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Abstract
Atrial fibrillation (AF) represents a condition of irregularities of heartbeats. Timely diagnosis and treatment of AF are 
crucial to avoid serious consequences such as stroke, heart failure and death. AF is detected from patient’s rhythm data as 
a binary longitudinal sequence. In this article, we introduce an approach for analyzing the binary longitudinal sequence of 
AF. Our approach is based on gradient boosting, a machine learning approach. We use multivariate tree as a base learner 
to model complex relationships between multiple covariates and response. In order to model covariate-time interactions, 
we use B-spline. Application of our approach to a randomized trial data provides the importance of surgical ablation in the 
treatment of AF among patients with persistent or long-standing persistent AF. Comparison of prediction performance of our 
approach with other methods using randomized trial data and simulated data shows that our approach has a better prediction 
performance. Variable selection using variable importance has identified duration of AF as an important covariate that has 
strong interaction with post-surgery time. This helps to identify patients’ variability and groups of patients who derived the 
most benefits from the treatment. Our method can be implemented using the R package boostmtree.

Keywords  Gradient boosting · Binary longitudinal response · Multivariate regression tree · B-spline · Atrial fibrillation

Introduction

Atrial fibrillation (AF) is a serious medical condition in 
which patient’s heartbeats become irregular, often rapid, 
due to abnormal electrical signals. Older age is one of the 
most common risk factors for AF [1]. Another risk factor 
is diseases of heart valves, specifically the mitral valve; 
25–50% of patients with mitral valve disease also have AF. 
Diagnosis of AF requires patient’s heart rhythm to be moni-
tored continuously over time. However, in most situations, 
mechanism to continuously monitor the rhythm is not yet 
practical. Thus, rhythm is monitored intermittently, produc-
ing snapshots of rhythm, which then examined by a cardi-
ologist to determine presence or absence of AF as a binary 
longitudinal sequence.

As an example consider a study of 260 patients with per-
sistent or long-standing persistent AF associated with mitral 
valve disease. These patients undergone mitral valve surgery 
(MVS) and were randomized in 1:1 ratio to either left atrial 
appendage closure (non-ablation group) or surgical ablation 
(ablation group) for the treatment of AF [2]. For 12 months 
of follow-up period, patients transmitted approximately 90 s 
of their heart rhythm weekly by telephone. Each transmitted 
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rhythm was examined by a cardiologist to determine whether 
AF was present (represented by value 1) or absent (repre-
sented by value 0) during those 90 s. This procedure has 
generated, for each patient, a sequence of binary responses 
across 12 months of follow-up period. In this article, we 
describe our method for analyzing this binary longitudinal 
response of AF and demonstrate that the method is general 
enough to be used for other types of binary longitudinal 
responses.

Before we describe our method, we review the literature 
available for analyzing binary longitudinal responses, and 
describe why the current literature may not be suitable for 
analyzing AF data or some other data with similar or higher 
level of complexity. As a start, consider Fig. 1, which is 
obtained by calculating an ensemble average of binary lon-
gitudinal responses of AF across all patients. For the sake of 
an argument, assume that the figure provides a likely presen-
tation of the true relationship (In Sect. Implementing Boost-
MTree we provide a plausible physiological mechanism that 
will substantiate our argument). Clearly, the relationship of 
the ensemble average of AF with time is non-linear. Later, in 
Sect. Implementing BoostMTree, we show that the relation-
ship remains non-linear, but varies based on conditioning 

using the important covariates. Naturally, parametric models 
such as marginal [3] and mixed effect [4] models with linear 
functional form for covariates and time will not provide a 
satisfactory solution. Non-linearity could be accounted by 
specifying  a non-linear model [5]. However, such model 
may still be unsatisfactory because it is difficult to specify 
non-linear functional forms that capture relationships, which 
are varying with time and other covariates. Therefore, it is 
important that the data should be analyzed using data-adap-
tive methods, i.e., methods which allow the functional form 
to be data dependent. Neural network (NN) is a new data-
adaptive method, known for capturing non-linear relations 
between covariates and the response. The method is often 
used when observations are independent; for example obser-
vations from cross-sectional study. Lately, there are some 
applications of NN for longitudinal data. These applica-
tions have wide range. For example, Genesan et al. [6] have 
compared the predictive ability of NN ignoring the depend-
ent structure; whereas, to account for dependent structure, 
Mandel et al. [7] have developed a new approach, referred 
to as generalized neural network mixed model (GNMM) in 
which they used the framework of mixed effect model but 
the fixed-effect component is replaced by a series of nested 

Fig. 1   Figure plots an ensem-
ble average of AF (across all 
patients)
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activation functions used in NN. See references in [7] for 
additional applications of NN for longitudinal data.

Tackling non-linearity is one aspect; another equally 
important aspect is accounting for interactions among multi-
ple covariates, as well as multiple covariates and time. In the 
literature, in most models, including the parametric models, 
interactions remain unaccounted unless they are explicitly 
specified. Generalized additive mixed model (GAMM) is 
one of the well-known data-adaptive methods for modeling 
non-linearity [8]. However, it is likely to produce a sub-
optimal result when the true relationship includes interac-
tions among multiple covariates and time, and the model 
does not account for these interactions. Third aspect is the 
dimensionality of covariates. High dimensionality may not 
be a feature of all data; however, many methods available in 
the literature can break in high dimensionality. In summary, 
a desirable method should satisfy the following properties: 
(i) It should be data-adaptive to account for non-linear func-
tional form. (ii) It should account for interactions among 
multiple covariates and time. (iii) It should handle high 
dimensionality of covariates, if it exists, without breaking 
or substantially compromising the performance.

Two aspects are important for a method to satisfy 
the above properties - the model that the method is specify-
ing should be flexible enough, and the procedure for parame-
ter estimation should be robust and accurate. Gradient boost-
ing, a powerful machine learning approach, has shown some 
promising results in parameter estimation for models involv-
ing longitudinal response [9–12]. However, most of its appli-
cations are limited to continuous response. Some implemen-
tations of boosting for binary longitudinal response worth 
mentioning here are articles by Tutz and Groll [13], Groll 
and Tutz [14] and Hothorn et al. [15]. Tutz and Groll [13] 
and Groll and Tutz [14] have used a special type of boost-
ing, referred to as component-wise boosting [16]. Compo-
nent-wise boosting allows their approaches to handle high 
dimensionality of covariates; however, it fails to account 
for interactions among multiple covariates and time. Model-
based boosting [15] generalizes the idea of component-wise 
boosting, where, in order to capture various features of a true 
model, varieties of components [in the form of base learners 
(see Sect. “Comparisons with Other Methods”)] can be used 
in a single model. This makes model-based boosting one of 
the competitive approaches.

In the past, our group has developed a boosting-based 
approach, which was an extension of the marginal model, for 

modeling a continuous longitudinal response [9]. We refer 
to our approach as BoostMTree (an acronym for Boosted 
Multivariate Tree). In this article, we describe an extension 
of our approach for modeling a binary longitudinal response. 
Specifically, we describe that our approach uses gradient 
boosting with multivariate tree as a base learner to model 
various features of longitudinal data. In our approach, use 
of trees has two major advantages. First, trees are capable of 
modeling non-linearities and interactions among covariates, 
without having to explicitly specified them in the model. 
Second, they work effortlessly in high dimensional covari-
ate setting without breaking or substantially compromising 
performance. Additionally, in order to model non-linearities 
in time, we use B-splines; however, time is modeled within 
the terminal nodes of the fitted tree, and thus it provides 
covariate-time interaction effect. Combining gradient boost-
ing with trees and B-spline, we believe that our approach 
satisfies the desired properties described above. We compare 
our approach with other available competitive approaches 
using randomized trial and simulated data, and we hope that 
results of the comparison will encourage researchers to con-
sider our approach as a better alternative. Another aspect, we 
hope, will encourage researchers to consider our approach is 
the ease with which our approach addresses parts of statisti-
cal inference using tools from machine learning literature, 
which we have tailored for our approach. For example, iden-
tifying important covariates is a crucial part of statistical 
inference, and equally crucial is to understand how these 
covariates are associated with a response in the presence 
of other covariates. Using the analysis of randomized trial 
data, we address these key parts of statistical inference. In 
this article, we mostly focus on new aspects of our approach 
with minimal technical details; most technical details are 
provided in the supplementary material. An important new 
feature of our method is, instead of using the original sample 
for model building, within each boosting iteration, we ran-
domly split the original sample into in-bag and out-of-bag 
samples. This feature was implemented by Friedman [17] 
with the aim of improving prediction performance. In our 
method, we use an in-bag sample for model building, and an 
out-of-bag sample is utilized in various ways. Specifically, 
we use an out-of-bag sample to (i) estimate model’s predic-
tion performance, (ii) perform variable selection, (iii) evalu-
ate stopping criteria for our boosting procedure, (iv) stabilize 
certain parameters, and (v) impute missing observations. In 
other boosting approaches, model’s prediction performance 
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and stopping criteria are evaluated based on separate test 
sample. Such approaches require larger sample size so that 
part of the sample can be reserved as a test sample. Typical 
longitudinal study involves limited sample size (in terms of 
number of subjects), and thus we believe that use of an out-
of-bag sample is preferred for evaluating these parameters. 
Our article is arranged as follows. In “Gradient Boosting 
for a Generic Problem”, we introduce gradient boosting 
approach for a generic problem. In “Model”, we describe 
the model. Our approach involves two types of parameters: 
essential parameters and ancillary parameters. “Essential 
Parameter Estimation” describes estimation of essential 
parameters, whereas estimation of ancillary parameters is 
described in the supplementary material. Variable selection 
is considered in “Variable Selection”. “Randomized Trial 
Data” and “Simulations”, respectively, provide an analysis 
of randomized trial data and simulated data, and a compari-
son of prediction performance of our approach with other 
approaches available in the literature. Conclusions are pro-
vided in “Conclusion”.

Gradient Boosting for a Generic Problem

In this section, we provide a brief introduction of gradi-
ent boosting for handling a generic problem; details can be 
found in [18]. Here, our main goal is to introduce Algo-
rithm 1, which we refer back multiple times as a premise 
for developing algorithm for a binary longitudinal response. 
Let y and � , respectively, represent generic response and 
covariate. Let �(�) represents a parameter of interest, and 
let L(y,�(�)) represents a generic loss function, which is 
differentiable with respect to �(�) . One of the core compo-
nents of boosting procedures is a base learner, which is a 
simple function that is used to model the response sequen-
tially. The generic base leaner is denoted by h(�, �) , which 
is parameterized by �.Our goal is to estimate parameter �(�) 
by minimizing the loss function L(y,�(�)) , not just on the 
observed data but over the distribution of data; thus, �(�) 
should provide an optimal result for covariate values which 
are not part of the observed data.

Gradient boosting is closely related to gradient descent 
optimization technique. We now provide a link between the 
two. In the terminology of gradient descent, L(y,�(�)) need 

not be a loss function, and thus, we refer L(y,�(�)) as an 
arbitrary function of �(�) , and we are interested in finding 
the value of �(�) where the function is minimum. To do that, 
we start with an initial guess of �(�) , say �(0)(�) , in order 
to proceed iteratively. Then, according to gradient descent 
optimization, a minimum is observed along the direction of 
negative gradient of function L(y,�(�)) at �(0)(�) . Negative 
gradient for the first iteration is defined as

Once we knew the direction to move, we need to find the 
step size, i.e., how much to move in order to find the opti-
mal value? This is obtained by finding the estimate � such 
that L�(y,�(0)(�) + �g1) = 0 , where L�(y,�(0)(�) + �g1) is 
obtained by differentiating L(y,�(0)(�) + �g1) with respect 
to � . This step is referred to as line search. Once � is esti-
mated, the new value of �(�) , say �(1)(�) , is obtained using 
�(1)(�) = �(0)(�) + �g1 . Note that the value �(1)(�) will guar-
antee that L(y,�(1)(�)) ≤ L(y,�(0)(�)) . This procedure is 
iterated until the estimates converge.

On observing the expression of negative gradient care-
fully [see Eq. (3)], one can infer that the negative gradient 
is defined for observed covariate values. On the other hand, 
the base learner is defined for observed as well as for unob-
served covariate values. A critical step that differentiates 
gradient boosting from gradient descent is that, in gradient 
boosting, instead of using negative gradient, it uses base 
learner that is highly correlated with the negative gradi-
ent. This base learner is obtained by solving the following 
optimization,

Once we find the base learner, we replace it with 
the negative gradient. Thus, for line search, instead 
o f  s o lv i n g  L

�(y,�(0)(�) + �g1) = 0  ,  we  s o lve 
L

�(y,�(0)(�) + �h(�, �1)) = 0 , and update �(1)(�) using 
�(1)(�) = �(0)(�) + �h(�, �1) . With some additional modifi-
cations, the above procedures can be framed as a gradient 
boosting algorithm (see Algorithm 1), where L(y,�(�)) is 
considered a loss function.

g1 = −
�L(y,�(�))

��(�)

|||||�(�)=�(0)(�)

.

�1 = argmin
�

(
g1 − h(�, �)

)2
.
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Algorithm 1 Gradient boosting algorithm for a generic problem

1: Initialize µ(0)(x).

2: for m = 1, . . . M do

3: Find the negative gradient using gm = −∂L (y,µ(x))
∂µ(x)

∣∣∣∣∣
µ(x)=µ(m−1)(x)

where

µ(m−1)(x) represents an estimate of µ(x) from the (m−1)th boosting iteration.
4: Once the negative gradient is obtained, use the following two-step optimiza-

tion procedure:

(i) Find the base learner: This involves estimating parameter a for the mth
boosting iteration. Estimating a corresponds to finding the base learner that
is highly correlated with the negative gradient. This is done by solving the
following optimization problem

am = argmin
a

(gm − h(x,a))2 .

The estimate of the base learner is denoted by h(x,am).
(ii) Perform the line search: This involves solving the following optimization
problem

αm = argmin
α

L
(
y, µ(m−1)(x) + αh(x,am)

)
.

5: Once parameters a and α are estimated, update µ(x) for the mth boosting
iteration using

µ(m)(x) = µ(m−1)(x) + ναmh(x,am),
where 0 < ν ≤ 1 is referred to as learning rate. This is a modification that
was suggested by Friedman [18] in order to shrink the estimate. This acts as a
regularization to help improve the prediction performance. Typically, this value
is fixed to a small value, say ν = 0.01.

6: end for
7: Return µ(M)(x).

Model

Let �i =
(
Yi,1, Yi,2,… , Yi,ni

)T
∈ {0, 1}ni represents the binary 

longitudinal response, and let �i and �i , respectively, repre-
sent ni and P dimensional vectors of time and time-invari-
ant covariates for the i’th subject, where i = 1, 2,… , n . Our 
interest is to estimate �i(�i, �i) , given by

where 111i = (1, 1,… , 1)T
ni×1

 . Thus, given the covariates and 
time, �i(�i, �i) represents the probability that each element of 
�i takes the value 1; for example, in case of AF data, �i(�i, �i) 
represents the probability that i’th patient, having character-
istics �i , experiences AF episode at time �i . Henceforth we 

�i(�i, �i) = ℙ(�i = 111i|�i, �i) = 𝔼(�i|�i, �i), i = 1, 2,… n,

suppress the notation for �i(�i, �i) and denote it as �i . The 
form of �i is given by �i = g−1

(
�i

)
 , where g−1(⋅) represents 

an inverse of logit link function, given by

where �i,j and pi,j represent the j’th component of �i and 
�i , respectively, where j = 1, 2,… , ni . We represent �i 
using �i = �i�(�i) , where, for i’th subject, �i represents 
a known ni × (d + 1) dimensional matrix, having the form 
�i =

[
111i, �1(�i), �2(�i),… , �d(�i)

]
 . This matrix is obtained 

by mapping �i using B-spline [19], which provides flexibil-
ity of capturing non-linearity of �i . Additionally, we have 
�(�i) ∈ ℝ

(d+1) which represents the parameter of interest that 

pi,j =
exp

(
�i,j

)

1 + exp
(
�i,j

) ,
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needs to be estimated; however, unlike in parametric model 
where the parameter is fixed, here �(�i) is a data-adaptive 
function of �i . Expanding the form of �i , we get

In this expanded form, although �0(�i) and �l(�i) are func-
tions of �i , they can be interpreted as an intercept and slope 
of a linear model of B-spline expansion of time. Note that 
the first term is devoid of time; whereas, the second term 
involves both covariate and time, which can be interpreted as 
an interaction term. We estimate �(�i) using gradient boost-
ing procedure, using multivariate regression tree as a base 
learner [20].

Using the form of �i , our model for �i is given by

As a part of boosting, we minimize the following loss 
function

where, using the terminology of a marginal model, �i rep-
resents a working variance-covariance matrix of �i . We 
assume that �i = ��i(�) where � represents a scale param-
eter and �i(�) represents an ni × ni dimensional correlation 
matrix with a correlation coefficient �.

Gradient boosting requires an estimate of negative gradi-
ent. (See Algorithm 1 for the estimation of negative gra-
dient). Once we define our loss function, the estimate of 
negative gradient is given by

where �(m−1)

i
= �i�

(m−1)(�i) , and h(⋅) represents a function 
that makes the following transformation

where diag(⋅) represents transformation in which we write an 
ni dimensional vector as an ni dimensional diagonal matrix, 
and �ni represents an ni dimensional identity matrix. Here 

�i = �0(�i)111i +

d∑

l=1

�l(�i)�l(�i).

(1)�i = g−1
(
�i�(�i)

)
, i = 1, 2,… , n.

(2)

L =

n∑

i=1

Li

(
�i, �i

)

=
1

2

n∑

i=1

(
�i − �i

)T

�−1
i

(
�i − �i

)

=
1

2

n∑

i=1

(
�i − g−1

(
�i�(�i)

))T

�−1
i

(
�i − g−1

(
�i�(�i)

))
,

(3)
�m,i = −

�L

��(�i)

|||||�(�i)=�(m−1)(�i)

= �T
i
h
(
�
(m−1)

i

)
�−1

i

(
�i − �

(m−1)

i

)
,

h
(
�
(m−1)

i

)
=
[
�ni − diag

(
g−1

(
�
(m−1)

i

))]
diag

(
g−1

(
�
(m−1)

i

))
,

we assume that �i is fixed. Later we provide details about 
its estimation.

Remark 1  Notice that in (3), �m,i is measured on a continuous 
scale even though �i is binary. Having �m,i measured on a 
continuous scale is advantageous because, as described in 
Algorithm 1, the first step of two-step optimization involves 
�m,i as a response, and thus, optimization involving the first 
step remains the same whether the original response �i is 
binary or continuous. As mentioned earlier, we use multi-
variate regression tree as our base learner. This means that 
the tree growing procedure remains the same whether the 
original response �i is binary or continuous.

Essential Parameter Estimation

Our gradient boosting procedure uses multivariate regres-
sion tree as a base learner. The multivariate regression tree 
is a generalization of univariate regression tree, proposed 
by [20]. In the multivariate regression tree, multivariate 
response is used (in our case, it is �m,i ∈ ℝ

d+1 ). The tree 
growing procedure is identical to Breiman’s univariate 
tree except the split statistic accounts for the multivariate 
response [21]. As a byproduct of a tree growing process, 
each terminal node includes (d + 1)-dimensional average of 
the response corresponding to subjects fall in that node. We 
define our base learner using

where Rk represents the k’th terminal node and �k ∈ ℝ
(d+1) 

represents the terminal node average of the response that 
corresponds to terminal node Rk.

As mentioned in “Introduction”, we implement our new 
feature as follows. Let’s assume that we are at the starting 
point of the m’th boosting iteration. From the original sam-
ple of n subjects, we take a random subsample of ñ sub-
jects, without replacement, such that ñ < n . We refer this 
subsample as the in-bag sample, and the sample not selected 
in the in-bag sample as the out-of-bag sample. The in-bag 
and out-of-bag samples for the m’th boosting iteration are, 
respectively, denoted by I(m)

ib
 and I(m)

oob
 . As mentioned earlier, 

the utility of this approach is that, for the m’th boosting itera-
tion, we use I(m)

ib
 for model building and I(m)

oob
 for estimating 

multiple parameters.
Now that we identified the in-bag and out-of-bag samples 

for the m’th boosting iteration, we proceed to the first step of 
a two-step gradient boosting algorithm (see Algorithm 1). 
The first step requires estimating parameter � corresponding 

(4)�
(
�, {Rk, �k}1≤k≤K

)
=

K∑

k=1

�k1(�∈Rk)
,
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to the base learner �(�, �) , which basically means finding the 
K terminal nodes multivariate regression tree that is highly 
correlated with the negative gradient. To do that, we fit K 
terminal nodes multivariate regression tree using covariate �i 
and response �m,i , where i ∈ I

(m)

ib
 . Once the tree is fitted, we 

obtain estimates of {Rk, �k} for the m’th boosting iteration, 
denoted by {Rk,m, �k,m} , where k = 1, 2,… ,K . The estimate 
of base learner for the m’th boosting iteration is obtained by 
replacing {Rk, �k} with {Rk,m, �k,m} in (4) for k = 1, 2,… ,K.

Next, we predict terminal node membership and terminal 
node average for the out-of-bag �i such that i ∈ I

(m)

oob
 . This 

is done by sending �i , for i ∈ I
(m)

oob
 , up through the fitted 

tree. Terminal node where �i lands represents the predicted 
terminal node membership, and the corresponding average 
represents the predicted terminal node average. By the end 
of this step, each �i , for i = 1, 2,… , n , will have the terminal 
node assignment and the terminal node average. The second 
step of two-step gradient boosting, referred as line search, 
involves solving the following optimization

where the form of Li is specified in (2). In gradient boosting 
with tree as a base learner, instead of solving for � , a new 
parameter �k is introduced such that �k = ��k,m [9, 18]. The 
new line search optimization can be rewritten as

One of the important properties of a tree is that the terminal 
nodes represent disjoint regions that collectively cover the 
space of all possible values of covariates [20]. This property 
allows us to solve the above optimization separately within 
each terminal node, thereby greatly simplifying the compu-
tation. Thus, instead of solving (5), we solve the following 
optimization

Estimation of �k requires numerical method since the closed 
form solution does not exist. Supplementary material S1 
provides details about the estimation procedure. Once we 
obtain an estimate �k,m , we update �(m)(�i) , �

(m)

i
 and �(m)

i
 , for 

the mth boosting iteration, using

Lm = argmin
�∈ℝ

n∑

i=1

Li

(
�i, g

−1

(
�
(m−1)

i
+ ��i

K∑

k=1

�k,m1(�i∈Rk,m)

))
,

(5)

Lm = argmin
{�k}

K
1
∈ℝd+1

n∑

i=1

Li

(
�i, g

−1

(
�
(m−1)

i
+ �i

K∑

k=1

�k1(�i∈Rk,m)

))
.

(6)Lk,m = argmin
�k∈ℝ

d+1

∑

�i∈Rk,m

Li

(
�i, g

−1
(
�
(m−1)

i
+ �i �k

))
for k = 1,… ,K.

We combine findings from “Model” and “Essential Parame-
ter Estimation” and present them in Algorithm  2, which rep-
resents a special case of Algorithm 1 for modeling a binary 
longitudinal response. In Algorithm   2 we describe the 
procedure for estimating the essential parameters, whereas 
ancillary parameters, for example {�i}1≤i≤n , are assumed to 
be fixed. Algorithm describing estimation of essential and 
ancillary parameters is provided as Algorithm 3 in the sup-
plementary material.

Remark 2  Note that in “Model”, we provided the form of 
�i ; the first column of �i is devoid of �i , whereas, the last d 
columns are dependent on �i . Thus, the first coordinate of �k 
corresponds to the covariate main effect whereas the last d 
coordinates of �k correspond to covariate-time interaction 
effects. Reason we referred them as covariate main effect 
and covariate-time interaction effect is because we solve the 
loss function (6) inside the terminal node of a tree grown 
using covariate data; thus, the effect varies based on values 
of covariates because values of covariates identify specific 
terminal nodes. This distinction between the first and last d 
coordinates of �k becomes crucial in “Variable Selection”, 
where we separate the effect of each covariate into covariate 
main effect and covariate-time interaction effect.

Remark 3  Notice that while estimating �(m)
i

 , for 
i = 1, 2,… , n , we have not assumed completeness of the 
data. In fact our approach can handle missing values in the 
data. Details are provided in supplementary material S2.

Remark 4  Matrix �i represents B-spline basis function, use-
ful for modeling non-linearity. The flexibility of B-spline 
can be increased by increasing the number of knots. How-
ever,  a large number of knots can cause model overfitting. 
In order to prevent overfitting, the preferred approach is to 
penalize the coefficient �k for k = 1, 2,… ,K . This can be 
done by adding a penalty term (using the penalty parameter 
� ) to (6) [22]. See supplementary material S3 for details.

Remark 5  While estimating parameter �k , for k = 1, 2,… ,K , 
we assumed a fixed value of {�i}1≤i≤n (and � if penalization 

�(m)(�i) = �(m−1)(�i) + �

K∑

k=1

�k,m1(�i∈Rk,m)
,

�
(m)

i
= �i�

(m)(�i),

�
(m)

i
= g−1

(
�
(m)

i

)
for i = 1, 2,… , n.
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is implemented). As mentioned earlier, we referred to them 
as ancillary parameters. Fixing values of ancillary param-
eters is generally insufficient and can lead to a sub-optimal 
model. Improvement can be achieved by estimating these 
parameters. Another ancillary parameter we consider is M. 
However, M is treated differently from {�i}1≤i≤n and � ; we 
choose a relatively higher value of M, say M = 1000 , and 
based on performance of our model on the out-of-bag sam-
ple, the estimate of M, denoted by Mopt , can be obtained. 
Supplementary material S4 provides details about the esti-
mation of ancillary parameters. In “Variable Selection”, we 
discuss how Mopt is used for variable selection and for pre-
dicting the response for new subjects.

prediction power of a covariate. This is particularly useful 
in machine learning techniques which make least assump-
tions about a functional form of a model [23]. Application of 
VIMP in boosting framework was introduced by Friedman 
[18], and since then, multiple versions of VIMP are used in 
the boosting literature.

In this section we provide a broad overview of our VIMP 
approach; technical details are provided in supplementary 
material S5. The main objective of VIMP is to evaluate the 
prediction power of a covariate by finding change in predic-
tion error of a model when that covariate is nonexistent in 
the model versus when it is present. We evaluate the predic-
tion error using the root mean square error (RMSE), given 
by

where, depending on the context, yi,j could be from the out-
of-bag sample or from the test sample and pi,j represents the 
predicted value of yi,j . In case of VIMP, yi,j represents an 
element of out-of-bag sample, whereas in “Comparisons 
with Other Methods” and “Simulations”, yi,j represents an 

(7)RMSE =

[
1

n

n∑

i=1

1

ni

ni∑

j=1

(
yi,j − pi,j

)2
]1∕2

,

Algorithm 2 BoostMTree algorithm for the binary longitudinal response

1: Initialize β(0)(xi) = 0 and letVi = Ini for i = 1, . . . , n.
2: for m = 1, . . . ,M do
3: Evaluate the negative gradient gm,i for i = 1, 2, . . . , n.
4: Use the following two-step optimization procedure:

(i) Find the base learner:

• Take a subsample of ñ subjects from the original sample and split it into the
in-bag and out-of-bag samples. LetI (m)

ib andI (m)
oob respectively represent

the in-bag and out-of-bag samples.
• Fit a multivariate regression tree using the data {gm,i,xi}i∈I

(m)
ib

. This pro-
vides terminal nodes and terminal node averages, denoted by Rk,m and
fk,m for k = 1, 2, . . . ,K.

• Predict terminal node membership for {xi}i∈I
(m)
oob

. By the end of this step,
we will have terminal node membership and terminal node average for all
n subjects.

(ii) Perform line search optimization:
• Solve the optimization problem (6) to obtain estimate {γk,m}1≤k≤K .

5: Update β(m)(xi), µ
(m)
i and p(m)

i for i = 1, 2, . . . , n.

6: end for
7: Return

{
p(M)
i

}
for i = 1, 2, . . . , n.

Variable Selection

Identifying important covariates modulating longitudinal 
pattern is a part of statistical inference. In our approach, we 
use variable importance (VIMP) as an approach to iden-
tify important covariates. VIMP has a long history, which 
goes back to Breiman’s CART method [20] for measuring 
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element of a test sample. Estimate of RMSE corresponds to 
an estimate of pi,j ; for example, for the m’th boosting itera-
tion, where the estimate of pi,j is p(m)

i,j
 , the corresponding 

RMSE would be RMSE(m) . (Notice that in the supplementary 
material S4.3 and S5, we use the same form of RMSE but 
we referred to it as an in-sample cross-validation error 
because the terminology suits in that context.) If a covariate 
is important in improving the prediction power of a model 
then the corresponding RMSE estimate will be lower when 
that covariate is present in the model in comparison to the 
RMSE estimate obtain when the covariate is nonexistent, 
and therefore, the corresponding VIMP for that covariate 
will be higher. On the other hand, if a covariate is not impor-
tant in improving prediction power, its existence and nonex-
istence will have similar RMSE estimates, and therefore, the 
corresponding VIMP will be lower. Nonexistence of a covar-
iate is achieved by randomly permuting its coordinates, 
referred to as noising the covariate. For VIMP calculations, 
the prediction error is evaluated using the out-of-bag sample. 
First, we evaluate prediction error when none of the covari-
ates are noised-up, and then we evaluate prediction error of 
P covariates by noising one covariate at a time. By the end 
of this step, we get P VIMP estimates, one for each covari-
ate. Instead of reporting these estimates, we separate the 
VIMP estimate for each covariate into covariate main effect 
and covariate-time interaction effect. This separation allows 
us to deduce whether the covariate has a direct influence on 
the response (covariate main effect) or whether it influences 
through time (covariate-time interaction effect).

Remark 6  Above, we evaluated VIMP estimates separately 
for each covariate. In some situations, it might be of inter-
est to find a joint VIMP for a group of covariates together 
rather than a separate VIMP for each covariate. This can 
be done by following the same procedure described above, 
except, rather than noising a single covariate at a time, we 
simultaneously noise-up a group of covariates. Joint VIMP 
is useful in situations where some covariates are highly cor-
related with each other and typically measure closely related 
underlying characteristics (for example, in AF data, covari-
ates such as weight, height, BMI, and BSA together repre-
sent patient’s body size). Another use of joint VIMP is to 
identify if two or more covariates are interacting with each 
other. In this situation, we compare values of separate VIMP 
with a joint VIMP. If the joint VIMP is significantly higher 
than the sum of separate VIMP values, it suggests presence 
of an interaction.

Randomized Trial Data

AF randomized trial data was obtained from NIH-sponsored 
study that involved 260 patients enrolled from January 2010 
to July 2013 [24]; however, this analysis was restricted to 
228 patients for whom AF measurements were available. 
From 228 patients, 7949 AF measurements were available 
with an average of 35 measurements per patient. Selected 
characteristics of these patients are provided in the supple-
mentary material S6.

Fig. 2   Figure plots the cross-
validated prediction of �

i
 for 

i = 1, 2,… , n across time (gray 
color). The ensemble average is 
shown in black
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Implementing BoostMTree

BoostMTree Algorithm  2 (and its extension in the form 
of Algorithm 3 from the supplementary material S7) can 
be implemented using the R package  boostmtree [25]. 
The package includes AF randomized trial data, as well 
as multiple examples for implementing our BoostMTree 
algorithm for simulated and real data. In the supplemen-
tary material S8, we have provided codes to reproduce the 
main results described for analyzing AF randomized trial 
data. In our BoostMTree approach, AF was used as the 
response and all variables listed in the supplementary mate-
rial S6 as covariates. In our BoostMTree implementation, 

we used multivariate tree grown to K = 5 terminal nodes 
(see Remark 7). In each terminal node, �i is generated using 
cubic B-spline with 10 equally spaced knots. Procedures 
described in the supplementary material (see Sects. S4.1 
and S4.2) were used to estimate {�i}1≤i≤n and � , where 
an exchangeable correlation structure was assumed for 
the correlation matrix {�i}1≤i≤n . Boosting procedure was 
scheduled to run for M = 1000 boosting iterations and the 
procedure described in the supplementary material S4.3 
was used to estimate the optimal boosting iterations Mopt . 
The learning rate was set at � = 0.01 . Variable selection 
was performed using VIMP approach. BoostMTree, as well 
as all other comparative methods from “Randomized Trial 

Fig. 3   Mirrored graph of 
variable importance (VIMP). 
The top portion corresponds to 
the covariate main effects; the 
bottom portion corresponds to 
the covariate-time-interaction 
effects
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Fig. 4   Partial predicted prob-
ability plots of AF prevalence 
across time. Figure on left 
corresponds to partial predicted 
probability stratified by rand-
omization group. The solid line 
corresponds to the non-ablation 
group and dotted line corre-
sponds to the ablation group. 
Figure on right corresponds to 
partial predicted probability 
stratified by duration of AF
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Data” and “Simulations” are implemented on CentOS Linux 
server.

Once BoostMTree was implemented, we extracted esti-
mates for essential and ancillary parameters. In this section, 
we focus on estimates of essential parameters. In the sup-
plementary section S9, we discuss results corresponding to 

estimates of ancillary parameters. One essential parameter 
estimate is cross-validated prediction of �i at the optimal 
boosting iteration, denoted by �(i,Mopt)

i
 for i = 1, 2,… , n (see 

Section S4.3 of the supplementary material). This estimate 
is shown in Fig. 2. Figure 2 shows that after MVS, patients 
experienced a higher prevalence of AF through the first 

Fig. 5   Top figure compares 
individual VIMP of duration of 
AF and randomization group 
with joint VIMP. Bottom figure 
plots the partial predicted 
probability stratified by differ-
ent levels of duration of AF 
and the randomization group. 
Solid lines correspond to the 
non-ablation group and dotted 
lines correspond to the ablation 
group. The different levels of 
duration of AF considered are 1, 
15, 40 and 150 months
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month. Although the exact mechanism is not completely elu-
cidated, one possible mechanism is that atrial injury causes 
mitochondrial damage with release of mitochondrial DNA 
which can activate neutrophils (white blood cells) that, in 
turn, cause an inflammatory response. That has been shown 
to result in inhomogeneity of atrial conduction. After the 
first month, the number of episodes of AF started to decline. 
Another trend observed from Fig. 2 is that there exists a 
high variability across patients. For example some patients 
experienced higher number of AF episodes soon after the 
surgery and had a lower rate of decline of AF episodes with 
time compared to the rest of patients.

In order to explain the high variability, we extracted 
important covariates that influenced the probability of AF 
using VIMP approach. We observed that, among the covari-
ates used for model fitting, some were highly correlated, and 
they carried similar information. Therefore, for these covari-
ates, rather than using separate VIMP values, we calculated 
joint VIMP as described in Remark 6. Below is the list of 
variables that we used for joint VIMP. 

1.	 Body size: Weight, Height, BSA, BMI
2.	 Antiarrhythmic Medication: Antiarrhythmic Class III, 

Antiarrhythmic Class IV

VIMP results are provided in Fig. 3. Top portion of the fig-
ure corresponds to VIMP for covariate main effect; bottom 
portion corresponds to VIMP for covariate-time interaction 
effect. Figure shows that randomization group (which is a 
binary covariate, identifying either ablation or non-ablation 
treatment of AF) has the highest VIMP for covariate main 
effect, and duration of AF (which is measured in months, 
describing for how long a patient suffered from AF) has the 
highest VIMP for covariate-time interaction effect.

We describe the relationship of these two covariates with 
the response to help explain patient variability using partial 
plot [18]. Partial plot describes the relationship between an 
estimate of partial predicted probability and a covariate of 
interest by integrating out effects of other covariates, and 
therefore, it is a model-based way of looking at the relation-
ship between response and covariate of interest by removing 
the influence from other covariates. Supplmentary material 
S10 provides some key steps for estimating partial predicted 
probability. In Fig. 4, we describe the relationship of partial 
predicted probability of AF with randomization group and 
duration of AF. Left side figure shows a lower prevalence of 
AF in the surgical ablation group compared to the non-abla-
tion group. As time progresses, both groups show decline 
in prevalence of AF, and the rates of decline are similar 
in both groups. This finding is captured in Fig. 3 where 
VIMP for the main effect of randomization group is high 
but the time-interaction effect is close to zero. This result 

shows that surgical ablation provides a better treatment 
option in reducing the number of AF episodes compared to 
left atrial appendage closure (which represents non-ablation 
treatment). Right side figure shows that prevalence of AF, 
among patients with varying levels of durations of AF, is 
similar soon after surgery. However, the rate of decline is 
different for different levels of durations of AF. For example, 
patients who suffer from AF for a long duration (long-stand-
ing persistent AF) have a lower rate of decline of prevalence 
of AF compared to patients with a recent history of AF (per-
sistent AF). This finding is captured in Fig. 3 where VIMP 
for the time-interaction effect for duration of AF is high but 
the main effect is close to zero. Together, these figures help 
explaining variability observed in Fig. 2 as we have now 
identified patients who had a higher number of AF episodes 
soon after the surgery, and patients who had a  lower rate of 
decline of prevalence of AF compared to patients with more 
rapid rates of decline.

Based on findings from Fig. 4, a cardiologist may ask if 
the differences in the treatment groups could be driven by the 
differences in the duration of AF, i.e., whether the ablation 
group largely includes persistent AF patients, which are less 
severe than patients with long-standing persistent AF, and 
therefore, the ablation group demonstrated lower prevalence 
of AF? Actually, this question is already answered, and the 
answer is no. This is because, as mentioned earlier, the par-
tial plot is constructed such that the relationship observed for 
the variable of interest does not get influenced by presence 
of other variables. Nevertheless, we answer this question by 
considering interaction between randomization group and 
duration of AF. We study interaction using the joint VIMP 
approach specified in Remark 6. In Fig. 5, we compare indi-
vidual VIMP of duration of AF and randomization group 
with a joint VIMP. Top figure shows that the joint VIMP 
is similar to the sum of the individual VIMP values, sug-
gesting that there is no interaction between the two covari-
ates. (If interaction was present, we would have observed 
the VIMP value for interaction to be much higher than the 
sum of individual VIMP values.) This point is emphasized 
when we consider a multivariable partial plot where we look 
at the joint effect of two covariates on the partial predicted 
probability estimate. Bottom figure shows that the difference 
of prevalence observed in the two treatment groups remains 
same when we stratify based on duration of AF.

Remark 7  Parameter K of a tree governs the highest order 
interactions among covariates [18]. Within boosting, this 
parameter is often fixed but it can be estimated at each boost-
ing iteration. In our approach, we fixed parameter K = 5 , 
which allows our approach to account for a maximum of 
order 4 interactions among covariates. We believe this is 
sufficient to cover most of the cases; however, the package 
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allows users to change the value of this parameter depending 
on their requirements. Similarly, users are allowed to change 
the value of parameters involved in fitting B-spline.

Comparisons with Other Methods

In this section, we use AF data to compare BoostMTree 
approach with other methods available in the literature. These 
methods are varying between simpler parametric to more 
complicated non-parametric, including a method which is 
based on boosting. This comparison would support our claim 
that our approach provides a better alternative for researchers 
dealing with binary longitudinal response. Due to the varying 
nature of comparative methods, we use RMSE as a metric 
of prediction error, which can be calculated for all methods 
(see Eq. (7) for the form of RMSE ). Moreover, our aim is to 
promote BoostMTree as an approach for predictive modeling, 
and therefore use of RMSE as a metric is suitable.

None of the comparative methods have an in-built mecha-
nism for missing data imputation, and thus, in order to pro-
vide a fair comparison, we delete all subjects with missing 
observations. After removing all missing observations, the 
new data has 185 patients with a total of 6436 AF measure-
ments. Also, none of the comparative methods have an in-
built mechanism of splitting the original sample into in-bag/
out-of-bag sample, and therefore, we instead split the data 
into training sample (75%) and test sample (25%) such that, 
for each method, the training sample is used to build the 
model and the test sample is used to evaluate RMSE . Result 

from a single split of training/test sample may be inadequate 
because some patients are not included in the training sam-
ple. Therefore, we repeated the above procedure 100 times, 
each time creating a new set of training and test samples 
independently.

For implementing BoostMTree, we use the same param-
eter settings as described in the first paragraph of “Imple-
menting BoostMTree”, except, because we are not split-
ting data into in-bag/our-of-bag, we turn-off estimation of 
all parameters that require an out-of-bag sample, such as 
Mopt and VIMP ; thus, the estimate of RMSE corresponds to 
estimate for M = 1000 . Below we discuss the comparative 
methods.

Generalized Linear Mixed Model

Generalized linear mixed model (GLMM) is a common 
parametric model which can be used for fitting a binary 
longitudinal response. We use the R package lme4 to fit 
this model. Fixed effect part of GLMM includes, for each 
covariate, a linear term for covariate and an interaction term 
for covariate and time. For the random effect part, we use a 
random intercept.

Generalized Additive Mixed Model

Generalized additive mixed model (GAMM) represents a 
non-parametric analogue for GLMM. We fit GAMM using 
the R package mgcv. We fit the following model

Fig. 6   Comparison of predic-
tion performance of Boost-
MTree with other methods 
using 100 independent samples 
of AF data
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where �cat represents a linear term for categorical covariate 
(where Pcat is a set of categorical covariates), and s

(
�cont

)
 

represents a non-linear term for continuous covariate (where 
Pcont is a set of continuous covariates). Term s

(
�(p) ⋆ �

)
 rep-

resents a non-linear term for covariate-time interaction, and 
� represents the parameter for a random intercept. Function 
s(⋅) represents an unknown function that needs to be esti-
mated to model non-linearities of �cont and �(p) ⋆ � . We use 
cubic B-spline with an estimated smoothing parameter and 
10 equally spaced knots to estimate this function. For other 
parameters, we use the default setting.

Model‑Based Boosting

As a comparison with other boosting approaches, we com-
pare our approach with model-based boosting which is 
implemented using the R package mboost. We use the fol-
lowing boosting models

where � ∶ � represents a dataset that consist of all P covari-
ates as well as all covariate-time interactions. First term from 
each model represents a random intercept. Second term from 
both models represents a regression tree base learner. Third 
term from the second model represents a cubic B-spline base 
learner to model covariate-time interactions. First and sec-
ond models are denoted by mboostTree and mboostTree + BS 
respectively. For B-spline, we use 10 equally spaced knots, 
and for the tree base learner, we grow a maximum of 5 ter-
minal node regression tree. We use a total number of boost-
ing iterations M = 1000 and the learning rate � = 0.01 . For 
other parameters, we use the default setting.

Neural Network

We compare performance of our approach with NN, spe-
cifically artificial neural network. Training a NN can be 
challenging due to involvement of multiple parameters. Ini-
tially, we wanted to use GNMM, which is a NN approach 
provided by Mandel and colleagues [7] (see “Introduc-
tion”). These authors have provided the R code for imple-
mentation of their approach. We used their R code on a 
subset of AF data, and tried multiple adjustment of param-
eters with the hope to find the setting to get the algorithm 

g(�(�|�, �)) ← 𝛼111 +
∑

p∈Pcat

�
(p)

cat

+
∑

p∈Pcont

s
(
�
(p)

cont

)
+

P∑

p=1

s
(
�(p) ⋆ �

)
,

g(�(�|�, �)) ← 𝛼111 + btree(� ∶ �),

g(�(�|�, �)) ← 𝛼111 + btree(�) +

P∑

p=1

bbs(�(k) ⋆ �),

to converge. However, in most cases, the algorithm didn’t 
converge, and thus we abandoned their approach, and 
turned to the R package neuralnet. The package can fit 
NN, however, it assumes that observations are independent. 
Given that our focus is on prediction, use of NN, assuming 
independent structure, is not uncommon; see [6]. Using 
a subset of AF data, as well as a single sample from the 
simulated data from “Simulations”, after multiple param-
eter adjustment, we used the following parameter settings 
to get the algorithm to converge. We use all the covariates, 
and time of the measurement of the response as our inputs 
to train our NN. We use two hidden layers, each with 5 
nodes with the maximum steps = 500000, and a threshold 
for stopping criteria = 0.5. For other parameters, we use 
the default setting.

Remark 8  We considered R packages for fitting random for-
est for longitudinal data. Most of them required a continuous 
longitudinal response, and the one that fitted a random forest 
for a binary longitudinal response took a huge computational 
time, and therefore was unsuitable for comparison.

Prediction Performance

Prediction performances, in terms of RMSE , of Boost-
MTree and other methods are shown in Fig. 6. Figure 
shows that prediction performance of BoostMTree is better 
compared to other methods, including methods based on 
model-based boosting. We also observed that BoostMTree 
has the lowest variability of RMSE values across 100 inde-
pendent samples. It is not surprising that other boosting 
methods, i.e., mboostTree and mboostTree + BS , came sec-
ond. Although, both mboostTree + BS and BoostMTree use 
tree and B-spline base learners, we observed a noticeable 
difference in their performances. The reason, we believe, 
is the different way in which B-splines are used in these 
methods. For example, in mboostTree + BS , the B-spline base 
learner is used as an additive component to the model as 
described in “Model-Based Boosting”. Thus, at any given 
boosting iteration, the model will be updated either from 
the tree base learner or from the B-spline base learner, and 
there is no way to combine them within the same itera-
tion. On the other hand, in BoostMTree, the B-spline is 
used for modeling time within the terminal nodes of a 
fitted tree. This is done within the same iteration, and the 
resulting effect is a covariate-time interaction effect. NN 
is known to model non-linear relationships, and therefore 
we observed that it performed better than a linear model 
such as GLMM; however, it underperformed compared 
to boosting approaches. BoostMTree analysis from Fig. 3 
shows that duration of atrial fibrillation has a strong 
interaction effect with post-surgery time. We believe the 
NN has underperformed because it couldn’t capture the 



SN Computer Science (2022) 3:466	 Page 15 of 18  466

SN Computer Science

interaction effect. The prediction performance of GLMM 
and GAMM was poorer, especially GAMM. GLMM 
fits a linear model, whereas BoostMTree analysis from 
“Implementing BoostMTree” shows that probabilities of 
AF across time have a non-linear trend. We believe this 
could be the reason for its poor performance. GAMM is 
known to model non-linearities in the data. However, we 
believe its poor performance could be due to relatively 
higher dimension of covariates.

Simulations

In this section, our goal is to demonstrate that the applica-
tion of our method is not restricted to AF data but it can 
be used for other types of binary longitudinal responses. 
Due to complexities involved, it is not feasible to study the 
theoretical properties of our method. However, by look-
ing at various components, we get an impression that our 
method would generally provide an optimal solution where: 
(i) The true model involves non-linear relationships between 

Fig. 7   Figure provides (smooth 
out) relationship between 
time measurements and the 
probabilities of the response 
for two patients. Left and right 
plots, respectively, correspond 
to first and second functional 
forms. Black line is for patient 
with x(1)2 + x

(2)2
> 1 and the 

red line is for patient with 
x
(1)2 + x

(2)2 ≤ 1

Table 1   Test set performance using simulations

Values reported are test set RMSE averaged over 100 independently generated data

Q = 5 Q = 50

� = 0.2 � = 0.8 � = 0.2 � = 0.8

Experiment I
GLMM 0.392 0.412 0.533 0.545
GAMM 0.362 0.406 0.700 0.701
mboostTree + BS 0.379 0.403 0.376 0.401
mboostTree 0.362 0.395 0.371 0.402
NN 0.369 0.404 0.480 0.503
BoostMTree 0.336 0.367 0.344 0.376

Experiment II

GLMM 0.405 0.407 0.643 0.639
GAMM 0.443 0.467 0.691 0.696
mboostTree + BS 0.372 0.386 0.394 0.399
mboostTree 0.356 0.376 0.393 0.404
NN 0.399 0.420 0.548 0.568
BoostMTree 0.352 0.364 0.382 0.392
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response, and covariates and time. This is due to the use 
of tree and B-spline for modeling non-linearities. (ii) The 
true model involves interactions of multiple covariates or 
covariate-time interactions. This is due to the use of tree as 
a base learner, and modeling time within terminal nodes of 
estimated tree grown using covariate data. (iii) The dimen-
sionality of covariates is high. This is due to the use of tree 
which is generally robust to high dimensionality when used 
within boosting as an ensemble method. As a way to test 
broader applications of our method, we consider a simula-
tion approach, where we simulate data with varying degrees 
of complexities, and test prediction performance with com-
parative methods considered in “Comparisons with Other 
Methods”. The predicted performance is tested using RMSE 
as described in Eq. (7).

One of the characteristics of a longitudinal response is the 
presence of within subject correlation. Generating a binary 
response, incorporating correlation, is not as straight for-
ward as compared to a continuous response. Some of the 
approaches available in the literature provide procedures 
for generating correlated binary responses for a homogene-
ous population in which covariates are not involved [26]. In 
order to produce correlated binary longitudinal responses, 
and to account for a heterogeneous population, we incorpo-
rate correlation implicitly in the procedure for generating 
the response. In the supplementary material S11, we provide 
a procedure for generating a binary longitudinal response 
that incorporates within subject correlation. Using this pro-
cedure, we proceed with our simulations.

For simulations, we use n subjects, each for training and 
test samples. For the i’th subject, the number of repeated 
observations ni is generated using discrete uniform distri-
bution from the interval [1,20]. Measurements of time cor-
responding to a response are obtained using continuous 
uniform distribution from the interval [0, 12] . We use two 
informative covariates, �(1) and �(2) , that affect the response, 
and these covariates are generated using continuous uniform 
distribution from the interval [0, 1] . Additionally, we gen-
erated Q non-informative covariates from standard normal 
distribution which do not affect the response. We use the 
following model to generate probabilities of the response

where observations for the random variables Z and � are 
obtained using normal distribution with mean 0 and vari-
ances �2

z
 and �2

�
 respectively. We use the following two simu-

lation experiments

g
(
pi,j

)
= f (xxxi, ti,j) + Zi + �i,j,

(8)

Experiment I: f (xxxi, ti,j) =

{
6 − ti,j ∗ 0.45 if x

(1)

i

2
+ x

(2)

i

2
> 1

6 − ti,j ∗ 0.95 otherwise .

Figure 7 illustrates relationships described in (8) and (9). 
If we ignore constraint due to �(1) and �(2) , then the func-
tional forms in both experiments appear simpler; however, 
constraint creates complex decision boundaries, which can 
be challenging for any method. The rational behind Experi-
ment I is to simulate a study that we observe often in clinical 
research where researcher compares two treatments, and one 
treatment is more effective than the other. In Experiment II, 
we tried to generate a form similar to what we observed in 
AF data (black line), and, to make the experiment interest-
ing, the other treatment has an exact opposite effect (red 
line).

We use the following experimental settings. We consider 
Q = 5 or Q = 50 , corresponding to a low or high dimensional 
covariate setting. Values of �2

z
 and �2

�
 contribute to within 

subject correlation. We fix �2
�
= 0.5 and use �2

z
= 0.125 or 

�2
z
= 2 , which correspond to low within subject correlation 

(� = 0.2) or high within subject correlation (� = 0.8) . We 
use n = 100 for each of training and test samples. We use 
this setting to generate 100 data sets independently, and 
the RMSE results are averaged across 100 data sets. For 
comparison, we use the same methods that we considered 
in Sect. “Comparisons with Other Methods”, and for each 
method, we use the same parameter settings described in 
that section.

Results of the comparison are shown in Table 1. Table 1 
shows that BoostMTree has a better prediction performance 
(lower RMSE ) in both experiments, and across different set-
tings of � and Q. Method that comes close to BoostMTree 
is mboostTree , particularly in Experiment II, followed by 
mboostTree + BS . We observe that performance of NN is 
comparable to results from boosting methods for Experient 
I, when Q = 5 . We observed that results are deteriorated 
for � = 0.8 compared to � = 0.2 . This is not surprising as 
� = 0.8 involves higher variability. We also observed deteri-
oration of the result across all methods for Q = 50 compared 
to Q = 5 . This effect is relatively low for all three boosting 
methods compared to GLMM, NN and GAMM. Methods 
such as mboost use component-wise boosting, which is quite 
effective in high dimensional setting. However, we observed 
that BoostMTree is also fairly robust in high dimension.

Conclusion

In this manuscript, we have described our approach for mod-
eling a binary longitudinal response. Our approach uses gra-
dient boosting with multivariate tree as a base learner. Multi-
variate tree is utilized in modeling complex relationships of 

(9)

Experiment II: f (xxxi, ti,j) =

{
1 − (ti,j − 1)2 if x

(1)

i

2
+ x

(2)

i

2
> 1

(ti,j − 1)2 − 1 otherwise .
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covariates with response. As such, our approach represents 
a tree-based ensemble method. In the literature, tree-based 
ensemble methods, such as random forests and boosting with 
tree base learner, have shown promising results for achiev-
ing high prediction performance. The primary reason is that 
trees are highly adaptive in modeling non-linearities and 
multivariate interactions. Covariate-time interactions are 
modelled using B-splines, within the terminal nodes of a 
fitted tree, which is grown using covariate data.

Application of our method to data from a randomized 
trial provides benefits of surgical ablation in the treatment 
of AF among patients with persistent and long standing 
persistent AF accompanying degenerative mitral valve dis-
ease. The method has identified duration of AF as one of the 
important covariates that has a strong interaction with post-
surgery time. This analysis has helped to identify patient 
variability and identify groups of patients who derived the 
most benefit from the treatment. The joint VIMP approach 
allowed us to merge the effects of highly correlated covari-
ates as well as checking for the presence of interactions. 
Partial plots allowed us to visualize relationships of impor-
tant covariates with response by integrating out the effects 
of other covariates. Comparison of prediction performance 
of our approach with other methods using AF and simula-
tion data shows that our method has better performance. The 
comparison includes other boosting methods with tree and 
B-spline base learners.

The use of tree as a base learner has some additional 
advantages. Trees require a minimum amount of pre-pro-
cessing of the covariates in the data [20]. For example, trees 
are invariant under all monotone transformation of covari-
ates, as well as robust to outliers in the covariates. Thus, the 
approach is suitable in research studies that generate data on 
the fly, and can feed to the model directly.

Our method assumes that covariates are time-invariant. 
This is one of the limitations of our method. Handling time-
varying covariates using tree is challenging, and available 
methods, such as RE-EM tree [27], do not provide satisfac-
tory results [9]. The main challenge is to develop a suitable 
tree splitting rule that can split a parent node in such a way 
that provides an optimal separation of variation in response 
and yet maintains all repeated measures for the same patient 
in a single daughter node. In the future, we will focus on 
addressing this challenge.

In this manuscript, we focus on modeling binary lon-
gitudinal response. A straightforward extension of this 
approach would be to model nominal and ordinal longitu-
dinal responses, and our R package is designed to do that. 
One of the coaurthors of this manuscript has an R package 
that fits random forest to failure time data. In the future, our 
goal would be to extend our tree-based boosting approach 
to handle such a type of data, keeping the form of � intact. 
Additionally, in this manuscript, we focus primarily on 

randomization group and duration of AF as our principal 
covariates. The VIMP plot has also revealed other covariates 
that are important in explaining variation in the response. In 
subsequent work, we will extend our analysis by incorporat-
ing and detailing other covariates.
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