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a b s t r a c t

Gene hunting with forests is a new method for identifying differential gene expression
profiles across experimental groups using time course data. Our approach utilizes a multi-
dimensional filter that captures the functional nature of the data while adjusting for
additional variables that may be part of the experimental design. The filter comprises
one component measuring gene profile differences, and another component measuring
estimation error. Interesting genes are those having substantial gene profile differences
and low estimation error. We refer to this as our Gene Hunting Principle. We illustrate this
methodology using a balanced design, involving the effects of muscle group-specific gene
expressions on postnatal development. We also consider a more complex experimental
design focusing on the effects of aging in the human kidney.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Gene expression data collected over time, often referred to as time course data, are used to study developmental
changes in organisms. As opposed to a static snapshot of the genome obtained when microarray data is collected only
at a single time point, time course data provides scientists with richer information and the potential for greater insight
into biological processes. By far the most popular approaches to time-course analysis are those based on clustering. Among
methods that have been tried are hierarchical clustering (Spellman et al., 1998; Eisen et al., 1998), Bayesian model-based
clustering (Ramoni et al., 2002; Zhou et al., 2003), singular value decomposition and principal components (Alter et al., 2000,
2003; Leng and Müller, 2006), hidden Markov models (Schliep et al., 2003), spline-based models (Luan and Li, 2003), and
simulated annealing (Lukashin and Fuchs, 2001).
Much of the literature has focused on characterizing gene temporal profileswhen data is collected froma single biological

group. Much less work, however, has looked at identifying time profiles differences when data is collected from two ormore
biological groups —what we refer to asmultigroup time course data. Among approaches that have been used are hypothesis
testing (Bar-Joseph et al., 2003), quadratic regression (Xu et al., 2002), spline-based regression using false discovery rate
(FDR) control (Storey et al., 2005), and least-squares parametric variable selection (Conesa et al., 2006). See Bar-Joseph
(2004) for a comprehensive review of time-course analysis.
Analyzing time-course microarray data is challenging when there are multiple biological groups involved. In addition to

having to deal with the functional nature of the data, one has to contend with the possibility that time profiles may differ
across groups, and these profilesmay vary by gene aswell. Unless there is strong biological theory to guide profile discovery,
methodology must be data adaptive and flexible enough to estimate group-temporal patterns without supervision. Relying
on pre-specified time profiles (Peddada et al., 2003; Ernst et al., 2005) is unlikely to be successful.
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In this paper, we propose a general method for identifying time profile differences from multigroup time-course data.
Our approach is based on random forests (Breiman, 2001) and is nonparametric, data-adaptive, and applicable to fairly
complex experimental designs. In this approach, the expression data are treated as curves, and a multi-dimensional filter
is constructed by combining two measures: a measure of functional information, and a measure of predictiveness for
the curves. A Gene Hunting Principle (GHP) that synthesizes this information is then used to identify interesting genes
(Section 2). Two different examples, of increasing complexity, are used to illustrate the methodology (Sections 3 and 4).

2. Compressing the functional data

Consider microarray gene expression data collected over time for two or more biological groups. Our goal is to identify
those genes with different time profiles. Let

Θ = (∆1, . . . ,∆M ,Ψ1, . . . ,ΨG)

be a multi-dimensional filter calculated from the data, where ∆m is a measure of functional information, m = 1, . . . ,M ,
and Ψg is a measure of predictiveness of the underlying time-profile curves, g = 1, . . . ,G. The measures ∆m and Ψg , and
parametersM and G, depend upon the nature of the experimental design and are context specific.
In application, the multi-dimensional filter Θ is computed for each gene, but for notational clarity we suppress this

dependence throughout the manuscript. Our GHP is stated as follows.
Gene hunting principle. The filter Θ is computed for each gene, and a set of significant genes is selected based on:

(A) Maximization of the functional measure (∆1, . . . ,∆M).
(B) Minimization of the predictiveness measure (Ψ1, . . . ,ΨG).

To illustrate, consider the simplest setting where we have two biological groups (this is similar to our first example to be
discussed shortly). For each gene, and each group, a smoothed time profile curve is calculated. Define∆1 to be the distance
between the two curves, and set Ψg , g = 1, 2, to be the model error for each curve.
In this example,M = 1 andG = 2, and the filter isΘ = (∆1,Ψ1,Ψ2). TheGHP searches for those geneswith substantially

different time profiles (i.e.,∆1 is large) and with underlying curves having small model error (i.e., Ψg is small). The premise
being that differing time profiles identify interesting genes, but only if the underlying curves are to be trusted.
Obviously, the success of our method hinges strongly on the accuracy of the estimated curves. For this reason, we

rely on random forests (Breiman, 2001). As we will show, forests will allow us to accurately estimate time profile curves.
Furthermore, we will show how to exploit internal forest error measurements, such as variable importance measures, to
extend the GHP to more complex experimental designs.

3. Muscle group-specific gene time-profiling: A balanced experimental design

As our first illustration, we consider the microarray data studied in Cheng et al. (2004). The data comprises expression
values from extraocular (EOM) and hindlimb rat muscles harvested at birth (day 0) and during postnatal development
(days 7, 14, 21, 28, and 45). By sacrificing animals, three independent replicates were obtained at each time point, for
each muscle group. Sampled tissues were queried using the Affymetrix RG-U34A platform (8799 probe sets) and then
background corrected, normalized, and summarizedwithMAS 5.0 software. The data are available at the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) data repository under series record accession number
GSE903. See www.ncbi.nlm.nih.gov/geo and Cheng et al. (2004) for more information.
The data was used in Cheng et al. (2004) to compare EOM to hindlimb muscles, to provide insight into certain metabolic

and neuromuscular diseases. We can cast this problem within our framework as follows. Assume the expression values for
each gene in the EOM group (g = 1) and hindlimb muscle group (g = 2) are of the form:

Yg = fg + εg , g = 1, 2,

where Yg is the vector comprised of the ng expression values for the g-th group, fg = (fg,1, . . . , fg,ng )
T are the true time-

profiles, and εg are independent random errors, such that E(εg) = 0 and Var(εg) = σ 2g I. Note that the assumption of
independence is reasonable because of the way the data was harvested.
Let f̂g be an estimate for fg . In this example, gene expressions are collected over the same time points for each group.

Thus, we can directly compare f̂1 to f̂2 on a coordinate-by-coordinate basis. Define,

∆1 = ‖f̂1 − f̂2‖22 and Ψg = E(‖fg − f̂g‖22), g = 1, 2,

where ‖.‖2 is the `2-norm. Note that Ψg is the model error for f̂g , which we shall denote by MERg .
As in Section 2, our GHP is based on the filter Θ = (∆1,Ψ1,Ψ2). Now we explain an important point regarding our

measure of predictiveness, Ψg . Although it is common to measure prediction performance using prediction error, our Θ
filter uses model error instead. The reason for doing this is that prediction error is confounded with gene-specific variation,

http://www.ncbi.nlm.nih.gov/geo


1148 A. Papana, H. Ishwaran / Statistics and Probability Letters 79 (2009) 1146–1154

whereas model error measures pure error. To see this, let Ynewg be a vector of new independent expression values for each
group, such that

Ynewg = fg + εnewg , g = 1, 2,

where E(εnewg ) = 0 and Var(εnewg ) = σ 2g I. The prediction error for f̂g is defined as

PEg := E(‖Ynewg − f̂g‖22) = ngσ
2
g + E(‖fg − f̂g‖22) = ngσ

2
g +MERg .

Thus, if we use PEg in place of MERg for Ψg , then minimizing Ψg is confounded with the noise of the gene expression data,
nσ 2g . MinimizingMERg , on the other hand, goes after pure error, and we are left with genes with true signal differences. This
can be stated formally as the following theorem.

Theorem 1. If the model errors for f̂1 and f̂2 are zero, then E(∆1) = ‖f1 − f2‖22. That is, the mean distance-squared between
curves is equal to the distance-squared between their true time-profiles.

Proof. Expanding∆1 gives,

∆1 = ‖(f̂1 − f1)− (f̂2 − f2)+ (f1 − f2)‖22
= ‖f̂1 − f1‖22 + ‖f̂2 − f2 ‖22 + ‖f1 − f2‖22 − 2 (f̂1 − f1)T(f̂2 − f2)

+ 2(f̂1 − f1)T(f1 − f2)− 2(f̂2 − f2)T(f1 − f2).

Taking expectations,

E(∆1) = MER1 +MER2 + ‖f1 − f2‖22 − 2E
{
(f̂1 − f1)T(f̂2 − f2)

}
+ 2E

{
(f̂1 − f1)T(f1 − f2)

}
− 2E

{
(f̂2 − f2)T(f1 − f2)

}
.

Let δg,i = fg,i − f̂g,i. If MERg = 0, then

0 = E

(
ng∑
i=1

δ2g,i

)
=

ng∑
i=1

E(δ2g,i).

Therefore, δg,i = 0 a.e.[P]. Consequently all terms on the right-hand side of E(∆1) cancel, excepting ‖f1 − f2‖22. �

3.1. Results

Predicted gene expressions f̂g , and prediction errors P̂Eg , were estimated independently for each gene and each muscle
group using random forest regression (Breiman, 2001). Time was used as the predictor, and expression values as the
response. Computations were implemented using the randomForest R-package (Liaw and Wiener, 2002). In each case,
1000 trees were grown with all software parameters set to default settings. To estimate σ 2g we used leave-one-out cross-
validation. For each gene, an orthogonal polynomial model was fit using least squares to data for group g using time as
the predictor. The optimal degree for the polynomial was determined by minimizing cross-validated prediction error. The
optimal polynomial model was then used to estimate σ 2g (using adjusted mean square error from least squares fitting).
Denoting this estimator by σ̂ 2g , we estimated model error by

Ψg = max(P̂Eg − ng σ̂ 2g , 0), (1)

(We note only 1.21% and 1.69% of the 8799 probe sets were found to have negative values P̂Eg − ng σ̂ 2g for the EOM and
hindlimb muscle groups, respectively).
Applying the GHP, we found 170 significant genes when selecting those genes with model errors smaller than their 80th

percentile, and having∆1 values larger than their 90th percentile. Note that an 80th percentile cut-off might seem high for
the model error, but because the distribution of Θ was highly skewed, we found that without using a large percentile for
model error, gene lists were too sparse. Additional information is given in Table 1. Note that Table 1 also lists results using
the filterΘ∗ = (∆∗1,Ψ1,Ψ2), where∆

∗

1 = ‖f̂1− f̂2‖1 and ‖ · ‖1 is the `1-norm. Using an `1-based measure has the potential
to be more robust.
Table 1 showed very little difference between Θ and Θ∗, but to ensure robustness we focused on Θ∗ hereafter. Fig. 1

plotsΘ∗ for the twomuscle groups (model error was transformed by taking logs). Similar patterns are seen for both tissues
with slightly larger values seen for EOM data. The top 12 time profiles, corresponding to genes with the highest∆∗1 values,
are plotted in Fig. 2. The profiles are clearly different across muscle groups.
The set of Θ∗ and Θ-significant genes (using cut-off1; see Table 1) were studied in terms of their functional ontologies

as defined by the Gene Ontology (GO) Consortium. There are 3 ontologies defined by the GO Consortium: Biological Process
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Table 1
Number of significant genes for cut-off1 = (90%, 80%, 80%), cut-off2 = (90%, 90%, 90%), and cut-off3 = (90%, 99.7%, 99.7%) percentile values for Θ
and Θ∗; that is genes with ∆1 or ∆∗1 values greater than their 90th percentile and with model errors MER1 , MER2 smaller than the 80th, 90th, or 99.7th
percentile, respectively.

cut-off1 cut-off2 cut-off3

Θ 170 340 847
Θ∗ 179 363 847

Fig. 1. Plot of Θ∗: ∆∗1 versus log2-transformed model errors for the EOM and hindlimb muscles groups (left and right panels, respectively). The vertical
and horizontal lines in the two panels correspond to the 90th percentile of∆∗1 and the 80th percentile of the log-transformed Ψg .

Table 2
Number of identified Biological Processes (BP), Molecular Functions (MF), and Cellular Component (CC) ontologies. Number of genes indicated in pare-
ntheses.

BP MF CC

Θ∗ (179) 134 132 47
Θ (170) 126 119 48
All genes (8799) 1004 1294 278

(BP); Molecular Function (MF); and Cellular Component (CC). The BP of a gene product is a biological objective to which the
gene product contributes and involves the transformation of a physical thing; the MF is what the gene product does at a
biochemical level; and the CC is a component of a cell that is part of a larger object or structure (see www.geneontology.org
formore details). A break-down of ontologies for our significant genes, as well as the entire set of genes on the array, is given
in Table 2. In total there were 134 biological process, 132 molecular functions, and 47 cellular components associated with
our 179Θ∗-significant genes.
The percentage of genes that fall in the most frequented BP, MF, and CC ontologies (with respect to the set of Θ∗-

significant genes) are graphed in Fig. 3. Frequencies for Θ and Θ∗ are in close agreement. What is most interesting is the
difference in frequencies for significant genes to all genes on the array. This shows that selected genes have a different
ontology distribution and provides clear evidence that time profiles for significant genes are different over muscle type.

4. Gene hunting for general experimental designs

Nowwe show how the GHP can be applied to more complex experimental designs. We look at the data in Rodwell et al.
(2004) who studied the effects of aging on the human kidney. This data comprises gene expressions from 72 patients, with
ages ranging from 27 to 92 years. Kidney samples were obtained from all patients, and these were dissected into 72 cortex
samples and 62 medulla samples. Total RNA was isolated from each of the n = 134 samples and queried using Affymetrix
HG-U133A and HG-U133B high density oligonucleotide arrays (44,928 probesets). MAS 5.0 software was used to normalize
the data. The data are available at the Stanford Microarray Database (http://genome-www5.stanford.edu).
Although the data is cross-sectional we can treat it as if it were time-course data by using age as the time variable. This

creates an unbalanced design. On top of this, an added wrinkle was that there were additional patient variables that could
be included in the analysis. This included gender, race, age, blood pressure, pathology, medications, serum creatinine, and
urinary protein concentration data.

http://genome-www5.stanford.edu
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Fig. 2. Top 12 time profiles with the largest∆∗1 values (∆
∗

1 decreases from top to bottom). Expression values and their smoothed loess curves (Cleveland,
1979) are plotted from day 0 through 45. Solid points and lines represent EOM data, whereas empty-circle points and dashed lines are hindlimb data.

To cast this within our framework, we shall assume that the expression value for the i-th tissue sample, for a given gene,
is of the form

Yi = f (xi,1, . . . , xi,p)+ εi, i = 1, . . . , n, (2)

where xi,j is sample i’s value for the j-th variable, j = 1, . . . , p, and εi are independent random errors such thatE(εi) = 0 and
Var(εi) = σ 2. The assumption of independence is again warranted here. It is quite reasonable to assume that the n = 134
cortex andmedulla tissues are independent, even though in some cases these sampleswere obtained from the same patient.
The expression values are a function of p variables and thus the dimension of the functional measure is M = p. It

is unlikely that age dependent gene expressions are affected by many of the factors that were available (Storey et al.,
2005; Rodwell et al., 2004; Higgins et al., 2004). Thus, as in previous analyses, we considered only gender and tissue type
information in addition to age; so that p = 3. The predictiveness component for Θ has dimension G = 1, because there is
only one model fit for each gene. We fit (2) using random forest regression and defineΘ by:

∆m = Im, form = 1, . . . , p, and Ψ1 = MER.

Here, Im are random forest variable importance (VIMP) values. VIMP measures the change in prediction error on a new
test case if a variable were removed from the analysis (Breiman, 2001; Ishwaran, 2007). A large positive VIMP indicates
predictiveness of a variable, adjusting for remaining variables.
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Fig. 3. Percentage of genes with most frequent Biological Processes (BP), Molecular Functions (MF), and Cellular Components (CC). Dark gray andmedium
gray bars areΘ∗ andΘ significant genes. Light gray bars indicate all genes on the array.

The GHP here is quite interesting: find genes with large positive importance values and small model errors.

Remark 1. Note that to ensure proper comparison of VIMP across genes, we scaled Im by dividing it by the variance of Y .

4.1. Results

Random forest regressionwas applied to each gene using age, gender, and tissue type as predictors. Each forest comprised
1000 trees, with computations implemented using the randomForest R-package (Liaw and Wiener, 2002) under default
settings. Model error was calculated as in (1). For the estimate of σ 2 we used adjusted mean square error from a least
squares fit using a linear model with B-splines used for age, and main effects, and interactions included for tissue type and
gender.
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Table 3
Number of significant genes using threshold values of cut-off1 = (0.1, 0.001, 0.001, 0.01), cut-off2 = (0.01, 0.01, 0.01, 0.01), cut-off3 =
(0.005, 0.005, 0.005, 0.01), cut-off4 = (0.002, 0.002, 0.002, 0.01), and cut-off5 = (0.001, 0.001, 0.001, 0.01) forΘ .

Θ cut-off Number of significant genes

cut-off1 36
cut-off2 96
cut-off3 209
cut-off4 326
cut-off5 378

Fig. 4. Θ values: VIMP for age, tissue, and gender versus log2-transformed model error (left, middle, and right panels). The vertical and horizontal lines
in each plot correspond to theΘcut-off3 = (0.005, 0.005, 0.005, 0.01).

Table 3 shows how the number of significant genes vary as a function of thresholding values applied to Θ =

(Iage, Itissue, Igender,MER). Significant genes were annotated using GO methodology, but this data is suppressed for brevity.
Fig. 4 plots Θ values from the analysis. VIMP for Iage, Itissue, and Igender are plotted versus log-transformed model error.

Similar patterns are seen in the three plots, however VIMP for age is systematically larger—thus revealing a strong age
effect. Fig. 5 plots VIMP for age versus tissue and age versus gender (left and right panels, respectively). The time profiles
corresponding to the gene with the highest Itissue value out of the significant set of genes, are plotted in Fig. 6. The profile
shows a very interesting age-gender-tissue interaction.

5. Discussion

Gene hunting with random forests is a new method that can be used to find gene expression time-profile differences
across biological groups. It can be used for fairly general experimental designs, even those that are unbalanced and that may
involve additional experimental variables. Because the approach is based on random forestmethodology, it is nonparametric
and data adaptive. Furthermore, it can be computed efficiently, even for large microarray studies, and is relatively easy to
use.
At the same time, as this is a new methodology, some interesting unanswered questions have emerged. One key issue

is the assumption of independence across time used in both our examples. Although this is an assumption that can often
hold in animal based experiments (as in Section 3), it brings up the question of whether the methodology can be applied to
general time course settings where dependence across time may be at play. Looking carefully back at our examples we see
that independence was needed primarily to get estimates for the model error for our predictors (via subtracting estimates
of the internal noise σ 2 from the estimated prediction error). This naturally suggests dependent settings could be handled
if model error can be estimated without requiring independence. This is an interesting area for future research.
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Fig. 5. VIMP for age versus tissue, and age versus gender (left and right panels, respectively).

Fig. 6. Time profiles for gene with highest Itissue value from set ofΘ-significant genes defined by cut-off3 (Table 3).

Another issue has to do with thresholding. There is now a vast literature in the field of bioinformatics that deals with
thresholding p-values for gene expression data (for example, see Datta and Datta (2005)). However, we have taken a
prediction approach where there is much less known. The issue of how to appropriately threshold VIMP from forests is a
newparadigmwhere almost nothing seems to be known. Future research in this area promises to be exciting and rewarding.
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