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Abstract
Boosting, a machine learning approach, has gained popularity over the years in its application to various types of data, 
including longitudinal data. However, its application to data involving multivariate responses is limited. In this article, we 
present a new approach where we apply gradient boosting, a generic form of boosting, to model multivariate longitudinal 
responses. Our approach can handle time-varying covariates as well as high dimensionality of covariates and responses when 
some of the covariates and responses are pure noise. A key feature of our approach is that it is designed to select covariates 
that affect responses differently at different time intervals; thereby, an overall effect of any covariate can be dissected and 
represented as a function of time. A novel feature of our approach is that, in addition to covariate selection, we also perform 
response selection for different time intervals. This helps to identify and order responses based on their importance for a 
given time interval. Simulation results show that the prediction performance of our approach does not deteriorate in high 
dimensionality and can approximate the true model. Application of our approach to a clinical laboratory data evaluates the 
behavior of bilirubin and creatinine for the heart failure patients before and after the heart transplant, and identifies important 
risk factors that affect their behavior. Our approach can be implemented using the R package BoostMLR

Keywords Multivariate longitudinal responses · Gradient boosting · B-spline · Variable importance · Response selection

Introduction

Longitudinal data is a special type of data in which, for a 
given subject, response is measured repeatedly over a period 
of time. Some covariates are measured only at baseline (i.e., 
at the beginning of the study), while others are measured 
along with the response [1]. Covariates measured at baseline 
are referred to as time-invariant covariates, whereas covari-
ates measured along with the response, over a period of 
time, are referred to as time-varying covariates. Studies with 

time-varying covariates are more informative because they 
provide concurrent effects of covariates on the response.

In some longitudinal studies, investigator collects multi-
ple responses, collectively referred as multivariate longitu-
dinal responses, to model them jointly. In such studies, the 
aims are as follows: 

1. Jointly model multiple responses over time.
2. Find covariates that affect most of the responses. This 

happens in situations where responses collectively meas-
ure an underlying characteristic. For example, in type 
2 diabetic patients, the measurements of glucose and 
insulin can be used to understand the progression of the 
disease.

3. Study how covariates affect one response in the presence 
of other responses.

4. Predict trajectories of multiple responses for new sub-
jects based on their covariate data.

As an example consider the laboratory data for heart fail-
ure (HF) patients. HF is a serious condition in which heart 
cannot pump enough blood to various body parts to meet 
their requirement. Risk factors for HF include older age, 
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hypertension, coronary heart disease, and diabetes. Treat-
ment of HF depends on type, stage and cause of HF. Patients 
with advanced condition of HF, heart transplant is the most 
effective treatment option. Patients who require heart trans-
plant are put on mechanical circulatory support (MCS) 
through a device implantation while they wait for availability 
of donors. In such patients, it is important to monitor their 
heart condition periodically. Impaired liver and renal func-
tions provide indications of advanced stage of heart failure 
[2–4]. Therefore, monitoring patient’s liver and renal func-
tions before and after the heart transplant is a crucial part of 
patient management. Bilirubin and creatinine, respectively, 
represent good indicators of liver and renal functions. The 
laboratory data consists of patients’ bilirubin and creatinine 
levels measured after the device implantation repeatedly 
over a period of time. Joint modeling of bilirubin and cre-
atinine allows the investigator to estimate their trajectories 
over time to identify critical levels of bilirubin and creatinine 
in these high risk patients. It also allows the investigator to 
evaluate their risk factors.

Earlier work of modeling longitudinal data was focused 
on parametric models. Two such parametric models often 
used in the literature are marginal model [5] and mixed 
effect model [6]. Extensions of these models are available for 
multivariate longitudinal responses. For example, an exten-
sion of the marginal model for multivariate longitudinal 
responses is provided by [7, 8] and an extension of the mixed 
effect model is provided by [9]. Typically, these models are 
limited in their applicability because they assume a linear 
functional form of covariate and covariate-time interaction. 
To address non-linearity, a non-linear model is available 
[10]. However, in such a model, the user needs to explic-
itly specify a non-linear functional form for each covariate, 
which may be unknown. There are some non-parametric 
models available for modeling longitudinal data where the 
relationships of covariate and time with response are defined 
using an unspecified functions, which are estimated from the 
data (referred to as data-adaptive functions) [11, 12]. Esti-
mation of data-adaptive function is computationally inten-
sive even in low dimensional covariate situation, and often 
impossible when the dimension of covariates is large. Some 
of the estimation procedures proposed in the literature can 
be found in [13–15]; also, see a review by [16]. Tree-based 
approaches, for example RE-EM trees [17], and their exten-
sion to ensemble approaches such as bagging and random 
forest, and modern approach such as generalized neural net-
work mixed model [18] can be applied to high dimensional 
longitudinal data. However, these approaches are not yet 
generalized to multivariate longitudinal responses. One of 
the well recognized non-parametric approaches is the gener-
alized additive mixed model (GAMM) [19]. This approach 
can be implemented using the R package mgcv, which can 
handle multivariate longitudinal responses.

There exist a special case of non-parametric model that 
has drawn a substantial interest because of the flexibility of 
interpretation of its coefficients. This model is referred to 
as a time-varying coefficient model [20–22]. As the name 
suggests, in this model, the coefficient, which represents the 
relationship between response and covariate, itself is a func-
tion of time; hence it provides a time-varying relationship. 
Such model is preferred over the fixed-coefficient model 
discussed above because, instead of providing an overall 
relationship, it provides a relationship between response and 
covariate which is varying over time. For example, in case 
of the laboratory data, the investigator might be interested to 
know if the baseline bilirubin and creatinine have any effect 
on bilirubin and creatinine levels after the device implan-
tation (i.e., whether patients with impaired baseline levels 
have different trajectories from those with normal baseline 
levels), and if so, does that effect last for longer duration or 
only at the beginning of the follow-up?

In this article, we present a new approach for joint mod-
eling of multivariate longitudinal responses. Our approach 
uses data-adaptive functions for modeling non-linearities 
among covariates and time. Below we describe some salient 
features of our approach and briefly describe our contribu-
tion to these features. 

1. In our approach, covariates can be time-invariant or 
time-varying. Although time-varying covariates can 
also be handled by some of the well known methods 
described above, it is worth mentioning here because it 
is relevant when we combine it with the next feature.

2. Our approach is designed to identify covariates that 
affect responses differently at different time intervals. 
This idea is helpful to dissect an overall effect of covar-
iate on the response into different time intervals. For 
example, some covariates affect response at the begin-
ning of the follow-up, whereas others at a later stage 
[23]. This feature can work for time-invariant and time-
varying covariates, however, this is more effective for 
time-varying covariates because it can provide a con-
current effect of covariate on the response. For exam-
ple, when we use time-invariant covariate (say covari-
ate measured at baseline) and plot the relationship of 
covariate and response across time, this relationship is 
represented as a function of time. On the other hand, 
for time-varying covariate, the same relationship can be 
represented as a function of covariate and time. Such 
relationship can be depicted using 3-dimensional par-
tial predicted plot [24]. This feature can be handled by 
the time-varying coefficient model. The time-varying 
coefficient model described earlier includes a non-linear 
term for time, which is modeled non-parametrically, and 
a linear term for each covariate. Our contributions with 
respect to this feature are: (1) we extended the time-var-
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ying coefficient model by modeling multiple responses 
jointly, and (2) we extend the time-varying coefficient 
model by introducing a data-adaptive function for the 
covariate as well. Such an extension is useful in situation 
when, in the true model, covariate enters into the model 
non-linearly, and the aim of the analysis is to improve 
the model’s prediction performance.

3. Our approach can handle high dimensionalities of covar-
iates and responses when some of the covariates and 
responses are pure noise, and having them in the model 
do not unduly influence results for other decisive covari-
ates and responses. In literature, issue of high dimen-
sionality of covariates is often arises for cross-sectional 
data. There is a limited literature that talks about the 
high dimensionality of covariates in case of longitudi-
nal data, and certainly no literature that we come across 
that talks about high dimensionality of the responses, 
and therefore our approach is important in providing a 
framework for handling high dimensionalities for both 
covariates and responses in longitudinal data.

4. Our approach performs response selection separately for 
each time interval. In literature, covariate selection is 
often implemented for longitudinal data. For example, 
see article by Wang and group that talks about covari-
ate selection in case of time-varying coefficient model 
[25]. The novelty of our approach is that, in addition to 
covariate selection, we also perform response selection 
and we do that for different time intervals. This helps to 
identify and order the responses based on their impor-
tance for a given time interval. This approach can guide 
an investigator in allocating resources while collecting 
relevant information.

5. In our approach, the parameters in the model are esti-
mated using gradient boosting, a generic form of boost-
ing. Using boosting for parameter estimation is very 
crucial for our approach because it allows to estimate 
parameters accurately even in high dimension without 
breaking or substantially compromising the perfor-
mance.

Combining above features, we believe, make our approach 
powerful in addressing various aspects of longitudinal data 
analysis with multiple responses. Use of boosting for param-
eter estimation adds robustness to our approach. Boosting 
is a powerful machine learning approach introduced in the 
statistical community by Friedman [26] for handling clas-
sification problems. Following this work, Friedman [24] pro-
vided a generic gradient boosting algorithm. Initially, most 
of the applications of boosting were focused on classification 
and regression problems. However, as boosting started to 
gain popularity, applications of boosting to new problems, 
including longitudinal data, have increased [27–30]. Model 
based boosting, implemented using the R package mboost, 

provides an application of boosting to a general data prob-
lem including the longitudinal data problem [31]. However, 
the package does not implement joint modeling of multi-
variate longitudinal responses. Applications of boosting for 
joint modeling of multiple responses are still rare; one such 
example is the work by Lutz and Buhlmann [32] which is 
focused on cross-sectional and time series data. Therefore, 
we believe that our work provides an important gateway for 
utilizing boosting for joint modeling of multivariate longi-
tudinal responses. Due to the use of boosting in our non-
parametric approach for modeling multivariate longitudinal 
responses, we refer to our approach as BoostMLR.

BoostMLR has some similarities with the component-
wise !2 boosting [33], which is a special case of gradient 
boosting. Component-wise !2 boosting has been used in the 
literature for modeling linear models with high dimensional 
covariates [34]. Section S1 of the supplementary material 
provides brief overview of component-wise !2 boosting. To 
handle high dimensionality of data that includes redundant 
covariate-response pairs, we use an !2 loss function with an 
!1 penalization. Penalization helps to shrink the effect of 
redundant covariate-response pairs to zero. This has multiple 
advantages: 

1. It provides a parsimonious model.
2. It helps to improve the prediction performance.
3. It allows for early termination of boosting procedure, 

thereby prevents it from overfitting, and also reduces 
significant amount of computation.

Our article is arranged as follows. In “Model”, we describe 
our model. In “Boosting Procedure”, we describe the esti-
mation procedure for our model. As a part of estimation, we 
estimate flexible non-linear data-adaptive functions to model 
covariates and their interactions with time. In “Identifying 
Important Variables”, we describe our approach for selection 
of important variables, which include selection of covariates 
and responses. Covariate selection is performed using vari-
able importance (VIMP) approach. Estimates from VIMP 
can separate the effect of a covariate into covariate main 
effect and covariate-time interaction effect. The covariate-
time interaction VIMP effect is further separated into vari-
ous time intervals to identity covariates that are associated 
with the response for a specific time interval. This answers 
whether the covariate has any effect on the response, and 
if so, whether this effect is constant or varying over time, 
and identify the time interval where the effect is maximum. 
Response selection is performed using a new metric that 
we derived, referred to as likelihood of response selection. 
This metric answers how likely a particular response is 
selected among the multiple competing responses for a given 
time interval. This is used to identify importance of one 
response over others for a given time. For example, using the 
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laboratory data, we showed that, as a metric for identifying 
advanced stage of heart failure, bilirubin is more important 
than creatinine before the transplant, whereas, creatinine is 
more important than bilirubin after the transplant. In “Simu-
lation”, we compare the performance of BoostMLR with 
other comparative approaches. In “Clinical Laboratory Data 
Analysis”, we provide an application of BoostMLR to the 
laboratory data. “Conclusion” provides conclusion.

Model

Let !(l)
i
∈ ℝni represents the lth response vector of ni dimen-

sion, where l = 1, 2,… , L , and !(k)
i

 represents an ni dimen-
sional observations of k th covariate where k = 1, 2,… ,K , 
measured at observed time !i for the ith subject, where 
i = 1, 2,… , n . It is possible that some covariates are time-
varying and others are measured only at baseline (in such 
case, baseline values are replicated to maintain their dimen-
sion consistent with time-varying covariates and responses). 
We assume that covariates and responses are standardized 
such that for l = 1, 2,… , L and for k = 1, 2,… ,K,

Remark 1 Note that if some of the covariates are nominal 
with two or more non-numeric levels, those needs to be con-
verted into the numerical binary covariates so they can be 
standardized. This is a standard procedure which is followed 
to create design matrix before model fitting.

Consider the following model

where !(l) =
(
!

(l)
1
,!

(l)
2
,… ,!(l)

n

)T

 represents a vector of lth 
response of dimension N =

∑n

i=1
ni and !(l) represents an 

expectation of !(l) , and let ! =
(
!1, !2,… , !n

)T represents an 
N  dimensional vector of time and the matr ix 
! =

[
!(1), !(2),… , !(K)

]
 represents an N × K  dimensional 

matrix of covariates where the k th column of ! is repre-
sented by !(k) =

(
!
(k)
1
, !

(k)
2
,… , !(k)

n

)T

 . Term !(l) represents 

n∑
i=1

ni∑
j=1

Y
(l)
ij

= 0,

n∑
i=1

ni∑
j=1

Y
(l)
ij

2
= 1,

n∑
i=1

ni∑
j=1

x
(k)
ij

= 0,

n∑
i=1

ni∑
j=1

x
(k)
ij

2
= 1.

(1)!(l) = !
(l) + "

(l), l = 1, 2,…L,

the measurement error for response !(l) . We assume that !(l) 
has zero mean and a block diagonal variance matrix !(l) of 
dimension N × N  where the ith diagonal element of !(l) , 
given by !(l)

i
 , which represents the variance-covariance 

matrix of !(l)
i

 , where i = 1, 2,… , n . We represent !(l)
i

 by 
!

(l)
i
= !(l)"i("

(l)) , where !(l) represents the dispersion 
parameter and !i(!

(l)) represents an exchangeable correlation 
matrix, parameterized by correlation parameter !(l) . Hence-
forth, we represent the correlation matrix using !(l)

i
 . Addi-

tionally, we assume that Corr
(
Y
(l)
i,j
, Y

(l′)
i,j

)
= 0 where l ≠ l′ . 

This is a strong assumption, specifically in clinical studies. 
However, there are two main reasons to make such 
assumption: 

1. The primary focus of our approach is to model the mean 
response !(l) in the presence of other responses, and 
not so much on modeling correlations among multiple 
responses.

2. Modeling correlation among multiple responses can be 
computationally challenging, especially when L is large.

It is important to note that even with the above assumption, 
our approach can still be treated as an approach for multivar-
iate responses. This is because, as you will see in “Boosting 
Procedure”, we are modeling the responses simultaneously 
and only one response is updated at any boosting iteration, 
and hence all the responses are competing with each other 
to update their respective mean responses.

We consider the following form for !(l)

where F(k,l)
(
!(k)

)
 represents an N × N dimensional function 

of the k th covariate and lth response and G(k,l)(!) represents 
an N dimensional function of time ! corresponding to the k th 
covariate and lth response. Both F(⋅) and G(⋅) are unspecified 
functions (unspecified by the user) that we estimate from the 
data. We represent function F(k,l)

(
!(k)

)
 as

where !(k,l)
d

 represents an unknown scalar parameter corre-
sponding to the k th covariate and lth response and !"

(k)
d

 rep-
resents a known diagonal matrix of N × N dimension cor-
responding to the k th covariate. This matrix is obtained as 
follows. First, map !(k) using B-spline [35]; this generates an 
N × Dk  d imens iona l  ma t r ix ,  r ep re sen ted  by 
!
(k)
" =

[
#
(k)
",1
, #

(k)
",2
,… , #

(k)
",Dk

]
 . Second, write !(k)

",d
 , which is the 

d th column of !(k)
"  , as an N × N diagonal matrix, represented 

by !"
(k)
d

 . The form of !"
(k)
d

 is given by

(2)!
(l) =

K∑
k=1

F(k,l)
(
!(k)

)
G(k,l)("), for l = 1, 2,… , L,

(3)F(k,l)
(
!(k)

)
=

Dk∑
d=1

"#
(k)
d
!
(k,l)
d

,
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We represent G(k,l)(!) as

where !" represents an N × H  dimensional matrix 
obtained using B-spline of time ! , and !!! (k,l) represents an 
H  dimensional unknown parameter. To understand the 
form of !" , assume that ! =

(
t(1), t(2),… , t(N)

)T such that 
t(1) ≤ t(2) ≤ ⋯ ≤ t(N) , then the form of !" is given by

where sh , for h = 1, 2,… ,H  , represents an inte-
ger value that depends on the degree of local poly-
nomial and the B-spline knots, whereas bi′,j′ > 0 for 
i′ = 1, 2,… ,H  and j′ = 1, 2,… , sh . Rows of !" corre-
spond to ! =

(
t(1), t(2),… , t(N)

)T and columns of !" repre-
sent H time intervals generated using the B-spline knots. 
Notice that the initial values of ! correspond to non-zero 
values for the initial columns of !" whereas later values 
of ! correspond to non-zero values for the later columns 
of !" . Note that, for illustrating the form of !" , we use 
! =

(
t(1), t(2),… , t(N)

)T , i.e., time is in increasing order. How-
ever, !" can be obtained even when time is not ordered, i.e., 
using ! =

(
t1, t2,… , tN

)T . In that case, the rows of !" are in 
the order of ! =

(
t1, t2,… , tN

)T . In “Identifying Important 
Variables”, we use the columns of !" to find an association 
of response with covariate for various time intervals. Equa-
tion (5) can be rewritten as

where !"h represents the h th column of !" and ! (k,l)
h

 repre-
sents an unknown parameter corresponding to k th covariate 

(4)!"
(k)
d

=

⎛
⎜
⎜
⎜
⎜⎝

b
(k)
#,d1

0 … 0

0 b
(k)
#,d2

… 0

⋮ ⋮ … ⋮

0 0 … b
(k)
#,dN

⎞
⎟
⎟
⎟
⎟⎠

.

(5)G(k,l)(!) = "#!!!
(k,l),

(6)!" =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

b1,1 0 … 0

. . … .

. . … .

b1,s1−1 0 … .

b1,s1 b2,1 … 0

0 . … .

. . … .

. b2,s2−1 … .

. b2,s2 … 0

0 0 … bH,1

. . … .

. . … .

. . … bH,sH−1

0 0 … bH,sH

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

,

(7)G(k,l)(!) =

H∑
h=1

"#h!
(k,l)
h

,

and lth response. Using the form of F(k,l)
(
!(k)

)
 and G(k,l)(!)

, (2) can be rewritten as

where !(k)
d,h

= !"
(k)
d
!#h and !(k,l)

d,h
= "

(k,l)
d

#
(k,l)
h

 . Equation (8) is 
cluttered with subscripts and superscripts. To reduce some 
of the cluttering, we combine subscripts d and h , and super-
script k using ! . Thus, we replace !(k)

d,h
 and !(k,l)

d,h
 , respec-

tively, with !! and !(l)
"

 . Additionally, triple summations 
are replaced by the single summation. Using the new nota-
tions (8) can be written as

Remark 2 Note that, although we use B-spline for mapping 
covariates and time, other local polynomial approaches 
can be used as long as the form of !" is similar to the one 
describe in (6).

Remark 3 Note that in typical non-parametric model using 
B-spline (not in the context of boosting), number and posi-
tioning of knots can have high impact as they control model 
fitting. However, in our approach, B-spline is used within 
the boosting framework, and in the terminology of boost-
ing, it is represented as a part of the base learner (described 
in “Boosting Procedure”). In boosting, the base learners are 
often simple functions which may have weak performance 
when fitted individually, however, when use within the 
boosting framework, they demonstrate strong performance. 
Therefore, in our boosting approach, we use relatively small 
number of knots which are distributed uniformly. We then 
use tuning parameters such as M and ! which are built within 
boosting to control the model fitting.

Boosting Procedure

As a part of the boosting procedure, we define our base 
learner as follows

where !(l) = {!(l)
"
, kh, lh,∀"} represents a set of parameters 

for the base learner and 1(⋅) represents an indicator func-
tion that takes value 1 if the condition in the parenthesis is 
satisfied, else 0. Parameter !(l)

"
 is already introduced in (9). 

Parameters kh and lh represent functions of time and suggest 

(8)
!
(l) =

K∑
k=1

Dk∑
d=1

!"
(k)
d
!
(k,l)
d

H∑
h=1

!#h"
(k,l)
h

=

K∑
k=1

Dk∑
d=1

H∑
h=1

!
(k)
d,h
#
(k,l)
d,h

,

(9)!
(l) =

∑
!

!!"
(l)
!

!(", #, $(l)) =
∑
!

%!"
(l)
!
1(k=kh,l=lh), for l = 1, 2,… , L,
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the most informative covariate-response pair for the h th 
time interval. Thus, rather than fitting each response sepa-
rately, all the responses are fitted simultaneously so they 
could compete with one another and our method chooses the 
most informative response for a given time interval. This is 
a crucial step of our approach where multiple responses are 
analysed together. To estimate !(l) , we use procedure which 
is similar to component-wise !2 boosting. In literature, !2 
boosting is used primarily for estimating parameters from 
a linear model where each covariate has a unique scalar 
parameter, and for a given boosting iteration, one of the 
coordinates, for example the coordinate corresponding to 
the kth covariate, is updated. In our case, we follow a similar 
procedure except we update the estimate for the function 
corresponding to k th covariate and lth response.

The loss function we consider is given by

Once we define the loss function, we estimate !(l) by finding 
the base learner closest to the negative gradient. The nega-
tive gradient for the mth boosting iteration is given by

where !(l)
m−1

 represents an estimate of !(l) from the (m − 1) th 
boosting iteration. We assume that !(l)

0
= 000 for l = 1, 2,… , L . 

We studied a similar loss function in our earlier work and 
observed that the performance of gradient boosting improves 
when we replace variance matrix by an identify matrix in the 
expression of negative gradient such that it is represented by 
residual (see Chapter 5 from [36]). The performance gain is 
specially notable for high dimensional situation. Thus, rather 
than using the form describe above, we use the following 
form for the negative gradient

As a validation, we compare the performance of two types of 
negative gradients 

(
!
(l)

m,"
 vs !(l)

m

)
 using simulation approach. 

The simulation approach is described in “Simulation” and 
the results are provided in the supplementary material. Using 
this new form of negative gradient has two advantages. First, 
the negative gradient is the same as residual, described in 
the component-wise !2 boosting, and thus easy to interpret; 
second, it allows us to get rid of the line search optimization 
step. Once we define the negative gradient, the estimate of 
!(l) can be obtained by solving the following loss function

(10)
L

(l) = L
(
!(l),!(l)

)

=
1

2

(
!(l) − !

(l)
)T
"(l)−1

(
!(l) − !

(l)
)
.

!
(l)

m,"
= −

!L
(
#(l),!(l)

)

!!(l)

|||||!(l)=!(l)
m−1

= "(l)−1
(
#(l) − !

(l)
m−1

)
,

!(l)
m
= "(l) − !

(l)
m−1

.

where the form of L(⋅, ⋅) is given in (10). Estimation of !(l) 
is performed by estimating each component separately (a 
feature of component-wise !2 boosting). In addition to esti-
mating !(l) , our aim is also to address the high dimensional-
ity of responses and covariates. To do that we modify the 
above loss function by adding an !1 penalization. Details 
involving parameter estimation are described in Section S2 
of the supplementary material.

Following the procedure from Section S2 of the supple-
mentary material, we obtain the estimate of !(l)

"
 , denoted 

by "̂(l)
#

 . Once we estimate "̂(l)
#

 , we find {km,h, lm,h} , for 
h = 1, 2,… ,H , meaning, we find the covariate-response 
pair that satisfies the following condition,

where {km,h, lm,h} represents an estimate of {kh, lh} for the mth 
boosting iteration. Using {km,h, lm,h} , we update !(l) for the 
mth boosting iteration using

where ! represents the learning rate (see Algorithm provided 
in Section S1 of the supplementary material).

Remark 4 In (13) we update !(l) using "̂(l)
#

 . In “Identifying 
Important Variables”, we observe that it is convenient if we 
first update !(l)

"
 for the mth boosting iteration and then update 

!(l) . We update !(l)
"

 for the mth boosting iteration using

Update !(l) for l = 1, 2,… , L corresponding to the mth boost-
ing iteration using

Remark 5 One advantage of an estimate !(l)
",m

 is that, for the 
mth boosting iteration, it can be estimated independently 
for different combinations of k and l. This way if there are 
missing values between k th covariate and lth response, they 
do not affect estimation for k′ th covariate and l′ th response 
where k ≠ k′ and l ≠ l′.

Remark 6 Estimation of !(l)
"

 requires estimate of !(l) . Details 
about the estimation are provided in Section S3 of the sup-
plementary material.

(11)
L

(l) = L
(
!(l)
m
, "(#, $, %(l))

)

= L

(
!(l)
m
,
∑
!

&!"
(l)
!
1(k=kh,l=lh)

)
,

(12){km,h, lm,h} = argmax
1≤k≤K,1≤l≤L

Dk∑
d=1

(
"̂(l)
#

)2
,

(13)!
(l)
m
= !

(l)
m−1

+ !
∑
"

!"$̂
(l)
"
1(k=km,h,l=lm,h),

(14)!(l)
",m

= !
(l)
",m−1

+ #!̂(l)
"
1(k=km,h,l=lm,h).

(15)!
(l)
m
=
∑
!

!!"
(l)
!,m

.
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Following algorithm provides key steps of implementa-
tion of our BoostMLR approach. This is a concise version 
of the detailed version provided in Section S4 of the sup-
plementary material. We use the algorithm from the supple-
mentary material for modeling of simulated and real data.

Identifying Important Variables

In our method, we identify important covariates and 
responses, and to do that, we use different approaches. In 
this section, we discuss approaches for identifying covariates 
and responses separately.

Identifying Important Covariates

To identify covariates that influence the response, we use 
standardized variable importance (VIMP) approach [24]. 
VIMP measures the importance of a covariate using its effect 
on model’s prediction performance. Our VIMP approach can 
separate the effect of covariate into covariate main effect and 
covariate-time interaction effect. Covariate main effect repre-
sents an effect of a covariate on the response without involving 
the time component, whereas covariate-time interaction effect 
represents an effect of covariate and time on the response. We 
further separate covariate-time interaction effect into various 
time intervals. This allows us to evaluate how the effects are 
varying across time. The standardized VIMP for covariate 
main effect and covariate-time interaction effect are denoted 
by sVIMPmain and sVIMPint respectively.

In this section, we differentiate two sources of data. Data 
that we described in “Model” is referred here as training data 
and the other data is referred as test data. We build the model 
using training data, using the procedure described earlier, 
and  use  tes t  da t a  to  ca lcu la te  VIMP.  Let 

!̃ =
[
"̃(1), "̃(2),… , "̃(K)

]
 , !̃ and {!̃(l)}1≤l≤L represent test data 

for K covariates, time, and L responses respectively. We 
assume that both training and test data are generated from 
the same distribution. To find sVIMPmain and sVIMPint , we 
need to find the predicted response corresponding to 
{!̃(l)}1≤l≤L as follows. Let x̃(k)

i,j
 represents an observation for 

the (i, j)th component of covariate !̃(k) . Find a value for the 
k th covariate from the training data that is closest to x̃(k)

i,j
 , 

denoted by x(k)
i′,j′

 . For a given d , where d = 1, 2,… ,Dk , we 
use x(k)

i′,j′
 to extract a corresponding value from the set {

b
(k)
!,d1

, b
(k)
!,d2

,… , b
(k)
!,dN

}
 . (Elements from the set are the diago-

nal elements from !"
(k)
d

 , described in (4).) This procedure is 
repeated for all possible (i,  j)th components of !̃(k) . The 
extracted values from the set are used to generate a new 
diagonal matrix !̃(k)

"d
 for the test data where d = 1, 2,… ,Dk . 

Repeat this procedure for k = 1, 2,… ,K . Similar approach 
is used to generate !̃"h

 , where h = 1, 2,… ,H , for the test 
data !̃ as follows. Let t̃i,j represents an observation for the 
(i, j)th component of !̃ . Find a value from ! (where ! repre-
sents time from the training data) that is closest to t̃i,j and use 
this value to extract a corresponding value from the h th col-
umn of !" , described in (6). This procedure is repeated for 
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all possible (i, j)th components of !̃ . The extracted values are 
used to generate a new column vector !̃"h for h = 1, 2,… ,H . 
Calculate !̃(k)

d,h
 using !̃(k)

d,h
= !̃

(k)

"d
!̃#h for k = 1, 2,… ,K  , 

d = 1, 2,… ,Dk and h = 1, 2,… ,H . The estimate of the pre-
dicted response for !̃(l) is given by

where !(k,l)
d,h,M

 is obtained from (14), corresponding to the Mth 
boosting iteration. Note that in our new notations, described 
in (9) and (14), the above expression can be written as

The prediction error for the test data is calculated using 
standardized root mean square error ( sRMSE)

where Ỹ (l)
i,j

 and "̃(l)
i,j

 represent the (i, j)th components of !̃(l) 
and !̃(l) respectively. In “Results”, we use sRMSE to com-
pare the performance of our approach with other compara-
tive methods.

To calculate sVIMPmain for k th covariate, we proceed as 
follows. As mentioned earlier, we represented !̃(k) as the k th 
covariate from the test data !̃ . We use !̃(k) to generate a 
noised-up covariate, denoted by !̃(k)

Noise
 . The noised-up !̃(k)

Noise
 

is obtained by randomly permuting the coordinates of !̃(k) . 
We perform the same procedure that we performed earlier, 
except instead of using !̃(k) , we use !̃(k)

Noise
 to generate a diago-

nal matrix, denoted here by !̃(k)

"d,Noise
 , for d = 1, 2,… ,Dk . 

Calculate !̃(k)
d,Noise,h

= !̃
(k)

"d,Noise
!̃#h . Using !̃(k)

d,Noise,h
 , we obtain 

an estimate of predicted response, denoted by !̃(l)
k

 using

Note that to calculate !̃(l)
k

 we restricted the noising specific 
to k th covariate; everything else remains same as described 
earlier. Once !̃(l)

k
 , for l = 1, 2,… , L , are estimated, we cal-

culate sRMSE(l)
main,k

 by replacing "̃(l)
i,j

 by "̃(l)
i,j,k

 in (16), where 
"̃
(l)
i,j,k

 represents the (i, j)th component of !̃(l)
k

 . The sVIMPmain 
for the k th covariate and lth response is calculated using

!̃
(l) =

K∑
k=1

Dk∑
d=1

H∑
h=1

!̃
(k)
d,h
"
(k,l)
d,h,M

for l = 1, 2,… , L,

!̃
(l) =

∑
"

!̃"#
(l)
",M

for l = 1, 2,… , L.

(16)
sRMSE(l) =

[
1

n

∑n

i=1
1

ni

∑ni
j=1

(
Ỹ
(l)
i,j

− "̃
(l)
i,j

)2
]1∕2

[
1

n

∑n

i=1
1

ni

∑ni
j=1

(
Ỹ
(l)
i,j

)2
]1∕2

for l = 1, 2,… , L,

!̃
(l)
k
=

K∑
k′=1,k′≠k

Dk′∑
d=1

H∑
h=1

!̃
(k′)
d,h

"
(k′,l)
d,h,M

+

Dk∑
d=1

H∑
h=1

!̃
(k)
d,Noise,h

"
(k,l)
d,h,M

for l = 1, 2,… , L.

This procedure is repeated for k = 1, 2,… ,K  to find 
{sVIMP(l)

main,k
}1≤k≤K.

To calculate sVIMPint for k th covariate and lth response, 
corresponding to h th time interval, we use !̃"h , a column 
vector that we described earlier in this section. Let !̃"h,Noise 
represents a new column vector obtain by permuting the 
c o o r d i n a t e s  o f  !̃"h  .  U s i n g  !̃

(k)

"d
 ,  c a l c u l a t e 

!̃
(k)
d,h,Noise

= !̃
(k)

"d
!̃#h,Noise . Using !̃(k)

d,h,Noise
 , we obtain an esti-

mate of predicted response, denoted by !̃(l)
k,h

 using

Note that to calculate !̃(l)
k,h

 we restricted noising specific to 
k th covariate and h th time interval; everything else remains 
same. Once !̃(l)

k,h
 , for l = 1, 2,… , L , are estimated, we calcu-

late sRMSE(l)
int,k,h

 by replacing "̃(l)
i,j

 by "̃(l)
i,j,k,h

 in (16), where 
"̃
(l)
i,j,k,h

 represents the (i, j)th component of !̃(l)
k,h

 . The sVIMPint 
for the k th covariate and the lth response corresponding to 
the h th time interval is calculated using

This procedure is repeated for k = 1, 2,… ,K  and 
h = 1, 2,… ,H to find {sVIMP(l)

int,k,h
}1≤k≤K,1≤h≤H . In “Results” 

and “Clinical Laboratory Data Analysis”, we provide results 
for sVIMPmain and sVIMPint for simulated and real data, 
respectively.

Identifying Important Responses

There is no literature that we came across that talks about iden-
tifying important responses from the model that handles multi-
variate responses. However, identifying important responses is 
equally important especially when the number of responses is 
large. Obviously, the VIMP approach used for identifying impor-
tant covariates will not work for identifying important responses. 
Here we use one of the results from our boosting method to 
identify important responses. Notice that after we estimate !(l)

"
 

in (12), we identify the covariate-response pair with the highest 
magnitude. The estimate of the covariate-response pair for the 
mth boosting iteration and for the h th time interval is denoted by 

sVIMP(l)
main,k

=
sRMSE(l)

main,k
− sRMSE(l)

sRMSE(l)
× 100 for l = 1, 2,… , L.

!̃
(l)
k,h

=

K∑
k′=1,k′≠k

Dk′∑
d=1

H∑
h′=1

!̃
(k′)
d,h′

"
(k′,l)
d,h′,M

+

Dk∑
d=1

[
H∑

h′=1,h′≠h

!̃
(k)
d,h′

"
(k,l)
d,h′,M

+ !̃
(k)
d,h,Noise

"
(k,l)
d,h,M

]
.

sVIMP(l)
int,k,h

=
sRMSE(l)

int,k,h
− sRMSE(l)

sRMSE(l)

× 100 for l = 1, 2,… , L.
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{km,h, lm,h} . To find the important responses, we use the estimate 
lm,h as follows. Note that boosting is a sequential procedure where 
we use negative gradient as our response. We represented nega-
tive gradient using residual, i.e., !(l) − !

(l)
m−1

 . If we observe the 
above algorithm carefully, we find that, as the boosting increases, 
we move from modeling the original responses !(l) to modeling 
the residuals. This means that initial part of boosting is more 
important than the later part, such that after certain boosting 
iteration, the residual part is mostly noise. Therefore, one way to 
identify important responses is to give more weights to the initial 
part of the boosting results compared to the later part. We do 
this, to identify important responses, by generating new estimator, 
which we referred as likelihood of response selection, denoted 
by L(l, h) . This estimator provides the chance that lth response 
is selected at the h th time interval; higher the chance, higher the 
importance of that response. We define L(l, h) by

where 1(lm′ ,h=l) represents an indicator function that takes value 
1 if the estimate lm′,h is the lth response, else 0. As a toy example 
to understand the metric, assume that there are 3 responses, y1 , 
y2 and y3 , and h = 1 , and we fit our model with M = 3 , and 
assume that the sequence in which these three responses are 
selected is {y3, y2, y1} . Then using the index l = 1, 2, 3 for y1 , y2 
and y3 , the result we get is L(l = 1, h = 1) = 2∕18 , 
L(l = 2, h = 1) = 5∕18 and L(l = 3, h = 1) = 11∕18 . Thus, 
L(l, h) is highest for the y3 because it was the first response 
which got selected in the boosting iteration, followed by y2 and 
y1 . In “Results” and “Clinical Laboratory Data Analysis”, we 
provide results of our response selection approach for simulated 
and real data, respectively.

Remark 7 Note that the same approach can be applicable for 
identifying important covariates as well. However, VIMP is 
a well-known approach in machine learning literature and 
thus we stick with VIMP approach for identifying important 
covariates.

Simulation

In this section, we compare our approach with other meth-
ods available in the literature. To do that, we use the fol-
lowing three experiments. In these experiments, our goal 
is to mimic the real world longitudinal data where some 
covariates are associated with the response for a portion of 
the study period (e.g., !(1) , !(2) and !(3) in all three experi-
ments), some are associated with the response for the entire 
study period (e.g., !(4) in Experiment II), and others have no 
association with any of the responses.

L(l, h) =
1

M

M∑
m=1

(
1

m

m∑
m′=1

1(lm′ ,h=l)

)
,

Experiment Description

Experiment I

In this experiment, we generate (4 + qx) time-invariant 
covariates. Some combinations of covariates !(1) , !(2) and !(3) 
are associated with responses !(1) , !(2) and !(3) . Covariate 
!(4) and remaining qx covariates are non-informative, mean-
ing they do not relate with any responses. Additionally, we 
generate qy non-informative responses. The model we con-
sider is given by

where !0 = 1.5 , !1 = 1.5 , !2 = 1.2 , !3 = 1 and ! = 0 . The 
form of the model is such that, for a given time interval, say 
1.5 ≤ ! ≤ 4.5 , and for a non-zero coefficient, the relationship 
between covariate and response is linear, and thus relatively 
simple. The time measurement ! for a given subject is gener-
ated from uniform [0, 6] and arranged in an ascending order. 
All (4 + qx) covariates and qy non-informative responses are 
generated from the standard normal distribution. The meas-
urement error terms !(l) for l = 1, 2, 3 are generated from the 
normal distribution with mean zero and variance-covariance 
matrix !(l) = !(l)"(l)(") , where !(l) = 1 and !(l) = 0.8.

Experiment II

In this experiment, except for !(4) , all other covariates, time 
and qy non-informative responses are generated in the same 
way as described in Experiment I. Covariate !(4) represents 
a time-varying covariate and is generated using

where !! is generated from the normal distribution with 
mean 0 and standard deviation 0.5. The model we consider 
is given by

!(1) = !0 + !1"
(1)1(#<1.5) + !2"

(2)1(1.5≤#≤4.5)

+ !3"
(3)1(#>4.5) + ""(4) + !

(1),

!(2) = !0 + !1"
(1)1(#<1.5) + ""(2)1(1.5≤#≤4.5)

+ !3"
(3)1(#>4.5) + ""(4) + !

(2),

!(3) = !0 + !1"
(1)1(#<1.5) + !2"

(2)1(1.5≤#≤4.5)

+ ""(3)1(#>4.5) + ""(4) + !
(3),

!(4) = exp(" × 0.2) + !!,

!(1) = !0 + !1
(
"(1)

)2
1(#<1.5) + !2"

(2)1(1.5≤#≤4.5)

+ !3"
(3)1(#>4.5) + !4"

(4) + !
(1),

!(2) = !0 + !1
(
"(1)

)2
1(#<1.5) + ""(2)1(1.5≤#≤4.5)

+ !3"
(3)1(#>4.5) + !4"

(4) + !
(2),

!(3) = !0 + !1
(
"(1)

)2
1(#<1.5) + !2"

(2)1(1.5≤#≤4.5)

+ ""(3)1(#>4.5) + !4"
(4) + !

(3),
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where !4 = 1 . Values for other coefficients are the same as 
described in Experiment I. In comparison to Experiment 
I, Experiment II has a quadratic term for !(1) and a time-
varying covariate !(4) is associated with all 3 informative 
responses with non-zero coefficient. Thus, the model in this 
experiment is relatively more complex than Experiment I.

Experiment III

In this experiment, all covariates, time and qy non-informa-
tive responses are generated in the same way as describe in 
Experiment I. The model we consider is given by

where

Values for coefficients !0 , !1 , !2 , !3 and ! are the same as 
describe in Experiment I. In comparison to Experiment I, 
Experiment III has non-linear time-varying coefficients 
such that, for a given time interval, the value of coefficients 
vary between 0 to coefficient values from experiment I. For 
example, !(2) is associated with !(1) and !(3) with a non-zero 
coefficient between 1.5 ≤ ! ≤ 4.5 . In experiment I, the coef-
ficient value is !2 = 1.2 and is constant for 1.5 ≤ ! ≤ 4.5 ; 
on the other hand, in Experiment III, the coefficient value 
increases non-linearly with time such that for ! = 1.5 , "̃2 = 0 
and for ! = 4.5 , "̃2 = "2 (see Fig. 1)

Experimental Settings

We use n = 100 subjects separately for training and test 
data. For each subject, the number of repeated observations 
is generated using a discrete uniform distribution from the 
interval [1, 20]. We consider low and high dimensional 
covariate settings with qx = 5 and qx = 50 respectively in 
all 3 experiments. While comparing the performance of our 
approach with other methods and for VIMP analysis, we 
use qy = 0 , however, in a separate simulation, we compare 
performance of our approach with increasing dimensionality 

!(1) = !0 + !̃1"
(1)1(#<1.5) + !̃2"

(2)1(1.5≤#≤4.5)

+ !̃3"
(3)1(#>4.5) + #"(4) + !

(1),

!(2) = !0 + !̃1"
(1)1(#<1.5)

+ #"(2)1(1.5≤#≤4.5) + !̃3"
(3)1(#>4.5) + #"(4) + !

(2),

!(3) = !0 + !̃1"
(1)1(#<1.5) + !̃2"

(2)1(1.5≤#≤4.5)

+ #"(3)1(#>4.5) + #"(4) + !
(3),

"̃1 = exp
(
log

(
"1 + 1

)
×

!

1.5
× 1(!≤1.5)

)
− 1

"̃2 = exp

(
log

(
"2 + 1

)
×
(

! − 1.5

4.5 − 1.5

)2

× 1(1.5≤!≤4.5)

)
− 1

"̃3 = exp

(
log

(
"3 + 1

)
×
(
! − 4.5

6 − 4.5

)3

× 1(!≥4.5)

)
− 1

of non-informative responses using qy = {0, 5, 50} . These 
experimental settings are used to independently generate 
100 datasets, and the results, average across 100 datasets, 
are recorded. All computations are performed on CentOS 
Linux server.

Remark 8 We refer high dimensional setting for qx = 50 
and qy = 50 , however, this is highly subjective. In case 
of qx = 50 , one can view that qx = 50 is not really a high 
dimensional covariate setting (even for the longitudinal 
data), and we agree with this viewpoint. The broader point 
we wanted to make through this simulation is that our 
method could be easily implemented even when qx = 500 or 
qx = 5000 without breaking, and we use qx = 50 because of 
the limited computational resources. In case of qy = 50 , we 
strongly believe that qy = 50 is a high dimensional response 
setting for longitudinal studies. We have not come across any 
literature that would treat modeling of 50 responses simul-
taneously as a common scenario.

Implementing Boosting for Multivariate 
Longitudinal Response

Our approach is implemented using the R package Boost-
MLR [37], which implements boosting for multivariate lon-
gitudinal responses as described in the algorithm. We use 
cubic B-spline for mapping of covariates and time, respec-
tively, using 5 and 25 equally spaced knots. The !1 penaliza-
tion procedure is repeated 100 times to generate the distribu-
tion of noised-up estimate and 15th and 85th percentiles of 
that distribution are used to set limits for lower and upper 
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Fig. 1  Time varying coefficient "̃1 , "̃2 and "̃3 in black, red and green 
respectively plotted across time
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bound respectively (see Section S2 of the supplementary 
material for details). We use the learning rate ! = 0.1 . We 
set the total number of boosting iterations M = 500 , however 
M is estimated as a part of the boosting iteration (see Algo-
rithm 2 in Section S4 of the supplementary material), which 
allows for early termination to avoid model overfitting.

Remark 9 Notice that in “Introduction”, we described two 
forms of negative gradient, denoted by !(l)

m,"
 and !(l)

m
 . We 

mentioned that we prefer to use !(l)
m

 . In the supplementary 
section S5, we have provided a comparison of performance 
of two forms of negative gradient. From the result, it is 
clear that our approach has a superior performance when 
we use !(l)

m
 as a negative gradient and thus use of this form 

is justified.

Comparative Methods

Multivariate Marginal and Mixed Effect Model

As a comparison to our BoostMLR approach, among other 
methods, we use multivariate marginal model (MMM) [8, 
38] and multivariate mixed effect model (MMEM) [9]. 
MMM and MMEM can be implemented using the R pack-
ages mmm and mixAK respectively. The R package mixAK 
is primarily used for cluster analysis, which is based on 
multivariate longitudinal responses, however, in our case, 
we use the GLMM_MCMC function from this package, which 
provides an implementation of Bayesian estimation to mul-
tivariate linear mixed effect models. MMM includes, for 
each covariate, a linear term and an interaction term for 
covariate and time. For parameter estimation, we assume 
an exchangeable correlation structure. MMEM includes, 
for the random effect part, a random intercept, and for the 
fixed effect part, for each covariate, a linear term and an 
interaction term for covariate and time. For MMEM, we use 
Markov chain Monte Carlo approach for parameter estima-
tion with a total of 6000 samples from which first 5000 are 
discarded as a burn-in sample, and remaining samples are 
used for parameter estimation. For other parameters, we use 
the default setting.

Multivariate Generalized Additive Mixed Model

Multivariate generalized additive mixed model (MGAMM) 
can be implemented using the R package mgcv. We fit the 
following model

where the first term corresponds to the random intercept; 
second and third terms include, for each covariate, a term 

!(l)
← !111 +

K∑
k=1

s("(k)) +

K∑
k=1

s("(k) ⋆ #), for l = 1, 2, 3,

for covariate and for covariate-time interaction respectively. 
Function s represents an unknown function that needs to be 
estimated. We use B-spline to specify this function with 5 
equally spaced knots. (We could not use higher number of 
knots because of the longer computational time.) Smooth-
ing parameter for each function is estimated using restricted 
maximum likelihood. For other parameters, we use the 
default setting.

Model-Based Boosting

To provide comparison with other boosting procedures, we 
use model-based boosting from the R package mboost. We 
fit the following random intercept models

where ! ∶ " represents a dataset that consist of all K covari-
ates as well as all covariate-time interactions. Unlike other 
comparative methods, mboost does not fit multivariate 
responses jointly. Therefore we fit each response separately 
and compare its prediction performance. The first term from 
each model represents a random intercept. Second and third 
terms from the first model represent a cubic B-spline base 
learner for the covariate and the covariate-time interaction 
respectively. Second term from the second model repre-
sents a regression tree base learner. First and second models 
are denoted by mboostBS and mboostTree respectively. For 
mboostBS , we use 5 and 25 equally spaced knots for second 
and third terms respectively, and for mboostTree , we grow a 
maximum of 5 terminal nodes regression tree. We use the 
learning rate ! = 0.1 . We set the total number of boosting 
iterations M = 500 , however we estimate the value of M 
using 10 folds cross-validation to avoid model overfitting. 
For other parameters, we use the default setting.

Results

Prediction Performance

Methods described in “Comparative Methods” are com-
pared for their prediction performance on the test data using 
sRMSE , described in (16). Table 1 provides sRMSE values 
averaged across 100 independently generated data.

In all three experiments, the overall performance of 
BoostMLR is considerably better than other procedures in 
both low and high dimensional covariate settings.

In Experiment I, for a given time interval, covariates 
are related with responses linearly. Linear models such 
as MMM and MMEM, each with linear term for covari-
ates can better approximate the true model compared to 

!(l)
← !111 +

K∑
k=1

bbs("(k)) +

K∑
k=1

bbs("(k) ⋆ #),

!(l)
← !111 + btree(" ∶ #), for l = 1, 2, 3,
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the other non-linear models. Thus, we observe that MMM 
and MMEM have better prediction performance compared 
to MGAMM, mboostBS and mboostTree in low dimensional 
settings. However, despite being a non-linear model, perfor-
mance of BoostMLR is far better, which suggests that it can 
approximate a simple linear model. It is not surprising that 
a model without any mechanism for penalizing the dimen-
sionality suffers in high dimensional settings. This explains 
the poor prediction performance of MMM and MMEM in 
high dimensional settings.

Experiment II has a non-linear functional form for !(2) 
and !(4) . Thus, performance of MMM and MMEM is poor 
compare to non-linear models in low dimensional settings. 
Among non-linear models, performance of BoostMLR is 
better than all other methods in low and high dimensional 
settings; the only method that comes close to BoostMLR is 
mboostBS.

Experiment III has a unique situation where covariates 
enter into the model linearly but the functional forms of 
coefficients are non-linear and vary with time. We observe 
that overall, the performance of MMM and MMEM is 
comparable to MGAMM, mboostBS and mboostTree in low 
dimensional setting. In both low and high dimensional 

settings, performance of BoostMLR is better; other methods 
that come close to BoostMLR are mboostBS and MMEM in 
low dimensional settings and mboostBS in high dimensional 
settings.

It is surprising to observe that performance of mboostTree is 
not at par with mboostBS . Trees are well-known for modeling 
multivariable interactions but not so much for modeling non-
linearity. We believe this might be the reason for its relatively 
low performance compare to mboostBS . High dimensionality 
can deteriorate performance of any approach. We observe that 
MGAMM fails to execute in high dimensionality. However, 
boosting is generally robust to high dimensionality, and we 
observe that the overall performance of boosting methods, 
including BoostMLR, does not deteriorate notably.

We compare the prediction performance of BoostMLR 
with an increasing number of non-informative responses 
using qy = {0, 5, 50} . Results from this analysis are provided 
in Table 2. Comparing results for qy = 5 with qy = 0 , we 
observe that having a moderate number of non-informative 
responses does not impair prediction performance of Boost-
MLR. In fact, in Experiments I and III, having a moder-
ate number of non-informative responses improve the pre-
dictive performance, whereas in Experiment II, it impairs 

Table 1  Test set performance 
using simulations

Values reported are test set standardized RMSE (sRMSE) averaged over 100 independently generated data 
with q

y
= 0 . Values displayed in bold identify the winning method for an experiment and any other method 

within one standard deviation of its sRMSE . NA represents that the approach failed to execute due to high 
dimensionality

q
x
 = 5 q

x
 = 50

!(1) !(2) !(3) !(1) !(2) !(3)

Experiment I
MMM 0.611 0.582 0.613 0.828 0.816 0.831
MMEM 0.608 0.578 0.609 0.805 0.780 0.808
MGAMM 0.643 0.600 0.643 NA NA NA
mboostBS 0.621 0.594 0.619 0.637 0.610 0.634
mboostTree 0.634 0.616 0.632 0.650 0.617 0.651
BoostMLR 0.518 0.517 0.511 0.534 0.533 0.526
Experiment II
MMM 0.418 0.398 0.413 0.581 0.564 0.570
MMEM 0.417 0.397 0.412 0.579 0.557 0.565
MGAMM 0.365 0.336 0.360 NA NA NA
mboostBS 0.360 0.333 0.352 0.368 0.340 0.358
mboostTree 0.365 0.348 0.364 0.399 0.385 0.400
BoostMLR 0.331 0.288 0.314 0.343 0.296 0.325
Experiment III
MMM 0.608 0.601 0.605 0.849 0.846 0.849
MMEM 0.602 0.594 0.599 0.817 0.805 0.813
MGAMM 0.616 0.608 0.613 NA NA NA
mboostBS 0.602 0.591 0.600 0.622 0.610 0.618
mboostTree 0.653 0.646 0.650 0.645 0.635 0.647
BoostMLR 0.561 0.564 0.561 0.576 0.580 0.577
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prediction performance only marginally. Comparing results 
for qy = 50 with qy = 0 , we observe that having a large num-
ber of non-informative responses marginally affects predic-
tion performance of BoostMLR. However, despite including 
50 additional non-informative responses in the model, the 
performance of BoostMLR is considerably better than other 
available methods from Table 1, which are evaluated without 
any non-informative responses.

Results for Identifying Important Covariates

Our approach can identify important covariates that are 
related with responses using standardized VIMP, denoted by 
sVIMP . sVIMP values can separate the effect of covariate into 
covariate main effect and covariate-time interaction effect. 
sVIMP values for covariate main effect (i.e., sVIMPmain ) are 

provided in Table 3. Overall, the sVIMP approach is able to 
find the important covariates that affect responses in all three 
experiments. We observe that non-informative covariates have 
sVIMP values close to zero, as shown under the column noise. 
Thus, the sVIMP approach correctly distinguishes informative 
and non-informative covariates. sVIMP values are margin-
ally smaller for the high dimensional covariate setting, which 
is expected due to some deterioration in the prediction per-
formance, yet, it clearly identifies important covariates with 
ease. This suggests that our method is robust in identifying 
important covariates in high dimensional settings.

sVIMP values describing covariate-time interaction 
effects (i.e., sVIMPint ) for low dimensional covariate set-
tings (i.e., qx = 5 ) are shown in Fig. 2. The sVIMP approach 
clearly identifies covariates that are related with different 
responses at different time intervals. The top three plots 

Table 2  Test set performance 
using simulations

Values reported are test set standardized RMSE (sRMSE) averaged over 100 independently generated data

q
x
 = 5 q

x
 = 50

!(1) !(2) !(3) !(1) !(2) !(3)

Experiment I
BoostMLR ( q

y
 = 0) 0.518 0.517 0.511 0.534 0.533 0.526

BoostMLR ( q
y
 = 5) 0.516 0.515 0.511 0.529 0.522 0.515

BoostMLR ( q
y
 = 50) 0.532 0.512 0.527 0.547 0.522 0.531

Experiment II
BoostMLR ( q

y
 = 0) 0.331 0.288 0.314 0.343 0.296 0.325

BoostMLR ( q
y
 = 5) 0.332 0.290 0.316 0.345 0.298 0.327

BoostMLR ( q
y
 = 50) 0.343 0.293 0.323 0.375 0.315 0.351

Experiment III
BoostMLR ( qy = 0) 0.561 0.564 0.561 0.576 0.580 0.577
BoostMLR ( q

y
 = 5) 0.555 0.558 0.556 0.558 0.562 0.559

BoostMLR ( q
y
 = 50) 0.558 0.557 0.556 0.554 0.556 0.554

Table 3  Standardized VIMP 
main effect (sVIMPmain) 
averaged over 100 independent 
replications

Values in the table correspond to first 4 covariates and the average VIMP value from q
x
 non-informative 

covariates provided under noise

q
x
 = 5 q

x
 = 50

!(1) !(2) !(3) !(4) Noise !(1) !(2) !(3) !(4) noise

Experiment I
!(1) 31.41 32.72 13.97 0.02 0.00 27.90 28.70 11.96 0.01 0.00
!(2) 37.47 − 0.01 17.43 0.00 0.02 35.11 − 0.01 15.81 − 0.01 0.00
!(3) 33.73 37.16 0.03 0.00 0.02 30.83 33.87 0.01 0.01 0.00
Experiment II
!(1) 26.31 12.83 5.79 5.69 0.01 22.99 10.48 4.82 4.57 0.00
!(2) 41.33 0.02 10.57 14.27 0.01 36.44 0.02 9.41 11.25 0.00
!(3) 31.99 16.96 0.02 9.67 0.02 28.06 15.02 0.01 7.27 0.00
Experiment III
!(1) 9.72 6.65 1.56 − 0.02 0.02 8.75 6.02 1.38 0.00 0.00
!(2) 10.22 0.07 1.81 0.02 0.02 9.07 0.01 1.49 0.00 0.00
!(3) 9.56 6.85 0.03 0.03 0.01 9.03 5.98 0.00 0.00 0.00
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from Fig. 2 correspond to Experiment I. They show that 
!(1) is related with all 3 responses at the beginning of the 
study, !(2) is related with !(1) and !(3) during the middle 
portion of the follow-up, and !(3) is related with !(1) and 
!(2) towards the end of the follow-up. The middle three plots 
from Fig. 2 correspond to Experiment II. They provide simi-
lar findings to those observed for Experiment I, except an 
additional constant effect of !(4) . The effect of !(4) is constant 
because, although !(4) is time-varying, the associated coef-
ficient is constant during the entire follow-up period. Lastly, 
the bottom three plots from Fig. 2 correspond to Experi-
ment III. Covariates !(1) , !(2) and !(3) for Experiment III are 
time-invariant but the corresponding coefficients are func-
tions of time as described in Fig. 1. We observe that sVIMP 
values approximate the relationship described in Fig. 1; for 
example, !(1) , !(2) and !(3) are associated with !(1) and has 
sVIMP value zero at the beginning of their time intervals 
and as they reach towards the end of their time intervals, 

sVIMP value increases rapidly. Similar trends continue for 
!(2) and !(3) . Throughout, we observe that non-informative 
covariates have their sVIMP values close to zero. Similar 
results are observed for high dimensional covariate setting 
(i.e., qx = 50 ) and they are shown in Section S6 of the sup-
plementary material.

Results for Identifying Important Responses

As mentioned earlier, our approach can identify not only 
important covariates but also important responses. This is 
specially useful in high dimensional response situation. Our 
response selection criteria can identify important responses 
at different time points. Figure  3 identifies important 
responses at different time points. To get a sense of how to 
identify important responses and to order them in our experi-
ments, we need to consider the magnitude of the coefficient 
for each covariate corresponding to each response as well as 

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time

V
IM

P

Fig. 2  Standardized VIMP for covariate-time interaction 
(
sVIMPint

)
 

for Experiment I (top), Experiment II (middle) and Experiment III 
(bottom) for q

x
= 5 . Left, middle and right plots correspond to !(1) , 

!(2) and !(3) respectively. Black, red, green and blue colors corre-
spond to !(1) , !(2) , !(3) and !(4) respectively, and orange corresponds to 
the average VIMP values across q

x
 non-informative covariates
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the variance of each response. For example in Experiment I, 
we can observe that the variance of !(2) is lowest, followed 
by !(3) and then !(1) . We then consider the magnitude of 
coefficient for each covariate. We observe that for ! < 1.5 , 
covariate !(1) affects all three responses and has the same 
magnitude of coefficient. In this situation, the important 
response is the one which has the lowest variance, which is 
!(2) , followed by !(3) and !(1) , and thus we observe that, in 
Fig. 3, for ! < 1.5 , the responses are selected in the order of 
!(2) , !(3) and !(1) . Again in Experiment I, for 1.5 ≤ ! ≤ 4.5 , 
coefficient corresponding to the model for !(2) is zero, and 
thus it has the lowest likelihood, whereas coefficients cor-
responding to models for !(1) and !(3) are same, and thus !(3) 
has a higher likelihood of getting selected followed by !(1) . 
Similarly for ! > 4.5 , coefficient for !(3) is zero, and thus it 
has the lowest likelihood, whereas coefficients for !(1) and 
!(2) are same, thus !(2) has a higher likelihood of getting 
selected followed by !(1) . Note that even though Experi-
ments II and III are different from Experiment I, the overall 
form is not very different in this context, and thus the expla-
nation used for Experiment I can be applied for Experiments 
II and III. Similar results are observed for high dimensional 
covariate setting (i.e., qx = 50 ) and they are shown in Sec-
tion S6 of the supplementary material.

Remark 10 In addition to the above results we have also 
extracted estimates for correlation and dispersion param-
eters. These results are described in Section S6 of the sup-
plementary material.

Clinical Laboratory Data Analysis

As an application of BoostMLR to the real data, we consider 
the laboratory data for the HF patients that we described in 
“Introduction”. We use our BoostMLR approach for joint 

modeling of bilirubin and creatinine, and to find temporal 
trends for bilirubin and creatinine. (Note that the bilirubin 
we refer here indicates total bilirubin.) Studying the tem-
poral trend allows the investigator to evaluate the behavior 
of bilirubin and creatinine and identify their critical levels 
for the high risk patients before and after the heart trans-
plant. Also, by joint modeling of bilirubin and creatinine, we 
can identify the risk factors that influence their trajectories. 
Using the risk factor information, investigator can predict 
the future risk for new patients and control the risk factors 
to minimize this risk.

The laboratory data is based on n = 459 patients who 
were listed for heart transplant and were put on MCS through 
device implantation from December 1991 to July 2009 at 
Cleveland Clinic. These patients had periodic measurements 
of their bilirubin and creatinine. A total of 18285 measure-
ments of bilirubin and creatinine were available following 
device implantation with an average of 39 measurements 
per patient. Tables 4 and 5 provide patients’ characteristics. 
By the end of the study follow-up, 312 patients had heart 
transplant. Time of heart transplant varied among patients, 
and thus, to identify levels of bilirubin and creatinine before 
and after the transplant, instead of using the observed time, 
we created a new time variable, referred as centered time, 
such that, if the patient had heart transplant, we subtract his/
her time of the transplant from the observed time (at which 
bilirubin and creatinine were measured), and if the patient 
didn’t receive heart transplant, we subtract his/her maximum 
observed time from the observed time. By doing that, for 
the heart transplant patient, the centered time takes negative 
values before the transplant, zero at the time of transplant, 
and positive values after the transplant, whereas, for the non-
transplant patient, centered time takes non-positive values.

The laboratory data is analyzed using our BoostMLR 
approach, implemented using the R package BoostMLR. 
The package includes the laboratory data as well as sample 
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Fig. 3  Figure plots the values of likelihood of response selection across time for !(1) (black), !(2) (red) and !(3) (green). Left, middle and right 
plots correspond to Experiments I, II and III respectively, each for q

x
= 5
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codes used for analysis of this and the simulated data from 
“Simulation”. We used cubic B-spline for mapping of continu-
ous covariates and time respectively using 5 and 25 equally 
spaced knots. The !1 penalization procedure is repeated 100 
times to generate the distribution of noised-up estimate and 
15th and 85th percentiles of that distribution are used to set 
limits for lower and upper bound respectively (see Section S2 
of the supplementary material for details). We use the learning 
rate ! = 0.1 . We set the total number of boosting iterations 

M = 500 , however M is estimated as a part of the boosting 
iteration to avoid model overfitting. The original data was 
randomly split into the training (350 patients) and test (109 
patients) data. The training data was used to build the model 
and the test data was used to calculate VIMP.

Figure 4 shows the mean predicted levels of bilirubin 
and creatinine, stratified by transplant status. Figure shows 
that levels of bilirubin and creatinine are different among 
patients who received transplant compared to patients who 
didn’t receive transplant. There are multiple factors that were 
considered in order for patient to qualify for the transplant 
and we observed that patients who didn’t receive heart trans-
plant have very high bilirubin levels compared to patients 
who received transplant. (We observed a spike at zero with 
bilirubin value around 7.) It is possible that impaired levels 
of bilirubin could have played a role in deciding whether 
to proceed with transplant or not. This is because impaired 
levels of bilirubin at the time of transplant is a risk factor for 
mortality [39]. We observed different effects of transplant 
on bilirubin and creatinine. Bilirubin level normalized after 
the transplant, whereas, creatinine level risen beyond the 
normal range. In Fig. 5 we plotted the likelihood of selec-
tion of bilirubin and creatinine at different time points. Plot 
shows that bilirubin is most likely to be selected as an impor-
tant response before the transplant, whereas, creatinine is 
most likely to be selected as an important response after the 
transplant. Findings from Figs. 4 and 5 suggest that inves-
tigator should focus more on the levels of bilirubin before 
the transplant and levels of creatinine after the transplant. 
This allows investigator to allocate resources in collecting 
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Fig. 4  Left and right plots respectively correspond to the mean predicted levels of post implant bilirubin and creatinine. In both plots, red lines 
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bilirubin and creatinine at different phases of management 
of high risk HF patients.

To understand factors that contributed to the trajectories 
of bilirubin and creatinine, we consider the covariate main 
effects and covariate-time interaction effects using VIMP 
approach. The standardized VIMP main effect (sVIMPmain) 
for each covariate is shown in Fig. 6, whereas the stand-
ardized VIMP covariate-time interaction effect (sVIMPint) 
is shown in Fig. 7. In case of bilirubin, transplant status, 
age, BSA and baseline bilirubin are covariates that have 
high covariate main effects and covariate-time interaction 
effects. In case of creatinine, height, device continuous flow 

(which is a type of MCS device), BMI, blood urea nitrogen, 
history of smoking and hypertension have high covariate 
main effects and covariate-time interaction effects. Other 
covariates which have high covariate-time interaction effects 
with bilirubin are BMI and inotrope (a type of life support). 
When we dissect the covariate-time interaction effects, we 
observed that, in case of bilirubin, age and BMI affected 
the bilirubin levels before transplant, and the bilirubin lev-
els were very different between patients who didn’t receive 
transplant and patients who received transplant. On the other 
hand, in case of creatinine, BMI and blood urea nitrogen 
affected creatinine levels before transplant, whereas height, 

Fig. 6  Top and bottom plots 
respectively represent the 
standardized VIMP main effect 
(sVIMPmain) for each covari-
ate corresponding to the post 
implant bilirubin and creatinine
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Fig. 7  Left and right plots respectively represent the standardized VIMP of covariate-time interaction effect (sVIMPint) for the post implant bili-
rubin and creatinine

Table 4  Summary statistics 
from laboratory data

Values in the table are mean ± standard deviation or n(%)

N Summary N Summary

Demography
Age 459 52.71± 12.25 Race (black) 456 54(12)
Sex (female) 459 83(18) Race (other) 456 13(3)
Race (white) 456 389(85)
Body size
Height 451 174.50 ± 9.33 BSA 391 2.03 ± 0.27
Weight 393 83.88 ± 18.68 BMI 391 27.40 ± 5.09
Weight/height 391 0.48 ± 0.09
Lab values prior to implantation
Baseline creatinine 382 1.72 ± 1.43 Blood urea nitrogen 378 37.73 ± 21.91
Baseline bilirubin 371 1.73 ± 1.39 Hematocrit 352 32.73 ± 5.05
Hemodynamics prior to implantation
Cardiac Index 288 1.93 ± 0.58
Patient history
Atrial fibrillation 459 79 (17) Implantable defibrillator 459 111 (24)
Angina-CAD 459 22 (5) Myocardial infarction 459 147 (32)
Angina-stable 459 76 (17) Open heart surgery 459 146 (32)
Arrhythmia 459 93 (20) Other thoracic surgery 459 116 (25)
CABG 459 92 (20) Sternotomy 459 109 (24)
Current smoker 459 41 (9) Transfusion 459 142 (31)
Smoking 459 106 (23) Ventricular fibrillation 459 21 (5)
Dialysis 459 19 (4) Ventricular tachycardia 459 127 (28)
Hypertension 459 116 (25)
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device continuous flow, history of smoking (both device 
continuous flow and history of smoking have similar VIMP 
values) and hypertension affected creatinine levels after the 
transplant.

Conclusion

In this article, we presented new gradient boosting approach 
for joint modeling of multivariate longitudinal responses. 
Our approach is equipped to handle time-varying covari-
ates. Use of gradient boosting allows our approach to handle 
high dimensionality of covariates with ease and maintain 
high prediction performance, contrary to other non-boosting 
approaches that either break or suffer in terms of prediction 
performance.

One of the unique features of our approach is the handling 
of high dimensionality of responses. Literature on joint mod-
eling of multiple responses and particularly high dimensional-
ity of responses, is rare. Simulation results show that predic-
tion performance of our approach does not deteriorate even in 
high dimensional response situations. Another unique feature 
of our approach is the ability to identify covariates that affect 
responses differently at different time intervals. Such feature 
has an important applications in observational studies where 
certain covariates are known to affect response trajectory at 
different time points. Additionally, our approach has the ability 
to identify important responses at different time points. This 
allows investigator to allocate resources in collecting different 
information at different time points. For example, in case of 
laboratory data, we observed that bilirubin was an important 
response before transplant whereas creatinine was an impor-
tant response after transplant. Thus, in summary, our approach 
addresses important aspects of analysis of longitudinal study. 
This is specifically relevant to investigator whose objective 
is to identify important covariates and responses in the data, 
and once identified, learn about how the relationships between 
them are varying across time.

Our approach has some limitations. Our approach will 
not be effective in situations when the true model includes 

interactions among multiple covariates. Interactions among 
covariates can be incorporated in our approach by explic-
itly creating such variables and adding them into the model. 
However, more efficient way to incorporate interaction is to 
use regression tree as a base learner. We developed a tree-
based gradient boosting method for modeling longitudinal 
response when covariates are time-invariant [27]. Tree-
based boosting with time-varying covariates is challenging 
and the literature on this do not provide satisfactory results. 
The challenging part is in the derivation of tree splitting 
rule which should provide an optimal separation of parent 
node into the daughter nodes and yet maintains all observa-
tions for the specific subject undivided. Another limitation 
of our approach is that we assume an exchangeable correla-
tion structure of the correlation matrix. This is our attempt 
to keep the structure of the correlation matrix simpler. In a 
future update of BoostMLR package, we will provide some 
additional structural forms of the correlation matrix.

In this article, we focus on situation where the function 
G(⋅) is a function of single variable, namely ! . In future, we 
will extend our approach where function G(⋅) can accom-
modate multiple time-varying covariates simultaneously. 
Another possible extension is when function G(⋅) simultane-
ously accommodates ! and !k , where !k represents time points 
at which kth time-varying covariate is measured and it need 
not coincide with time ! when the responses are measured. 
Additional possible extension of our approach is the exten-
sion to categorical responses.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42979- 022- 01072-6.
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