizing the lung cancer dataset after dimensionality reduc-
tion. Because this dataset contains multiple subtypes, visualization helps
convey how well groups are separated. To do so, we use t-distributed
Stochastic Neighbor Embedding (t-SNE) [37] to project the data into two
dimensions, which highlights local neighborhood structure and is widely
used for biological data. Fig. SF2 (Supplementary Materials) shows the
t-SNE map with true subtype labels for reference.

To evaluate clustering, we apply K-means to features selected by our
method and display the results in Fig. 13 for different numbers of se-
lected variables. For comparison, Fig. 14 shows K-means applied to prin-
cipal components from PCA. In each plot, cluster colors are overlaid on
the baseline t-SNE map, accuracies are reported in the panel titles, and
misclassified cases are marked in black.

UVarPro achieves its best accuracy (0.828) with the top 50 features,
and consistently outperforms the baseline of using all features. Even

L. Zhou et al.

A K-means with Top 10 Principal Components
10 OM Accuracy: 0.611
N
S 5
2 ¥ aBs,
o o
£ o O Q ®
[p ‘.k. q>@ooo 3& 9'00
-10 10
Dlmensmn 1
€ K-means with Top 50 Principal Components
10 OM Accuracy: 0.606
N
S 5
g (o) : ’ o
£ o oO o ®
a . o k. Q)@ O (? & ,. (e}
-10 0 10
Dimension 1
E K-means with Top 200 Principal Components
10 OM Accuracy: 0.616
N
s 5
89 o
2 8 2pe o° °a &‘O
8 @@ ° o °o ‘s 200
-10 10
Dlmensmn 1
Fig. 14.

with only 10 features, the method separates several subtypes, including
normal lung, squamous cell carcinomas, and pulmonary carcinoids. In
comparison, clustering with all genes or with PCA components fails to
clearly distinguish these groups. Accuracy declines for larger sets (e.g.,
50 or 200 genes), as weaker or redundant variables dilute the signal
and increase K-means sensitivity to initialization. A practical rule is to
choose the smallest feature set within 1% of the best score. For this
dataset, that cutoff favors about 20 genes.

7. Discussion
7.1. Summary of contributions

This work introduces a framework for unsupervised variable selec-
tion that reformulates the problem as a sequence of proxy classification
tasks defined by tree-based rules. Each task is constructed by contrast-
ing membership in a tree region with its released counterpart, producing
synthetic two-class labels. Although not tied to an outcome, these labels
capture structural properties of the joint feature distribution and allow
supervised tools, such as lasso logistic regression, to be used for quanti-
fying variable influence.

A second contribution is the use of multivariate unsupervised trees
in an autoencoder-style forest, where the same feature matrix serves as
both input and pseudo-response. This design yields high-quality parti-
tions, and the resulting rules define localized problems that reveal how
individual features preserve or alter dependency structure. Aggregat-
ing selection patterns across many such rules produces a stable, inter-
pretable importance matrix that reflects both marginal and conditional
relevance.

The theoretical basis for the approach is a factorization of the joint
feature density, which guarantees that contrasts between regions and
their released versions correspond to meaningful dependencies. This en-
sures recovery of signal variables without observing a response. The
framework also accommodates non-uniqueness in the signal set, includ-
ing settings with redundancy or interchangeable features.

16

Pattern Recognition 172 (2026) 112727

B K-means with Top 20 Principal Components
10 OM Accuracy: 0.621
N
5 °
(%2} “
é F I o*. O ° e c‘.
a 5 a o Oo 3 ,. o]
-10 10
D|men5|on 1
D K-means with Top 100 Principal Components
10 0%) Accuracy: 0.616
N
S 5
2 ‘!
g an .k° o. ° . &. L
a %9 ° o ‘s %0
-10 0 10
Dimension 1
F K-means with All Features
10 oBBo Accuracy: 0.537
N
5 5 ° oo O
o o
g “ oo e ‘.’ ° o
E Y o 00 ° © o
8 ."" o o 80 © o0 ?.&...go.o
o ®
o
-10 0 10
Dimension 1

K-means clustering results across different numbers of selected features by PCA. Points highlighted in black identify misclassified cases.

7.2. Relation to existing methods

Most existing unsupervised feature selection methods rely on cluster-
ing or manifold preservation, evaluating variables by their contribution
to partition recovery. UVarPro departs from this paradigm by targeting
conditional dependence. The central question is whether a variable im-
proves reconstruction of local structure, even in settings where clusters
overlap or are absent. This distinction yields several advantages relative
to clustering-based approaches: (i) it provides directional attribution,
since the importance matrix records, for each excluded coordinate s,
the variables that best account for its local structure; (ii) it enables the
use of supervised tools well-suited to high-dimensional data; and (iii)
it remains lightweight and parallelizable, supporting efficient computa-
tion in practice.

7.3. Empirical performance

Empirical results confirm the method’s effectiveness across a broad
range of synthetic simulations, including latent variable models, redun-
dant causal structures, and cluster-based designs with correlated noise.
Across these settings, the method generally outperforms alternatives
based on greedy search, mutual information, graph sparsification, or
sparse projections. Additional benchmarking on real high-dimensional
datasets supports its strong performance, particularly in low-sample,
high-feature settings. Evaluation against supervised gold standards fur-
ther reinforces these findings. Across classification, regression, and
survival contexts, the method identifies more relevant features than
strong baselines. In a lung cancer case study, it successfully recovers
known subtype indicators and improves clustering quality over standard
models.

7.4. Limitations and scalability

Despite its advantages, the current approach faces practical chal-
lenges in high-dimensional settings. The autoencoder-style forest is com-
putationally expensive, since the full feature matrix is used on both

L. Zhou et al.

sides of the split, making multivariate partitioning costly as p increases.
One potential direction is to replace full-response splitting with a ytry-
like mechanism that samples candidate response variables, potentially
guided by adaptive weights that are iteratively updated during training.
Another bottleneck is the repeated fitting of lasso models across rules
and coordinates. However, these proxy problems are fully independent
and thus highly parallelizable. Future work could explore GPU accelera-
tion, multi-threaded solvers, or warm-start strategies to further improve
scalability.

7.5. Future extensions

The method produces a full p x p matrix of pairwise selection scores,
yet current implementations use only column-wise summaries to rank
variables. The unused structure in the matrix may carry valuable in-
formation about higher-order dependencies, which could support struc-
tured variable selection or unsupervised interaction discovery.

The framework is also adaptable to more complex data types. For
time series, rules could be grown on lag-augmented feature vectors, with
releases defined by relaxing the present-time coordinate while incorpo-
rating safeguards against temporal leakage. For multimodal data, con-
tributions could be aggregated at the modality level, with penalties that
respect block structure. For hierarchical or temporal settings, theoreti-
cal results such as Theorem 2 would need to be extended to account for
more intricate conditional independence relationships, including lagged
or nested dependencies. These extensions will require additional design
choices and validation, and are left for future work.

CRediT authorship contribution statement

Lili Zhou: Writing - original draft, Visualization, Validation,
Methodology, Formal analysis, Data curation, Conceptualization; Min
Lu: Supervision, Methodology, Conceptualization; Hemant Ishwaran:
Writing — review & editing, Writing — original draft, Supervision, Soft-
ware, Project administration, Methodology, Funding acquisition, Con-
ceptualization.

Data and Code Availability

The code used in this study is publicly available as the R package
varPro, hosted at https://github.com/kogalur/varPro. All datasets used
in the analysis are publicly accessible. The synthetic experiments are
described in sufficient detail to allow full reproducibility.

Data Availability

All data is publicly available. Synthetic experiments are repro-
ducible.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.
Acknowledgements

Research for the authors was supported by the National Institute Of
General Medical Sciences of the National Institutes of Health, Award
Number R35 GM139659 and the National Heart, Lung, and Blood Insti-
tute of the National Institutes of Health, Award Number RO1 HL.164405.

Supplementary material

Supplementary material associated with this article can be found in
the online version at 10.1016/j.patcog.2025.112727.

17

Pattern Recognition 172 (2026) 112727

References
[1] D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of the

Thirteenth International Conference on Machine Learning, Morgan Kaufmann, 1996,

pp. 284-292.

M. Lu, H. Ishwaran, Model-independent variable selection via the rule-based vari-

able priority, (2024). arXiv:2409.09003

H. Ishwaran, Multivariate Statistics: Classical Foundations and Modern Machine

Learning, Chapman and Hall/CRC, Boca Raton, FL, 1st ed., 2025.

X. Zuo, W. Zhang, X. Wang, L. Dang, B. Qiao, Y. Wang, Unsupervised feature selec-

tion via maximum relevance and minimum global redundancy, Pattern Recognit.

164 (2025) 111483.

D. Li, H. Chen, Y. Mi, C. Luo, S.-J. Horng, T. Li, Dual space-based fuzzy graphs and

orthogonal basis clustering for unsupervised feature selection, Pattern Recognit.

155 (2024) 110683.

C. Wang, J. Wang, Z. Gu, J.-M. Wei, J. Liu, Unsupervised feature selection by learn-

ing exponential weights, Pattern Recognit. 148 (2024) 110183. https://doi.org/10.

1016/j.patcog.2023.110183

P. Huang, Z. Kong, M. Xie, X. Yang, Robust unsupervised feature selection via data

relationship learning, Pattern Recognit. 142 (2023) 109676.

Z. Wang, Q. Li, H. Zhao, F. Nie, Simultaneous local clustering and unsuper-

vised feature selection via strong space constraint, Pattern Recognit. 142 (2023)

109718.

C. Liang, L. Wang, Y. Yang, Y. Wang, Multi-view unsupervised feature selection with

tensor robust principal component analysis and consensus graph learning, Pattern

Recognit. 141 (2023) 109632. https://doi.org/10.1016/j.patcog.2023.109632

L. Puggini, S. McLoone, Forward selection component analysis: algorithms and ap-

plications, IEEE Trans. Pattern Anal. Mach. Intell. 39 (12) (2017) 2395-2408.

F. Zocco, M. Maggipinto, G.A. Susto, S. McLoone, Lazy FSCA for unsupervised vari-

able selection, Eng. Appl. Artif. Intell. 124 (2023) 106624.

M. Minoux, Accelerated greedy algorithms for maximizing submodular set func-

tions, in: Optimization Techniques: Proceedings of the 8th IFIP Conference on Op-

timization Techniques Wiirzburg, Springer, 1978, pp. 234-243.

F. Zocco, S. McLoone, Mean squared error vs. frame potential for unsupervised vari-

able selection, in: International Conference on Intelligent Computing for Sustainable

Energy and Environment, Springer, 2017, pp. 353-362.

X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in

Neural Information Processing Systems, 2005, pp. 507-514.

Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning,

in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp.

1151-1157.

D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, Pro-

ceedings of the 16th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining (2010) 333-342.

Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L2,1-norm regularized discriminative

feature selection for unsupervised learning, IJCAI 11 (2011) 1589-1594.

Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using non-

negative spectral analysis, in: Proceedings of the AAAI Conference on Artificial

Intelligence, 26, 2012, pp. 1026-1032.

J.-S. Wu, J.-T. Yu, J.-Y. Wu, W. Min, W.-S. Zheng, High-order aligned deep com-

plementary and view-Specific similarity graphs for unsupervised multi-View feature

selection, Pattern Recognit. 171 (2026) 112047. https://doi.org/10.1016/j.patcog.

2025.112047

P. Bithlmann, M. Kalisch, M.H. Maathuis, Variable selection in high-dimensional lin-

ear models: partially faithful distributions and the PC-simple algorithm, Biometrika

97 (2) (2010) 261-278.

D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh,

E.S. Lander, M. Mitzenmacher, P.C. Sabeti, Detecting novel associations in large

data sets, Science 334 (6062) (2011) 1518-1524.

R. Heller, Y. Heller, S. Kaufman, B. Brill, M. Gorfine, Consistent distribution-free

K-sample and independence tests for univariate random variables, J. Mach. Learn.

Res. 17 (29) (2016) 1-54.

J.-S. Wu, M.-X. Song, W. Min, J.-H. Lai, W.-S. Zheng, Joint adaptive manifold

and embedding learning for unsupervised feature selection, Pattern Recognit. 112

(2021) 107742. https://doi.org/10.1016/j.patcog.2020.107742

Y. Zhang, Q. Wang, D.-w. Gong, X.-f. Song, Nonnegative Laplacian embedding

guided subspace learning for unsupervised feature selection, Pattern Recognit. 93

(2019) 337-352. https://doi.org/10.1016/j.patcog.2019.04.020

P. Zhu, W. Zhu, Q. Hu, C. Zhang, W. Zuo, Subspace clustering guided unsupervised

feature selection, Pattern Recognit. 66 (2017) 364-374. https://doi.org/10.1016/

j-patcog.2017.01.016

A.K. Shakya, A. Ramola, Exploration of pixel based and object based change detec-

tion techniques by analyzing ALOS PALSAR and LANDSAT data, in: Smart and Sus-

tainable Intelligent Systems, Wiley, 2021, pp. 229-244. https://doi.org/10.1002/

9781119752134.ch17

AK. Shakya, A. Ramola, A. Kandwal, R. Prakash, Comparison of supervised

classification techniques with ALOS PALSAR sensor for Roorkee region of Ut-

tarakhand, India, International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences XLII-5 (2018) 693-701. https://doi.org/10.5194/

isprs-archives-XLII-5-693-2018

AK. Shakya, A. Ramola, A. Vidyarthi, Modeling of texture quantification and

image classification for change prediction due to COVID lockdown using SkySat

and PlanetScope imagery, Model. Earth Syst. Environ. 8 (2) (2022) 2767-2792.

https://doi.org/10.1007/s40808-021-01258-6

AK. Shakya, A. Ramola, S. Singh, A. Vidyarthi, Optimum supervised clas-

sification algorithm identification by investigating PlanetScope and SkySat

[2]
[3]

[4]

[5]

(6]

71

(8]

[91]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

https://github.com/kogalur/varPro
https://doi.org/10.13039/100000002
https://doi.org/10.13039/100000002
http://dx.doi.org/10.1016/j.patcog.2025.112727
http://arxiv.org/abs/2409.09003
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0002
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0002
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0003
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0003
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0003
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0004
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0004
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0004
https://doi.org/10.1016/j.patcog.2023.110183
https://doi.org/10.1016/j.patcog.2023.110183
https://doi.org/10.1016/j.patcog.2023.110183
https://doi.org/10.1016/j.patcog.2023.110183
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0006
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0006
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0007
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0007
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0007
https://doi.org/10.1016/j.patcog.2023.109632
https://doi.org/10.1016/j.patcog.2023.109632
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0009
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0009
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0010
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0010
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0011
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0011
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0011
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0013
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0013
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0014
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0014
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0014
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0015
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0015
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0015
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0016
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0016
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0017
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0017
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0017
https://doi.org/10.1016/j.patcog.2025.112047
https://doi.org/10.1016/j.patcog.2025.112047
https://doi.org/10.1016/j.patcog.2025.112047
https://doi.org/10.1016/j.patcog.2025.112047
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0019
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0019
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0019
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0020
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0020
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0020
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0021
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0021
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0021
https://doi.org/10.1016/j.patcog.2020.107742
https://doi.org/10.1016/j.patcog.2020.107742
https://doi.org/10.1016/j.patcog.2019.04.020
https://doi.org/10.1016/j.patcog.2019.04.020
https://doi.org/10.1016/j.patcog.2017.01.016
https://doi.org/10.1016/j.patcog.2017.01.016
https://doi.org/10.1016/j.patcog.2017.01.016
https://doi.org/10.1016/j.patcog.2017.01.016
https://doi.org/10.1002/9781119752134.ch17
https://doi.org/10.1002/9781119752134.ch17
https://doi.org/10.1002/9781119752134.ch17
https://doi.org/10.1002/9781119752134.ch17
https://doi.org/10.5194/isprs-archives-XLII-5-693-2018
https://doi.org/10.5194/isprs-archives-XLII-5-693-2018
https://doi.org/10.5194/isprs-archives-XLII-5-693-2018
https://doi.org/10.5194/isprs-archives-XLII-5-693-2018
https://doi.org/10.1007/s40808-021-01258-6
https://doi.org/10.1007/s40808-021-01258-6

L. Zhou et al.

[30]
[31]

[32]

[33]

multispectral satellite data of Covid lockdown, Geosyst. Geoenviron. 2 (2) (2023)
100163. https://doi.org/10.1016/j.geogeo.2022.100163

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.

H. Ishwaran, M. Lu, Standard errors and confidence intervals for variable impor-
tance in random forest regression, classification, and survival, Stat. Med. 38 (4)
(2019) 558-582.

F. Tang, H. Ishwaran, Random forest missing data algorithms, Stat. Anal. Data Min.
10 (6) (2017) 363-377.

P. Bithlmann, M. Kalisch, M.H. Maathuis, Variable selection in high-dimensional
additive models: the PC-simple algorithm, J. R. Stat. Soc. Ser. B 72 (3) (2010)
349-372.

18

[34]
[35]

[36]

[37]

Pattern Recognition 172 (2026) 112727

J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learni Res. 7 (2006) 1-30.

A. Mantero, H. Ishwaran, Unsupervised random forests, Stat. Anal. Data Min. ASA
Data Sci. J. 14 (2) (2021) 144-167.

A. Bhattacharjee, W.G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J.
Beheshti, R. Bueno, M. Gillette, et al., Classification of human lung carcinomas by
mRNA expression profiling reveals distinct adenocarcinoma subclasses, Proc. Natl.
Acad. Sci. 98 (24) (2001) 13790-13795.

G.E. Hinton, S. Roweis, Stochastic neighbor embedding, Adv. Neural Inf. Process.
Syst. 15 (2002).

https://doi.org/10.1016/j.geogeo.2022.100163
https://doi.org/10.1016/j.geogeo.2022.100163
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0029
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0030
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0030
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0030
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0031
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0031
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0032
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0032
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0032
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0033
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0033
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0034
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0034
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0036
http://refhub.elsevier.com/S0031-3203(25)01390-1/sbref0036

	Variable priority for unsupervised variable selection
	1 Introduction
	1.1 Outline

	2 Related work
	2.1 Variance and redundancy based methods
	2.2 Clustering and manifold preserving methods
	2.3 Dependence and causal approaches
	2.4 Reconstruction and joint learning frameworks
	2.5 Unsupervised learning paradigms
	2.6 Summary and positioning of UVarPro

	3 Notation and definition of the signal feature set
	3.1 Non-uniqueness and structure of the signal set
	3.1.1 Interchangeability
	3.1.2 Redundancy

	3.2 Examples of non-uniqueness and restructuring the signal set

	4 Methodology
	4.1 Background on VarPro
	4.2 Extension to unsupervised data
	4.3 Justification for noisy features
	4.4 Justification for signal features
	4.5 UVarPro procedure and algorithm
	4.5.1 Importance matrix construction
	4.5.2 Refinement: Matrix shrinkage

	5 Synthetic experiments
	5.1 Monte carlo replications and performance evaluation
	5.2 Comparison procedures
	5.3 Empirical results

	6 Real-World data experiments
	6.1 Tuning parameters
	6.1.1 PeakVO2 data
	6.1.2 Tuning parameter results

	6.2 Performance versus CPU runtimes
	6.2.1 A note about independence
	6.2.2 CPU and performance results

	6.3 Computation and memory costs
	6.4 Performance in correlated feature spaces
	6.5 Effect of the surrogate learner
	6.6 Performance across data modalities
	6.7 Clustering performance in high-dimensional settings
	6.7.1 Evaluation framework via clustering
	6.7.2 Findings

	6.8 Biological validation: Lung cancer case study
	6.8.1 Selected features
	6.8.2 Visualization of clustering results
	6.8.3 Visualization of clustering results

	7 Discussion
	7.1 Summary of contributions
	7.2 Relation to existing methods
	7.3 Empirical performance
	7.4 Limitations and scalability
	7.5 Future extensions

