
Received: 28 July 2016 Revised: 25 April 2017 Accepted: 8 May 2017 Published on: 13 June 2017

DOI: 10.1002/sam.11348

O R I G I N A L A R T I C L E

Random forest missing data algorithms

Fei Tang Hemant Ishwaran

Division of Biostatistics, University of Miami

Coral Gables, Florida

Correspondence
Hemant Ishwaran, Division of Biostatistics,

University of Miami, 1320 S Dixie Hwy, Coral

Gables, FL 33146. Email:

hemant.ishwaran@gmail.com

Funding information
National Institutes of Health,

R01CA163739.

Random forest (RF) missing data algorithms are an attractive approach for imput-

ing missing data. They have the desirable properties of being able to handle mixed

types of missing data, they are adaptive to interactions and nonlinearity, and they

have the potential to scale to big data settings. Currently there are many different

RF imputation algorithms, but relatively little guidance about their efficacy. Using

a large, diverse collection of data sets, imputation performance of various RF algo-

rithms was assessed under different missing data mechanisms. Algorithms included

proximity imputation, on the fly imputation, and imputation utilizing multivariate

unsupervised and supervised splitting—the latter class representing a generalization

of a new promising imputation algorithm called missForest. Our findings reveal RF

imputation to be generally robust with performance improving with increasing cor-

relation. Performance was good under moderate to high missingness, and even (in

certain cases) when data was missing not at random.

KEYWORDS

correlation, imputation, machine learning, missingness, splitting (random, univari-

ate, multivariate, unsupervised)

1 INTRODUCTION

Missing data is a real-world problem often encountered in

scientific settings. Missing data are problematic as many sta-

tistical analyses require complete data. This forces researchers

who want to use a statistical analysis that requires complete

data to choose between imputing data or discarding missing

values. But to simply discard missing data is not a reasonable

practice, as valuable information may be lost and inferential

power compromised [7]. Thus, imputing missing data in such

settings is a more reasonable and practical way to proceed.

While many statistical methods have been developed

for imputing missing data, many of these perform poorly

in high dimensional and large-scale data settings; for

example, in genomic, proteomic, neuroimaging, and other

high-throughput problems. In particular, it is generally recom-

mended that all variables be included in multiple imputation

to make it proper in general and in order not to create bias in

the estimate of the correlations [18]. But this can lead to over-

parameterization when there are a large number of variables

and the sample size is moderate. Computational issues may

also arise. An example is the occurrence of non-convexity

due to missing data when maximizing the log-likelihood.

This creates problems for traditional optimization methods

such as the EM (expectation–maximization) algorithm [16].

Missing data methods are also often designed only for con-

tinuous data (eg, gene expression data [1]), and for methods

applicable to mixed data (ie, data having both nominal and

categorical variables), implementation can often break down

in challenging data settings [12]. Another concern is the

inability to deal with complex interactions and nonlinearity

of variables. Standard multiple imputation approaches do not

automatically incorporate interaction effects, which leads to

biased parameter estimates when interactions are present [6].

Although some techniques, such as fully conditional specifi-

cation of covariates can be tried to resolve this problem [2],

these techniques can be difficult and inefficient to implement

in settings where interactions are expected to be complicated.

For these reasons there has been much interest in using

machine learning methods for missing data imputation.

A promising approach can be based on Breiman’s ran-

dom forests [3] (abbreviated hereafter as RF). RF have the

desired characteristic that they: (1) handle mixed types of

missing data; (2) address interactions and nonlinearity; (3)

Stat Anal Data Min: The ASA Data Sci Journal, 2017;10:363–377 wileyonlinelibrary.com/sam © 2017 Wiley Periodicals, Inc. 363

364 TANG AND ISHWARAN

scale to high-dimensions while avoiding overfitting; and (4)

yield measures of variable importance useful for variable

selection. Currently there are several different RF miss-

ing data algorithms. This includes the original RF prox-

imity algorithm proposed by Breiman [4] implemented in

the randomForest R-package [13]. A different class

of algorithms are the “on-the-fly-imputation” (OTFI) algo-

rithms implemented in the randomSurvivalForest
R-package [11], which allow data to be imputed while simul-

taneously growing a survival tree. These algorithms have been

unified within the randomForestSRC R-package (abbre-

viated as RF-SRC) to include not only survival but also clas-

sification and regression among other settings [10]. A third

approach is missForest, a method recently introduced in [21].

Missforest takes a different approach by recasting the miss-

ing data problem as a prediction problem. Data are imputed

by regressing each variable in turn against all other variables

and then predicting missing data for the dependent variable

using the fitted forest. MissForest has been shown [26] to

outperform well-known methods such as k-nearest neigh-

bors (KNN) [22] and parametric MICE [25] (multivariate

imputation using chained equation).

Given that RF meets all the characteristics for handling

missing data, it seems desirable to use RF for imputing

data. However, practitioners have very little guidance about

which of these algorithms to use, as there have been no sys-

tematic studies looking at the comparative behavior of RF

missing data algorithms. Comparisons of RF imputation to

other procedures have been considered by [21,26], and there

have been studies looking at effectiveness of RF imputa-

tion when combined with other methods (for instance Shah

et al. [20] showed that parameter estimates were less biased

when using MICE with RF-based imputation), but no system-

atic study of performance between RF algorithms has been

attempted. To address this gap in the literature, we there-

fore sought to study various RF algorithms and systematically

document their performance using a large empirical study

involving 60 data sets. Performance was assessed by impu-

tation accuracy and computational speed. Different missing

data mechanisms (missing at random [MAR] and not miss-

ing at random [NMAR]) were used to assess robustness. In

addition to the RF missing data algorithms described above,

we also considered several new algorithms, including a multi-

variate version of missForest, referred to as mForest. Despite

the superior performance of missForest (a finding confirmed

in our experiments), the algorithm is computationally expen-

sive to implement in high-dimensions as a separate forest

must be calculated for each variable and the algorithm is

run until convergence is achieved. The mForest algorithm

helps to alleviate this problem by grouping variables and

using multivariate forests with each group used in turn as

the set of dependent variables. This replaces p regressions,

where p is the number of variables, with ≈ 1∕𝛼 regres-

sions, where 0 < 𝛼 < 1 is a user-specified group fraction

size. Computational savings were found to be substantial for

mForest without overly compromising accuracy even for rel-

atively large 𝛼. Other studied RF algorithms included a new

multivariate unsupervised algorithm and algorithms utilizing

random splitting.

All forests constructed in the manuscript followed the RF

methodology of [3]. Trees were grown using independently

sampled bootstrap data. For univariate regression, continuous

variables were split using squared-error splitting and categor-

ical variables by the Gini index [5]. More general splitting

rules, such as unsupervised and multivariate splitting, were

also employed, and are described later in the manuscript.

Random feature selection was used, with mtry variables

selected at random prior to splitting a tree node, and trees

grown as deeply as possible subject to the constraint of a

lower bound of nodesize unique data values within a ter-

minal node. RF missing data algorithms were implemented

using the randomForestSRC R-package [10], which has

been extended to include a new impute.rfsrc func-

tion optimized specifically for data imputation. The package

implements openMP parallel processing, which allows for

parallel processing on user desktops as well as large-scale

computing clusters; thus greatly reducing computational

times.

2 RF APPROACHES TO IMPUTATION

Three general strategies have been used for RF missing data

imputation:

1. Preimpute the data; grow the forest; update the original

missing values using proximity of the data. Iterate for

improved results.

2. Simultaneously impute data while growing the forest;

iterate for improved results.

3. Preimpute the data; grow a forest using in turn each vari-

able that has missing values; predict the missing values

using the grown forest. Iterate for improved results.

Proximity imputation [4] uses strategy A, OTFI [11] uses

strategy B, and missforest [21] uses strategy C. The way these

algorithms impute data is very different. Even the manner in

which they model outcome data (ie “Y” variables) is differ-

ent. Strategy C does not use outcome data at all and is solely a

technique for imputing features (X variables), while strategies

A and B utilize outcome information in their model build-

ing. Below we detail each of these strategies and describe

various algorithms which utilize these approaches. These

algorithms take advantage of new splitting rules, includ-

ing random splitting, unsupervised splitting, and multivariate

splitting [10].

2.1 Strawman imputation

We first begin by describing a “strawman imputation” which

will be used throughout as our baseline reference value. While

TANG AND ISHWARAN 365

this algorithm is rough, it is very rapid, and for this rea-

son it was also used to initialize some of our RF procedures.

Strawman imputation is defined as follows. Missing values

for continuous variables are imputed using the median of

non-missing values, and for missing categorical variables, the

most frequently occurring non-missing value is used (ties are

broken at random).

2.2 Proximity imputation: RFprx and RFprxR

Here we describe proximity imputation (strategy A). In this

procedure the data are first roughly imputed using strawman

imputation. A RF is fit using this imputed data. Using the

resulting forest, the n × n symmetric proximity matrix (n
equals the sample size) is determined where the (i, j) entry

records the inbag frequency that cases i and j share the same

terminal node. The proximity matrix is used to impute the

original missing values. For continuous variables, the proxim-

ity weighted average of non-missing data is used; for categor-

ical variables, the largest average proximity over non-missing

data is used. The updated data are used to grow a new RF, and

the procedure is iterated.

We use RFprx to refer to proximity imputation as described

above. However, when implementing RFprx we use a slightly

modified version that makes use of random splitting in

order to increase computational speed. In random splitting,

nsplit, a nonzero positive integer, is specified by the

user. A maximum of nspit-split points are chosen ran-

domly for each of the randomly selected mtry splitting

variables. This is in contrast to nonrandom (deterministic)

splitting typically used by RF, where all possible split points

for each of the potential mtry splitting variables are con-

sidered. The splitting rule is applied to the nsplit randomly

selected split points and the tree node is split on the vari-

able with random split point yielding the best value, as

measured by the splitting criterion. Random splitting evalu-

ates the splitting rule over a much smaller number of split

points and is therefore considerably faster than deterministic

splitting.

The limiting case of random splitting is pure random split-

ting. The tree node is split by selecting a variable and the

split-point completely at random—no splitting rule is applied;

that is, splitting is completely nonadaptive to the data. Pure

random splitting is generally the fastest type of random split-

ting. We also apply RFprx using pure random splitting; this

algorithm is denoted by RFprxR .

We implement iterated versions of RFprx and RFprxR . To dis-

tinguish between the different algorithms, we write RF
(k)
prx and

RF
(k)
prxR

when they are iterated k ≥ 1 times. Thus, RF
(5)
prx and

RF
(5)
prxR

indicate that the algorithms were iterated 5 times,

while RF
(1)
prx and RF

(1)
prxR

indicate that the algorithms were not

iterated. However, as this latter notation is somewhat cum-

bersome, for notational simplicity we will simply use RFprx to

denote RF
(1)
prx and RFprxR for RF

(1)
prxR

.

2.3 On-the-fly-imputation: RFotf and RFotfR

A disadvantage of the proximity approach is that OOB

(out-of-bag) estimates for prediction error are biased [4]. Fur-

ther, because prediction error is biased, so are other measures

based on it, such as variable importance. The method is also

awkward to implement on test data with missing values. The

OTFI method [11] (strategy B) was devised to address these

issues. Specific details of OTFI can be found in [10,11],

but for convenience we summarize the key aspects of OTFI

below:

1. Only non-missing data are used to calculate the

split-statistic for splitting a tree node.

2. When assigning left and right daughter node member-

ship if the variable used to split the node has missing

data, missing data for that variable are “imputed” by

drawing a random value from the inbag non-missing

data.

3. Following a node split, imputed data are reset to miss-

ing and the process is repeated until terminal nodes

are reached. Note that after terminal node assignment,

imputed data are reset back to missing, just as was done

for all nodes.

4. Missing data in terminal nodes are then imputed using

OOB non-missing terminal node data from all the trees.

For integer-valued variables, a maximal class rule is used

and a mean rule is used for continuous variables.

It should be emphasized that the purpose of the “imputed

data” in Step 2 is only to make it possible to assign cases to

daughter nodes—imputed data are not used to calculate the

split-statistic, and imputed data are only temporary and reset

to missing after node assignment. Thus, at the completion of

growing the forest, the resulting forest contains missing val-

ues in its terminal nodes and no imputation has been done up

to this point. Step 4 is added as a means for imputing the data,

but this step could be skipped if the goal is to use the forest in

analysis situations. In particular, step 4 is not required if the

goal is to use the forest for prediction. This applies even when

test data used for prediction have missing values. In such a

scenario, test data assignment works in the same way as in

step 2. That is, for missing test values, values are imputed as

in step 2 using the original grow distribution from the training

forest, and the test case assigned to its daughter node. Follow-

ing this, the missing test data are reset back to missing as in

step 3, and the process is repeated.

This method of assigning cases with missing data, which is

well suited for forests, is in contrast to surrogate splitting uti-

lized by CART [5]. To assign a case having a missing value

for the variable used to split a node, CART uses the best sur-

rogate split among those variables not missing for the case.

This ensures every case can be classified optimally, whether

the case has missing values or not. However, while surro-

gate splitting works well for CART, the method is not well

suited for forests. Computational burden is one issue. Finding

366 TANG AND ISHWARAN

a surrogate split is computationally expensive even for 1 tree,

let alone for a large number of trees. Another concern is that

surrogate splitting works tangentially to random feature selec-

tion used by forests. In RF, candidate variables for splitting a

node are selected randomly, and as such the candidate vari-

ables may be uncorrelated with one another. This can make it

difficult to find a good surrogate split when missing values are

encountered, if surrogate splitting is restricted to candidate

variables. Another concern is that surrogate splitting alters the

interpretation of a variable, which affects measures such as

variable importance measures [11].

To denote the OTFI missing data algorithm, we will use the

abbreviation RFotf . As in proximity imputation, to increase

computational speed, RFotf is implemented using nsplit
random splitting. We also consider OTFI under pure random

splitting and denote this algorithm by RFotfR . Both algo-

rithms are iterated in our studies. RFotf , RFotfR will be used

to denote a single iteration, while RF
(5)
otf

and RF
(5)
otfR

denote 5

iterations. Note that when OTFI algorithms are iterated, the

terminal node imputation executed in step 4 uses inbag data

and not OOB data after the first cycle. This is because after

the first cycle of the algorithm, no coherent OOB sample

exists.

Remark 1. As noted by one of our referees, missingness

incorporated in attributes (MIA) is another tree splitting

method which bypasses the need to impute data [24,23].

Again, this only applies if the user is interested in a forest anal-

ysis. MIA accomplishes this by treating missing values as a

category which is incorporated into the splitting rule. Let X
be an ordered or numeric feature being used to split a node.

The MIA splitting rule searches over all possible split values

s of X of the following form:

Split A: {X ≤ s or X = missing} versus {X > s}.
Split B: {X ≤ s} versus {X > s or X = missing}.
Split C: {X = missing} versus {X = not missing}.

Thus, like OTF splitting, one can see that MIA results

in a forest ensemble constructed without having to impute

data.

2.4 Unsupervised imputation: RFunsv

RFunsv refers to OTFI using multivariate unsupervised split-

ting. However unlike the previously desribed OTFI algorithm,

the RFunsv algorithm is unsupervised and assumes there is no

response (outcome) variable. Instead a multivariate unsuper-

vised splitting rule [10] is implemented. As in the original

RF algorithm, at each tree node t, a set of mtry variables

are selected as potential splitting variables. However, for each

of these, as there is no outcome variable, a random set of

ytry variables is selected and defined to be the multivari-

ate response (pseudo-outcomes). A multivariate composite

splitting rule of dimension ytry (see below) is applied

to each of the mtry multivariate regression problems and

the node t split on the variable leading to the best split.

Missing values in the response are excluded when comput-

ing the composite multivariate splitting rule: the split-rule

is averaged over non-missing responses only [10]. We also

consider an iterated RFunsv algorithm (eg, RF
(5)
unsv implies 5

iterations, RFunsv implies no iterations).

Here is the description of the multivariate composite split-

ting rule. We begin by considering univariate regression. For

notational simplicity, let us suppose the node t we are split-

ting is the root node based on the full sample size n. Let X be

the feature used to split t, where for simplicity we assume X is

ordered or numeric. Let s be a proposed split for X that splits t
into left and right daughter nodes tL ∶= tL(s) and tR ∶= tR(s),
where tL = {Xi ≤ s} and tR = {Xi > s}. Let nL = #tL and

nR = #tR denote the sample sizes for the 2 daughter nodes.

If Yi denotes the outcome, the squared-error split-statistic for

the proposed split is

D(s, t) = 1

n
∑
i∈tL

(Yi − YtL)
2 + 1

n
∑
i∈tR

(Yi − YtR)
2, (1)

where YtL and YtR are the sample means for tL and tR, respec-

tively. The best split for X is the split-point s minimizing

D(s, t). To extend the squared-error splitting rule to the mul-

tivariate case q> 1, we apply univariate splitting to each

response coordinate separately. Let Yi = (Yi,1,… ,Yi,q)T
denote the q≥ 1 dimensional outcome. For multivariate

regression analysis, an averaged standardized variance split-

ting rule is used. The goal is to minimize

Dq(s, t) =
q∑

j=1

{∑
i∈tL

(Yi,j − YtLj
)2 +

∑
i∈tR

(Yi,j − YtRj
)2
}

, (2)

where YtLj
and YtRj

are the sample means of the jth response

coordinate in the left and right daughter nodes. Notice that

such a splitting rule can only be effective if each of the coor-

dinates of the outcome are measured on the same scale, other-

wise we could have a coordinate j, with say very large values,

and its contribution would dominate Dq(s, t). We therefore

calibrate Dq(s, t) by assuming that each coordinate has been

standardized according to

1

n
∑
i∈t

Yi,j = 0,
1

n
∑
i∈t

Y2
i,j = 1, 1 ≤ j ≤ q. (3)

The standardization is applied prior to splitting a node.

To make this standardization clear, we denote the standard-

ized responses by Y∗
i,j. With some elementary manipulations,

it can be verified that minimizing Dq(s, t) is equivalent to

maximizing

D∗
q(s, t) =

q∑
j=1

⎧⎪⎨⎪⎩
1

nL

(∑
i∈tL

Y∗
i,j

)2

+ 1

nR

(∑
i∈tR

Y∗
i,j

)2⎫⎪⎬⎪⎭ . (4)

For multivariate classification, an averaged standardized Gini

splitting rule is used. First consider the univariate case (ie,

TANG AND ISHWARAN 367

the multiclass problem) where the outcome Yi is a class label

from the set {1,… ,K} where K ≥ 2. The best split s for X is

obtained by maximizing

G(s, t) =
K∑

k=1

⎡⎢⎢⎣ 1

nL

(∑
i∈tL

Zi(k)

)2

+ 1

nR

(∑
i∈tR

Zi(k)

)2⎤⎥⎥⎦ , (5)

where Zi(k) = 1{Yi=k}. Now consider the multivariate classifi-

cation scenario r > 1, where each outcome coordinate Yi,j for

1 ≤ j ≤ r is a class label from {1,… ,Kj} for Kj ≥ 2. We

apply Gini splitting to each coordinate yielding the extended

Gini splitting rule

G∗
r (s, t) =

r∑
j=1

⎡⎢⎢⎢⎣
1

Kj

Kj∑
k=1

⎧⎪⎨⎪⎩
1

nL

(∑
i∈tL

Zi(k),j

)2

+ 1

nR

(∑
i∈tR

Zi(k),j

)2⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ,

(6)

where Zi(k),j = 1{Yi,j=k}. Note that the normalization 1∕Kj
employed for a coordinate j is required to standardize the

contribution of the Gini split from that coordinate.

Observe that Equations (4) and (6) are equivalent opti-

mization problems, with optimization over Y∗
i,j for regression

and Zi(k),j for classification. As shown in [9] this leads to

similar theoretical splitting properties in regression and clas-

sification settings. Given this equivalence, we can combine

the 2 splitting rules to form a composite splitting rule. The

mixed outcome splitting rule Θ(s, t) is a composite standard-

ized split rule of mean-squared error Equation (4) and Gini

index splitting Equation (6); ie,

Θ(s, t) = D∗
q(s, t) + G∗

r (s, t), (7)

where p= q + r. The best split for X is the value of s maxi-

mizing Θ(s, t).

Remark 2. As discussed in [19], multivariate regression

splitting rules patterned after the Mahalanobis distance can

be used to incorporate correlation between response coor-

dinates. Let YL and YR be the multivariate means for Y in

the left and right daughter nodes, respectively. The following

Mahalanobis distance splitting rule was discussed in [19]

Mq(s, t) =
∑
i∈tL

(
Yi − YL

)T
V̂−1

L

(
Yi − YL

)
+
∑
i∈tR

(
Yi − YR

)T
V̂−1

R

(
Yi − YR

)
(8)

where V̂L and V̂R are the estimated covariance matrices for

the left and right daughter nodes. While this is a reason-

able approach in low dimensional problems, recall that we

are applying Dq(s, t) to ytry of the feature variables which

could be large if the feature space dimension p is large. Also,

because of missing data in the features, it may be difficult

to derive estimators for V̂L and V̂R, which is further com-

plicated if their dimensions are high. This problem becomes

worse as the tree is grown because the number of observa-

tions decreases rapidly making estimation unstable. For these

reasons, we use the splitting rule Dq(s, t) rather than Mq(s, t)
when implementing imputation.

2.5 mForest imputation: mRF𝛼 and mRF

The missForest algorithm recasts the missing data problem

as a prediction problem. Data are imputed by regressing each

variable in turn against all other variables and then predicting

missing data for the dependent variable using the fitted forest.

With p variables, this means that p forests must be fit for each

iteration, which can be slow in certain problems. Therefore,

we introduce a computationally faster version of missForest,

which we call mForest. The new algorithm is described as

follows. Do a quick strawman imputation of the data. The p
variables in the data set are randomly assigned into mutually

exclusive groups of approximate size 𝛼p where 0 < 𝛼 < 1.

Each group in turn acts as the multivariate response to be

regressed on the remaining variables (of approximate size

(1−𝛼)p). Over the multivariate responses, set imputed values

back to missing. Grow a forest using composite multivari-

ate splitting. As in RFunsv , missing values in the response

are excluded when using multivariate splitting: the split-rule

is averaged over non-missing responses only. Upon comple-

tion of the forest, the missing response values are imputed

using prediction. Cycle over all of the ≈ 1∕𝛼 multivariate

regressions in turn; thus completing 1 iteration. Check if the

imputation accuracy of the current imputed data relative to the

previously imputed data has increased beyond an 𝜖-tolerance

value (see Section 3.3 for measuring imputation accuracy).

Stop if it has, otherwise repeat until convergence.

To distinguish between mForest under different 𝛼 values

we use the notation mRF𝛼 to indicate mForest fit under the

specified 𝛼. Note that the limiting case 𝛼 = 1∕p corresponds

to missForest. Although technically the 2 algorithms miss-

Forest and mRF𝛼 for 𝛼 = 1∕p are slightly different, we did

not find significant differences between them during informal

experimentation. Therefore for computational speed, miss-

Forest was taken to be mRF𝛼 for 𝛼 = 1∕p and denoted simply

as mRF.

3 METHODS

3.1 Experimental design and data

Table 1 lists the 9 experiments that were carried out. In each

experiment, a prespecified target percentage of missing values

was induced using 1 of 3 different missing mechanisms [17]:

1. Missing completely at random (MCAR). This means the

probability that an observation is missing does not depend

on the observed value or the missing ones.
2. Missing at random. This means that the probability of

missingness may depend upon observed values, but not

missing ones.

368 TANG AND ISHWARAN

TABLE 1 Experimental design used for large-scale study of RF missing
data algorithms

Missing Percent

Mechanism Missing

EXPT-A MCAR 25

EXPT-B MCAR 50

EXPT-C MCAR 75

EXPT-D MAR 25

EXPT-E MAR 50

EXPT-F MAR 75

EXPT-G NMAR 25

EXPT-H NMAR 50

EXPT-I NMAR 75

3. Not missing at random. This means the probability of

missingness depends on both observed and missing val-

ues.

Sixty data sets were used, including both real and synthetic

data. Figure 1 shows the diversity of the data. Displayed are

data sets in terms of correlation (𝜌), sample size (n), number

of variables (p), and the amount of information contained in

the data (I = log10(n∕p)). The correlation, 𝜌, was defined as

the L2-norm of the correlation matrix. If R = (𝜌i,j) denotes the

p× p correlation matrix for a data set, 𝜌 was defined to equal

𝜌 =
(

p
2

)−1 p∑
j=1

(∑
k<j

|𝜌i,j|2)1∕2

. (9)

This is similar to the usual definition of the L2-norm for a

matrix, but where we have modifed the definition to remove

the diagonal elements of R which equals 1, as well as the

contribution from the symmetric lower diagonal values.

Note that in the plot for p there are 10 data sets with

p in the thousands—these are a collection of well-known

gene expression data sets. The right-most plot displays the

log-information of a data set, I = log10(n∕p). The range of

values on the log-scale vary from−2 to 2; thus the information

contained in a data set can differ by as much as ≈ 104.

3.2 Inducing MCAR, MAR, and NMAR missingness

The following procedures were used to induce missigness in

the data. Let the target missigness fraction be 0<𝛾NA < 1. For

MCAR, data were set to missing randomly without impos-

ing column or row constraints to the data matrix. Specifically,

the data matrix was made into a long vector and n𝛾NA of the

entries selected at random and set to missing.

For MAR, missing values were assigned by column. Let

Xj = (X1,j,… ,Xn,j) be the n-dimensional vector containing

the original values of the jth variable, 1 ≤ j ≤ p. Each coordi-

nate of Xj was made missing according to the tail behavior of a

randomly selected covariate Xk, where k ≠ j. The probability

of selecting coordinate Xi,j was

P{selecting Xi,j|Bj} ∝
{

F(Xi,k) if Bj = 1

1 − F(Xi,k) if Bj = 0
, (10)

where F(x) = (1 + exp(−3x))−1 and Bj were i.i.d. symmetric

0-1 Bernoulli random variables. With this method, about half

of the variables will have higher missigness in those coordi-

nates corresponding to the right tail of a randomly selected

variable (the other half will have higher missigness depend-

ing on the left tail of a randomly selected variable). A total

of n𝛾NA coordinates were selected from Xj and set to missing.

This induces MAR, as missing values for Xj depend only on

observed values of another variable Xk.

For NMAR, each coordinate of Xj was made missing

according to its own tail behavior. A total of n𝛾NA values were

selected according to

P{selecting Xi,j} ∝
{ F(Xi,j) with probability 1/2

1 − F(Xi,j) with probability 1/2.
(11)

Notice that missingness in Xi,j depends on both observed

and missing values. In particular, missing values occur with

higher probability in the right and left tails of the empirical

distribution. Therefore, this induces NMAR.

3.3 Measuring imputation accuracy

Accuracy of imputation was assessed using the following met-

ric. As described above, values of Xj were made missing

under various missing data assumptions. Let (11,j,… , 1n,j) be

a vector of zeroes and ones indicating which values of Xj were

artificially made missing. Define 1i,j = 1 if Xi,j is artificially

missing; otherwise 1i,j = 0. Let nj =
∑n

i=1 1i,j be the number

of artificially induced missing values for Xj.

Let  and  be the set of nominal (continuous) and cate-

gorical (factor) variables with more than 1 artificially induced

missing value. That is,

 = {j ∶ Xj is nominal and nj > 1}
 = {j ∶ Xj is categorical and nj > 1}.

Standardized root-mean-squared error (RMSE) was used to

assess performance for nominal variables, and misclassifica-

tion error for factors. Let X∗
j be the n-dimensional vector of

imputed values for Xj using procedure . Imputation error for

 was measured using

() = 1

#
∑
j∈

√√√√√√√√√√
n∑

i=1

1i,j

(
X∗

i,j − Xi,j

)2

∕nj

n∑
i=1

1i,j

(
Xi,j − Xj

)2

∕nj

+ 1

#
∑
j∈

[∑n
i=1 1i,j 1{X∗

i,j ≠ Xi,j}

nj

]
,

TANG AND ISHWARAN 369

FIGURE 1 Summary values for the 60 data sets used in the large-scale RF missing data experiment. The last panel displays the log-information,

I = log10(n∕p), for each data set

where Xj =
∑n

i=1

(
1i,jXi,j

)
∕nj. To be clear regarding the stan-

dardized RMSE, observe that the denominator in the first term

is the variance of Xj over the artificially induced missing val-

ues, while the numerator is the MSE difference of Xj and X∗
j

over the induced missing values.

As a benchmark for assessing imputation accuracy we used

strawman imputation described earlier, which we denote by

 . Imputation error for a procedure  was compared to 

using relative imputation error defined as

R() = 100 × ()
()

. (12)

A value of less than 100 indicates a procedure  performing

better than the strawman.

3.4 Experimental settings for procedures

Randomized splitting was invoked with an nsplit value

of 10. For random feature selection, mtry was set to
√

p.

For random outcome selection for RFunsv , we set ytry to

equal
√

p. Algorithms RFotf , RFunsv , and RFprx were iterated

5 times in addition to being run for a single iteration. For

mForest, the percentage of variables used as responses was

𝛼 = .05 and .25. This implies that mRF0.05 used up to 20

regressions per cycle, while mRF0.25 used 4. Forests for all

procedures were grown using a nodesize value of 1. Num-

ber of trees was set at ntree = 500. Each experimental

setting (Table 1) was run 100 times independently and results

averaged.

For comparison, KNN imputation was applied using the

impute.knn function from the R-package impute [8].

For each data point with missing values, the algorithm deter-

mines the KNN using a Euclidean metric, confined to the

columns for which that data point is not missing. The missing

elements for the data point are then imputed by averaging the

non-missing elements of its neighbors. The number of neigh-

bors k was set at the default value k = 10. In experimentation

we found the method robust to the value of k and therefore

opted to use the default setting. Much more important were

the parameters rowmax and colmaxwhich control the max-

imum percent missing data allowed in each row and column

of the data matrix before a rough overall mean is used to

impute the row/column. The default values of 0.5 and 0.8,

respectively, were too low and led to poor performance in

the heavy missing data experiments. Therefore, these values

were set to their maximum of 1.0, which greatly improved per-

formance. Our rationale for selecting KNN as a comparison

procedure is due to its speed because of the large-scale nature

of experiments (total of 100 × 60 × 9 = 54 000 runs for each

method). Another reason was because of its close relationship

to forests. This is because RF is also a type of nearest neighbor

procedure—although it is an adaptive nearest neighbor. We

comment later on how adaptivity may give RF an advantage

over KNN.

4 RESULTS

Section 4.1 presents the results of the performance of a proce-

dure as measured by relative imputation accuracy, R(). In

Section 4.2 we discuss computational speed.

4.1 Imputation Accuracy

In reporting the values for imputation accuracy, we have

stratified data sets into low-, medium-, and high-correlation

groups, where correlation, 𝜌, was defined as in Equation (9).

Low-, medium-, and high-correlation groups were defined

370 TANG AND ISHWARAN

FIGURE 2 ANOVA effect size for the log-information, I = log10(n∕p), and correlation, 𝜌 (defined as in Equation (9)), from a linear regression using log

relative imputation error, log10(R()), as the response. In addition to I and 𝜌, dependent variables in the regression included type of RF procedure used.

ANOVA effect sizes are the estimated coefficients of the standardized variable (standardized to have mean 0 and variance 1). This demonstrates the

importance of correlation in assessing imputation performance

as groups whose 𝜌 value fell into the [0, 50], [50, 75], and

[75, 100], respectively, percentile for correlations. Results

were stratified by 𝜌 because we found it played a very heavy

role in imputation performance and was much more informa-

tive than other quantities measuring information about a data

set. Consider for example the log-information for a data set,

I = log10(n∕p), which reports the information of a data set by

adjusting its sample size by the number of features. While this

is a reasonable measure, Figure 2 shows that I is not nearly

as effective as 𝜌 in predicting imputation accuracy. The figure

displays the ANOVA effect sizes for 𝜌 and I from a linear

regression in which log-relative imputation error was used as

the response. In addition to 𝜌 and I, dependent variables in

the regression also included the type of RF procedure. The

effect size was defined as the estimated coefficients for the

standardized values of 𝜌 and I. The 2 dependent variables 𝜌

and I were standardized to have a mean of 0 and variance of

1 which makes it possible to directly compare their estimated

coefficients. The figure shows that both values are important

for understanding imputation accuracy and that both exhibit

the same pattern. Within a specific type of missing data mech-

anism, say MCAR, importance of each variable decreases

with missingness of data (MCAR 0.25, MCAR 0.5, MCAR

0.75). However, while the pattern of the 2 measures is sim-

ilar, the effect size of 𝜌 is generally much larger than I. The

only exceptions being the MAR 0.75 and NMAR 0.75 exper-

iments, but these 2 experiments are the least interesting. As

will be discussed below, nearly all methods performed poorly

here.

4.1.1 Correlation
Figure 3 and Table 2, which have been stratified by correlation

group, show the importance of correlation for RF imputa-

tion procedures. In general, imputation accuracy generally

improves with correlation. Over the high correlation data,

mForest algorithms were by far the best. In some cases, they

achieved a relative imputation error of 50, which means their

imputation error was half of the strawman’s value. Generally

there are no noticeable differences between mRF (missFor-

est) and mRF0.05. Performance of mRF0.25, which uses only 4

regressions per cycle (as opposed to p for mRF), is also very

good. Other algorithms that performed well in high correla-

tion settings were RF
(5)
prxR

(proximity imputation with random

splitting, iterated 5 times) and RF
(5)
unsv (unsupervised multi-

variate splitting, iterated 5 times). Of these, RF
(5)
unsv tended to

perform slightly better in the medium- and low-correlation

settings. We also note that while mForest also performed well

over medium-correlation settings, performance was not supe-

rior to other RF procedures in low correlation settings, and

sometimes was worse than procedures like RF
(5)
unsv . Regarding

the comparison procedure KNN, while its performance also

improved with increasing correlation, performance in the

medium- and low-correlation settings was generally much

worse than RF methods.

4.1.2 Missing data mechanism
The missing data mechanism also plays an important

role in accuracy of RF procedures. Accuracy decreased

TANG AND ISHWARAN 371

FIGURE 3 Relative imputation error, R(), stratified and averaged by level of correlation of a data set. Procedures are: RFotf , RF
(5)
otf

(on the fly imputation

with 1 and 5 iterations); RFotfR , RF
(5)
otfR

(similar to RFotf and RF
(5)
otf

but using pure random splitting); RFunsv , RF
(5)
unsv (multivariate unsupervised splitting with 1

and 5 iterations); RFprx , RF
(5)
prx (proximity imputation with 1 and 5 iterations); RFprxR , RF

(5)
prxR

(same as RFprx and RF
(5)
prx but using pure random splitting);

mRF0.25, mRF0.05, mRF (mForest imputation, with 25%, 5% and 1 variable(s) used as the response); KNN (k-nearest neighbor imputation)

systematically when going from MCAR to MAR and NMAR.

Except for heavy missingness (75%), all RF procedures under

MCAR and MAR were more accurate than strawman impu-

tation. Performance in NMAR was generally poor unless

correlation was high.

4.1.3 Heavy missingness
Accuracy degraded with increasing missingness. This was

especially true when missingness was high (75%). For NMAR

data with heavy missingness, procedures were not much better

than strawman (and sometimes worse), regardless of cor-

relation. However, even with missingness of up to 50%, if

correlation was high, RF procedures could still reduce the

strawman’s error by one-half.

4.1.4 Iterating RF algorithms
Iterating generally improved accuracy for RF algorithms,

except in the case of NMAR data, where in low- and

medium-correlation settings, performance sometimes

degraded. We believe this is a real effect but have no expla-

nation for this behavior except that it reflects the difficulty in

dealing with NMAR.

4.2 Computational speed

Figure A1 (see Appendix) displays the log of total elapsed

time of a procedure averaged over all experimental conditions

and runs, with results ordered by the log-computational com-

plexity of a data set, c = log10(np). The fastest algorithm is

372 TANG AND ISHWARAN

TABLE 2 Relative imputation error R()

Low correlation

MCAR MAR NMAR

.25 .50 .75 .25 .50 .75 .25 .50 .75

RFotf 89.0 93.9 96.2 89.5 94.5 97.2 96.5 97.2 100.9

RF
(5)
otf

88.7 91.0 95.9 89.5 88.6 93.5 96.0 92.6 98.8

RFotfR 89.9 94.1 96.8 89.8 94.7 97.8 96.6 97.6 101.7

RF
(5)
otfR

92.3 95.8 95.8 96.5 93.7 94.2 103.2 97.0 102.9

RFunsv 88.3 92.8 96.2 87.9 93.0 97.3 95.4 97.4 101.6

RF
(5)
unsv 85.4 90.1 94.7 85.7 88.6 92.2 97.7 93.0 100.8

RFprx 91.1 92.8 96.7 89.9 88.5 90.4 91.5 92.7 99.2

RF
(5)
prx 90.6 93.9 101.8 89.8 88.7 93.9 95.7 91.1 99.3

RFprxR 90.2 92.6 96.2 89.4 88.8 90.7 94.6 97.5 100.5

RF
(5)
prxR

86.9 92.4 100.0 88.1 88.8 94.8 96.2 94.3 102.8

mRF0.25 87.4 92.9 103.1 88.8 89.3 99.8 96.9 92.3 98.7

mRF0.05 86.1 94.3 105.3 86.0 88.7 102.7 96.8 92.6 99.0

mRF 86.3 94.7 105.6 84.4 88.6 103.3 96.7 92.5 98.8

KNN 91.1 97.4 111.5 94.4 100.9 106.1 100.9 100.0 101.7

Medium correlation

MCAR MAR NMAR

.25 .50 .75 .25 .50 .75 .25 .50 .75

RFotf 82.3 89.9 95.6 78.8 88.6 97.0 92.7 92.6 102.2

RF
(5)
otf

76.2 82.1 90.0 83.4 79.1 93.4 99.6 89.1 100.8

RFotfR 83.1 91.4 96.0 80.3 90.3 97.4 92.2 96.1 105.3

RF
(5)
otfR

82.4 84.1 93.1 88.2 84.2 95.1 112.0 97.1 104.5

RFunsv 80.4 88.4 95.9 76.1 87.7 97.5 87.3 92.7 104.7

RF
(5)
unsv 73.2 78.9 89.3 78.8 79.0 92.4 98.8 92.8 104.2

RFprx 82.6 86.3 93.1 80.7 80.5 97.7 88.6 93.8 99.5

RF
(5)
prx 77.1 84.1 93.3 86.5 77.0 92.1 98.1 93.7 101.0

RFprxR 81.2 85.4 93.1 80.4 82.4 96.3 89.2 97.2 101.3

RF
(5)
prxR

76.1 80.8 92.0 82.1 77.7 95.1 102.1 96.6 105.1

mRF0.25 73.8 80.2 91.6 75.3 75.6 90.2 97.6 87.5 102.1

mRF0.05 70.9 80.1 95.2 70.1 76.6 93.0 87.4 87.9 103.4

mRF 69.6 80.1 95.0 71.3 74.6 92.4 86.9 87.8 103.1

KNN 79.8 93.5 105.3 80.2 96.0 98.7 93.9 98.3 102.1

High correlation

MCAR MAR NMAR

.25 .50 .75 .25 .50 .75 .25 .50 .75

RFotf 72.3 83.7 94.6 65.5 83.3 98.4 66.5 84.8 100.4

RF
(5)
otf

70.9 72.1 80.9 69.5 70.9 91.0 70.1 70.8 97.3

RFotfR 68.6 81.0 93.6 59.5 87.1 98.9 61.2 88.2 100.3

RF
(5)
otfR

58.4 58.9 64.6 56.7 55.1 88.4 58.4 60.9 97.3

RFunsv 62.1 75.1 91.3 56.8 70.8 97.8 58.1 73.3 100.6

RF
(5)
unsv 54.2 57.5 65.4 54.0 49.4 80.0 55.4 51.7 90.7

RFprx 75.5 82.0 88.5 70.7 72.8 94.3 70.9 74.3 102.0

RF
(5)
prx 70.4 72.0 78.6 69.7 71.2 90.3 70.0 72.2 98.2

RFprxR 61.9 68.1 76.6 58.7 64.1 79.5 60.4 74.6 97.5

RF
(5)
prxR

57.3 58.1 61.9 55.9 54.1 71.9 57.8 60.2 93.7

mRF0.25 57.0 57.9 63.3 55.5 50.4 70.5 56.7 50.7 87.3

mRF0.05 50.7 54.0 61.7 48.3 48.4 74.9 49.9 48.6 85.9

mRF 48.2 49.8 61.3 47.0 47.5 70.2 46.6 47.6 82.9

KNN 52.7 63.2 83.2 52.0 71.1 96.4 53.2 74.9 99.2

TANG AND ISHWARAN 373

FIGURE 4 Mean relative imputation error ± SD from simulations under different sample size values n = 100, 200, 500, 1000, 2000

KNN which is generally 3 times faster on the log-scale, or

1000 times faster, than the slowest algorithm, mRF (missFor-

est). To improve clarity of these differences, Figure A2 (see

Appendix) displays the relative computational time of pro-

cedure relative to KNN (obtained by subtracting the KNN

log-time from each procedure’s log-time). This new figure

shows that while mRF is 1000 times slower than KNN,

the multivariate mForest algorithms, mRF0.05 and mRF0.25,

improve speeds by about a factor of 10. After this, the next

slowest procedures are the iterated algorithms. Following this

374 TANG AND ISHWARAN

TABLE 3 Relative imputation error R() with and without a pattern-mixture model (PMM) for Y . Some procedures, such as mForest, do not use Y
outcome in imputations. Therefore, their imputation performance is the same with or without PMM. For clarity, we therefore only report values without
PMM for such procedures

MCAR MCAR (PMM) MAR MAR (PMM) NMAR NMAR (PMM)

RFotf 91.8 92.5 91.1 91.9 94.5 95.6

RF
(5)
otf

88.9 90.1 87.6 88.7 88.0 91.5

RFprx 88.8 90.1 86.7 87.5 84.8 88.0

RF
(5)
prx 89.1 90.1 87.4 88.1 84.8 89.1

RFunsv 90.9 – 90.5 – 94.6 –

RF
(5)
unsv 85.1 – 84.5 – 90.0 –

RFprxR 88.3 – 86.1 – 92.3 –

RF
(5)
prxR

88.4 – 86.4 – 93.3 –

mRF0.5 91.7 – 89.8 – 92.9 –

mRF0.1 85.1 – 83.3 – 86.6 –

are the non-iterated algorithms. Some of these latter algo-

rithms, such as RFotf , are 100 times faster than missForest; or

only 10 times slower than KNN. These kinds of differences

can have a real effect when dealing with big data. We have

experienced settings where OTF algorithms can take hours

to run. This means that the same data would take missForest

hundreds of hours to run, which makes it questionable to be

used in such settings.

5 SIMULATIONS

5.1 Sample size

We used simulations to study the performance of RF as the

sample size n was varied. We wanted to investigate 2 ques-

tions: (1) Does the relative imputation error improve with

sample size? (2) Do these values converge to the same or

different values for the different RF imputation algorithms?

For our simulations, there were 10 variables X1,… ,X10

where the true model was

Y = X1 + X2 + X3 + X4 + 𝜀, (13)

where 𝜀 was simulated independently from a N(0, 0.5) distri-

bution (here N(𝜇, v) denotes a normal distribution with mean

𝜇 and variance v). Variables X1 and X2 were correlated with a

correlation coefficient of 0.96, and X5 and X6 were correlated

with value 0.96. The remaining variables were not correlated.

Variables X1,X2,X5,X6 were N(3, 3), variables X3,X10 were

N(1, 1), variable X8 was N(3, 4), and variables X4,X7,X9 were

exponentially distributed with mean 0.5.

The sample size (n) was chosen to be 100, 200, 500,

1000, and 2000. Data were made missing using the MCAR,

MAR, and NMAR missing data procedures described earlier.

Percentage of missing data was set at 25%. All imputation

parameters were set to the same values as used in our previous

experiments as described in Section 3.4. Each experiment was

repeated 500 times and the relative imputation error, R(),
recorded in each instance. Figure 4 displays the mean rel-

ative imputation error for a RF procedure and its standard

deviation for each sample size setting. As can be seen, values

improve with increasing n. It is also noticeable that perfor-

mance depends upon the RF imputation method. In these

simulations, the missForest algorithm mRF0.1 appears to be

best (note that p = 10 so mRF0.1 corresponds to the limiting

case missForest). Also, it should be noted that performance

of RF procedures decrease systematically as the missing data

mechanism becomes more complex. This mirrors our previ-

ous findings.

5.2 Pattern mixture models

In pattern-mixture models [14,15], the outcome is changed

when an independent variable is missing. This is considered

a challenging missing data scenario, therefore we sought to

investigate performance of procedures in this setting. We used

simulations to compare imputation performance of RF meth-

ods when the missing data mechanism was MCAR, MAR,

and NMAR for the X features, and where the outcome Y
was simulated with and without a pattern-mixture model

(PMM). Independent variables X1,… ,X10 were simulated as

in Section 5.1. The PMM was defined as

Y = X1 + X2 + X3 + X5 + 10M1 + 𝜀, (14)

where 𝜀 was simulated independently from a N(0, 0.5) dis-

tribution. Pattern-mixture missingness was induced by M1

which was set to M1 = 1 if X1 was missing and M1 = 0

if X1 was not missing. This results in the value of Y being

affected by the missingness of X1. Missingness for X1,… ,X10

was induced by MCAR, MAR, and NMAR as in Section 5.1.

The sample size was chosen to be n = 2000. Simulations were

repeated 500 times.

The results are displayed in Table 3. Relative imputation

error for each procedure is given for each of the 3 X miss-

ing data mechanisms with and without a PMM for Y . Because

methods such as mForest do not use Y in their imputation

procedure, only the results from simulations without PMM

are displayed for such procedures. As shown in Table 3,

mRF0.1 generally had the best imputation accuracy (as before,

TANG AND ISHWARAN 375

note that mRF0.1 corresponds to the limiting case missForest

because p = 10). For PMM simulations, OTF and proximity

methods, which use Y in their model building, generally saw

a degradation in imputation performance, especially when

missingness for X was NMAR. This shows the potential dan-

ger of imputation procedures which include Y , especially

when missingness in X has a complex relationship to Y . A

more detailed study of this issue will be undertaken by the

authors in a follow-up paper.

6 CONCLUSIONS

Being able to effectively impute missing data is of great

importance to scientists working with real world data today.

A machine learning method such as RF, known for its excel-

lent prediction performance and ability to handle all forms

of data, represents a poentially attractive solution to this

challenging problem. However, because no systematic com-

parative study of RF had been attempted in missing data

settings, we undertook a large-scale experimental study of dif-

ferent RF imputation procedures to determine which methods

performed best, and under what types of settings.

We found that correlation played a very strong role in

performance of RF procedures. Imputation performance gen-

erally improved with increasing correlation of features. This

held even with heavy levels of missing data and for all but

the most complex missing data scenarios. When there is

high correlation we recommend using a method like miss-

Forest which performed the best in such settings. Although it

might seem obvious that increasing feature correlation should

improve imputation, we found that in low to medium corre-

lation, RF algorithms did noticeably better than the popular

KNN imputation method. This is interesting because KNN

is related to RF. Both methods are a type of nearest neigh-

bor method, although RF is more adaptive than KNN, and in

fact can be more accurately described as an adaptive nearest

neighbor method. This adaptivity of RF may play a spe-

cial role in harnessing correlation in the data that may not

necessarily be present in other methods, even methods that

have similarity to RF. Thus, we feel it is worth emphasiz-

ing that correlation is extremely important to RF imputation

methods.

In big data settings, computational speed will play a key

role. Thus, practically speaking, users might not be able to

implement the best method because computational times will

simply be too long. This is the downside of a method like

missForest, which was the slowest of all the procedures con-

sidered. As a solution, we proposed mForest (mRF𝛼) which

is a computationally more efficient implementation of miss-

Forest. Our results showed mForest could achieve up to a

10-fold reduction in compute time relative to missForest. We

believe these computational times can be improved further

by incorporating mForest directly into the native C-library

of RF-SRC. Currently mForest is run as an external R-loop

that makes repeated calls to the impute.rfsrc function

in RF-SRC. Incorporating mForest into the native library,

combined with the openMP parallel processing of RF-SRC,

could make it much more attractive. However, even with

all of this, we still recommend some of the more basic

OTFI algorithms like unsupervised RF imputation proce-

dures for big data. These algorithms perform solidly in terms

of imputation and can be up to a 100 times faster than

missForest.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health

[R01CA163739 to H.I.].

REFERENCES
1. T. Aittokallio, Dealing with missing values in large-scale studies: Microar-

ray data imputation and beyond, Brief Bioinform. 2 (2009), no. 2, 253–264.

2. J. W. Bartlett et al., Multiple imputation of covariates by fully conditional
specification: accommodating the substantive model, Stat. Methods Med.

Res. 24 (2015), no. 4, 462–487.

3. L. Breiman, Random forests, Mach. Learn. 45 (2001), 5–32.

4. L. Breiman, Manual–Setting up, using, and understanding random forests
V4.0, 2003. Available at https://www.stat.berkeley.edu/ breiman.

5. L. Breiman et al., Classification and regression trees, Belmont, California

(1984).

6. L. L. Doove, S. Van Buuren, and E. Dusseldorp, Recursive partitioning for
missing data imputation in the presence of interaction effects, Comput. Stat.

Data Anal. 72 (2014), 92–104.

7. C. K. Enders, Applied missing data analysis Guilford Publications, New

York, 2010.

8. T. Hastie et al., 2015. http://bioconductor.org.

9. H. Ishwaran, The effect of splitting on random forests, Mach. Learn. 99
(2015), no. 1, 75–118.

10. H. Ishwaran and U. B. Kogalur, randomForestSRC: Random forests for sur-
vival, regression and classification (RF-SRC), 2017. R package version 2.4.2

http://cran. r-project.org.

11. H. Ishwaran et al., Random survival forests, Ann. Appl. Stat. 2 (2008),

841–860.

12. Liao S. G. et al., Missing value imputation in high-dimensional phenomic
data: Imputable or not, and how?, BMC Bioinform. 15 (2014), 346.

13. A. Liaw and M. Wiener, Classification and regression by randomForest,
Rnews 2 (2002), no. 3, 18–22.

14. R. J. A. Little, Pattern-mixture models for multivariate incomplete data, J

Am. Stat. Assoc. 88 (1993), no. 421, 125–134.

15. R. J. A. Little and D. B. Rubin John Wiley & Sons, 2014.

16. P. L. Loh and M. J. Wainwright, High-dimensional regression with noisy
and missing data: provable guarantees with non-convexity, Adv. Neural Inf.

Process. Syst. (2011), 2726–2734.

17. D. B. Rubin, Inference and missing data, Biometrika 63 (1976), no. 3,

581–592.

18. D. B. Rubin, Multiple imputation after 18+ years, J. Am. Stat. Assoc. 91
(1996), 473–489.

19. M. Segal and Y. Xiao, Multivariate random forests, WIREs: Data Min.

Knowl. Discov. 1 (2011), no. 1, 80–87.

20. A. D. Shah et al., Comparison of random forest and parametric imputation
models for imputing missing data using MICE: A CALIBER study, Am. J.

Epidemiol. 179 (2014), no. 6, 764–774.

21. D. J. Stekhoven and P. Buhlmann, MissForest—Non-parametric missing
value imputation for mixed-type data, Bioinformatics 28 (2012), no. 1,

112–118.

22. O. Troyanskaya et al., Missing value estimation methods for DNA microar-
rays, Bioinformatics 17 (2001), no. 6, 520–525.

376 TANG AND ISHWARAN

23. B. Twala and M. Cartwright, Ensemble missing data techniques for software
effort prediction, Intell. Data Anal. 14 (2010), no. 3, 299–331.

24. B. Twala, M. C. Jones, and D. J. Hand, Good methods for coping with missing
data in decision trees, Pattern Recognit. Lett. 29 (2008), no. 7, 950–956.

25. S. Van Buuren, Multiple imputation of discrete and continuous data by fully
conditional specification, Stat. Methods Med. Res. 16 (2007), 219–242.

26. A. K. Waljee et al., Comparison of imputation methods for missing labora-
tory data in medicine, BMJ Open 3 (2013), no. 8, e002847.

How to cite this article: Tang F, Ishwaran H. Random

Forest Missing Data Algorithms. Stat Anal Data Min:
The ASA Data Sci Journal. 2017;10:363–377. https://

doi.org/10.1002/sam.11348.

APPENDIX

Figures A1 and A2 display computational speed for different RF algorithms as a function of complexity.

FIGURE A1 Log of computing time for a procedure versus log-computational complexity of a data set, c = log10(np)

TANG AND ISHWARAN 377

FIGURE A2 Relative log-computing time (relative to KNN) versus log-computational complexity of a data set, c = log10(np)

	Random forest missing data algorithms
	Abstract
	INTRODUCTION
	RF APPROACHES TO IMPUTATION
	Strawman imputation
	Proximity imputation: RFprxand RFprxR
	On-the-fly-imputation: RFotfand RFotfR
	Unsupervised imputation: RFunsv
	mForest imputation: mRF and mRF

	METHODS
	Experimental design and data
	Inducing MCAR, MAR, and NMAR missingness
	Measuring imputation accuracy
	Experimental settings for procedures

	RESULTS
	Imputation Accuracy
	Correlation
	Missing data mechanism
	Heavy missingness
	Iterating RF algorithms

	Computational speed

	SIMULATIONS
	Sample size
	Pattern mixture models

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References
	APPENDIX

