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ABSTRACT

Motivation: mRNA expression data obtained from high-throughput

DNA microarrays exhibit strong departures from homogeneity of

variances. Often a complex relationship between mean expression

value and variance is seen. Variance stabilization of such data is crucial

for many types of statistical analyses, while regularization of variances

(pooling of information) can greatly improve overall accuracy of test

statistics.

Results: A Classification and Regression Tree (CART) procedure is

introducedforvariancestabilizationaswellas regularization.TheCART

procedure adaptively clusters genes by variances. Using both local

and cluster wide information leads to improved estimation of popula-

tion variances which improves test statistics. Whereas making use of

cluster wide information allows for variance stabilization of data.

Availability: Sufficient details for our CART procedure are given

so that the interested reader can program the method for themselves.

The algorithm is also accessible within the Java software package

BAMarrayTM, which is freely available to non-commercial users at

www.bamarray.com.

Contact: hemant.ishwaran@gmail.com

1 INTRODUCTION

It is unlikely that Gosset could ever have envisioned his ‘Student’

t-test (see Student, 1908) being used in scientific applications call-

ing for tens of thousands, sometimes even hundreds of thousands, of

simultaneous applications of the test. But this in fact is a common

scenario seen today when searching for differentially expressing

genes from DNA microarray data. The popularity of the t-test

for microarray analysis can be explained in part by its simplicity

and the speed at which it can be computed. Computationally simple

and efficient procedures are obviously highly desirable when work-

ing with high-throughput data. The wide spread use of the t-test,

however, also stems from methodological considerations. An

important and well-recognized aspect of the t-test is its ability to

account for the underlying variability in the data. This property

makes it preferable to simple-minded methods that focus only on

fold-changes.

In the context of a microarray experiment, the t-test can nota-

tionally be described as follows. Let Yi,j be the expression value

for a gene-transcript j from microarray chip i, where i¼ 1, . . . , n and

j ¼ 1, . . . ,P. Each of the n chips are assumed to have a specific

group label, which for example could be the phenotype correspond-

ing to the underlying target sample, or if the samples are collected

from tissues of different stages of a disease process, the group label

could indicate stage of progression of disease. We indicate group

labels using a group membership variable &i 2 f1‚ . . . ‚gg. For

example, in a study with microarray data collected from two

types of tissues (for concreteness, say control and diseased), g ¼
2 and either &i ¼ 1 or &i ¼ 2 with the label indicating the type of

tissue sample (control or diseased) being interrogated by chip i.
In a two group problem, the t-test for testing for a differential

effect for a specific gene j is

tj ¼
Y 1‚ j � Y 2‚ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibss2
1‚ j /n1 þ bss2

2‚ j /n2

q ‚ ð1Þ

where nk is the sample size for group k, Yk‚ j ¼
P

fi:&i¼kg Yi‚ j/nk
is the mean for group k ¼ 1, 2 and

bss2
k‚ j ¼

1

ðnk � 1Þ
X

fi:&i¼kg
ðYi‚ j�Yk‚ jÞ2

is the sample variance for group k. Most often (1) is applied using

Welch’s approximate degrees of freedom.

Equation (1) is a two-sample t-test with unequal variances.

However, if population variances are anticipated to be equal

(s2
1‚ j ¼ s2

2‚ j), precision can be improved using an equal variance

test statistic:

tj ¼
Y 1‚ j � Y 2‚ j

bss j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n1 þ 1/n2

p ‚ ð2Þ

having n�2 degrees of freedom, where n ¼ n1 + n2 and

bss2
j ¼

1

ðn � 2Þ
X2

k¼1

ðnk � 1Þbss2
k‚ j:

is a pooled estimate of the population variance.

On the other hand, if population variances are equal and these

values are known, then further power gains can be obtained. If

s2
1‚ j ¼ s2

2‚ j ¼ s2
j , and s2

j is known, a more accurate testing

approach is obtained using

tj ¼
Y 1‚ j � Y 2‚ j

sj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n1 þ 1/n2

p : ð3Þ
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Notice that (3) has infinite degrees of freedom since it uses the true

population variance s2
j . Of course, computing (3) is hypothetical

since population variances are unknown in practice. However, if

genes share population variances, and genes can be clustered by

these shared values, then given the tremendous amount of data

available within a microarray experiment, it becomes possible to

estimate shared variance parameters with high accuracy and to

compute t-statistics along the lines of (3). A key goal of this

paper will be to show how to cluster genes and to combine informa-

tion across the data to achieve these kinds of accurate estimates. Our

approach is based on a Classification and Regression Tree (CART)

splitting algorithm. At the same time while we seek regularization,

we show that our CART procedure also has the property that it

variance stabilizes the data. In itself variance stabilization is impor-

tant because microarray data often exhibit severe departures from

homogeneity of variances. Often one sees a complex relationship

between the mean expression of a gene and its sample variance.

Since many statistical procedures, other than t-tests, rely on

equality of variances for improved inference, variance stabilization

is crucial.

2 METHODS

The simplest way to estimate the population variance for a gene is by

using the sample variance of its expression values. More precise

estimates, however, are possible by carefully synthesizing and combining

information from expression values of other genes. We refer to this

method for improved estimation of population variances as variance

regularization.

Variance regularization is a well-studied and well-appreciated concept in

the microarray literature. Perhaps the earliest such discussion appeared

in Baldi and Long (2001). There, variance regularization was considered

in the context of a two-sample t-test with unequal variances similar to (1). An

empirical Bayes approach was employed where population variances were

estimated by a weighted mixture of the sample variance bss2
k‚ j and an overall

inflation factor selected using expression values from all the data. A similar

approach was used in Tusher et al. (2001) and Efron et al. (2001). There,

permutation methods were applied to t-tests involving pooled sample

variances inflated by using an overall ‘fudge factor’ (the term ‘fudge factor’

was actually coined in the SAM software package and not the previous

papers). In a similar vein, shrinkage estimation was used in Wright and

Simon (2003), Smyth (2004), Cui et al. (2005) and Ji and Wong (2005)

as a means for regularization. For example in Cui et al. (2005), F-tests for

identifying genes with differential effects were used. Different estimates for

the variance were considered, including a Stein-based shrinkage estimator.

In Ji and Wong (2005), empirical Bayes shrinkage estimation was used.

Interestingly, here the application was not to microarrays but to the class of

tiling arrays, thus showing the idea of variance regularization is growing in

its usage.

2.1 Stabilization and regularization via clustering

A common ingredient to each of the previous methods involves shrinkage of

the sample variance to a global value. Here we discuss a different approach

following the method of Ishwaran and Rao (2003, 2005). In this approach

genes are clustered into groups with similar variances, and gene population

variances are estimated using information from the cluster. This is a different

type of shrinkage of the sample variance, being more akin to adaptive local

shrinkage.

2.2 Clustering

The clustering method of Ishwaran and Rao (2003, 2005) applies to any

number of groups g assuming equality of variances across experimental

groups. For each gene j, it is assumed

s2
1‚ j ¼ � � � ¼ s2

g‚ j ¼ s2
j : ð4Þ

Assumption (4) will be the starting point for our algorithm. Later, in Section

3.3, we extend the approach to address unequal variances across groups.

The method of Ishwaran and Rao (2003, 2005) works as follows. Define

the pooled sample variance, bss2
j , by

bss2
j ¼

1

ðn � gÞ
Xg
k¼1

ðnk � 1Þbss2
k‚ j:

Cluster genes by their pooled sample standard deviation, bss j. Create C

clusters, where C is some number greater than or equal to 1. In Ishwaran

and Rao (2005), an ad hoc deterministic rule was used for clustering bss j. In

Section 2.6 we discuss a more systematic approach using CART.

Let # denote the resulting cluster configuration. Rescale the data within

each cluster l of # by dividing all expression values by the square root of the

cluster mean pooled sample variance. That is, all expression values Yi, j in a

given cluster are transformed to Y*
i‚ j ¼ Yi‚ j/bssðljÞ, where lj denotes the cluster

j belongs to, and

bss2ðlÞ ¼ 1

#fj : lj ¼ lg
X
lj¼l

bss2
j :

Because all expression values within a cluster are multiplied by the same

value, the signal to noise ratio for any given gene (mean value to standard

deviation ratio) remains unchanged.

Typically, the number of genes within any given cluster will be large.

Because of this, bss2ðlÞ should precisely estimate the shared population vari-

ance of the cluster, s2ðljÞ. Under the assumption (4), and ignoring variability

in bss2ðljÞ, we have VðY*
i‚ jÞ ¼ s2ðljÞ/bss2ðljÞ, which should be approximately

equal to one. Consequently, the data are transformed in such a way that

homogeneity of variances is satisfied.

Increased precision in estimating s2ðljÞ has another important benefit:

it can be used to derive a regularized t-test. For ease of notation, consider

the case when g ¼ 2. The test for detecting a differential effect for j is

defined as

tj ¼
Y

*

1‚ j � Y
*

2‚ j

tj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n1 þ 1/n2

p ‚ ð5Þ

where t2
j ¼ s2ðljÞ/bss2ðljÞ. Setting tj ¼ 1 yields the hypothetical t-test (3)

when s2
j ¼ 1 with an infinite degrees of freedom. This is a form of

regularization that should lead to increased accuracy in identifying differ-

entially expressing genes. Other forms of regularization are also possible.

These simply involve substituting different values for tj, obtained

using information from the cluster lj. We illustrate one such approach in

Section 4.

2.3 Stopping rules for C

These types of benefits are highly dependent on the number of clusters C

used in the clustering procedure. Care must be taken to ensure that C is

selected appropriately. If C is too large, overfitting is likely and poor regu-

larization and stabilization will result. For example, if the number of clusters

equals the number of genes (C ¼ P), then the transformed pooled standard

deviations, denoted by bss*
j , will satisfy bss*

j ¼ 1 for each j. But this is likely to

be a poor transformation. Even if an equal variance model is true, we still

expect variability in bss*
j around 1. Therefore, rather than choosing a large

value of C, and potentially losing power, the prefered method is to start with

C ¼ 1, in which all genes are assumed to have the same variance, and then

gradually increase C until an equal variance model is justified.

To determine an appropriate value for C, a distance measure approach is

used. This measure is calculated as follows. After transforming the data

compute bss*
j . Calculate the empirical distribution function for bss*

j and com-

pare this to the theoretical null distribution for bss j under assumption (4)

CART variance stabilization and regularization
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assuming sj ¼ 1 for all j:

s1‚ j ¼ � � � ¼ sg‚ j ¼ sj ¼ 1‚ j ¼ 1‚ . . . ‚P: ð6Þ
If F̂F# is the empirical distribution function for bss*

j under # and F is the

theoretical null distribution for bss j, the distance between the distributions is

defined to be

$ð#Þ ¼ 1

99

X99

s¼1

F̂F#
s

100

� �
� F

s

100

� ���� ���:
The smallest such $ð#Þ indicates the best configuration #.

2.4 Variance stabilization and regularization

algorithm

In summary, the algorithm is described as follows:

1: for C ¼ 1 to 100 do

2: Select an appropriate cluster configuration # with C clusters.

3: Rescale expression values within each cluster l by dividing by bssðlÞ.
4: Calculate $ð#Þ.
5: end for

6: The optimal # is the value with the smallest $ð#Þ.
7: Rescale observations using the optimal #. All population variances

are assumed to equal one for the transformed data.

2.5 Comments

� Observe that $ð#Þ uses only the 1–99th percentiles of bss2
j . This is for

computational reasons since without some type of restriction the

algorithm becomes too slow. Our experience has shown the space of

trees under this restriction to be more than rich enough.

� In Ishwaran and Rao (2005),Fwas defined to be the distribution function

for the square root of a x2-random variable with n�g degrees of freedom.

This is the distribution for bss j assuming normality for the data under the

null (6). We adopt this approach here. This greatly simplifies computa-

tions and also compares favorably to non-parametric choices, such as

permutation methods that we have experimented with.

� It is crucial to select a good cluster configuration for a given C. Ishwaran

and Rao (2005) used an ad hoc deterministic rule based on pre-selected

percentile values of bss j. However, relying on pre-selected percentile splits

may not always work well. Another concern is that the method uses a top-

down approach starting from larger percentiles and working downwards.

If in the distribution of bss2
j there is significant heterogeneity in smaller

values, then a large number of splits is needed before the algorithm

reaches these values. This will force a large number of clusters and

will over-regularize the data.

2.6 CART gene clustering

The previous point makes it clear a more systematic approach for clustering

genes is needed. For this reason we introduce a CART-like mechanism

for creating clusters [for more background on CART see Breiman et al.

(1984)]. This method also uses the percentiles for bss j to define clusters, but

percentile splitting values are data adaptively chosen by maximizing node

purity of the tree in a classical CART-like approach.

Node purity used for splitting a tree is defined by Dð#Þ ¼ 1/ð1 þ $ð#ÞÞ,
where # represents the tree-cluster. In this way, maximizing node purity is

equivalent to minimizing the distance measure $ð#Þ. The CART procedure

can be briefly summarized as follows (note: as mentioned earlier, we restrict

permissible splits to the 1st through 99th percentiles of bss j, which we denote

by Q1, . . . ,Q99):

(1) Begin at the root node. This corresponds to C¼ 1 and cluster config-

uration #1 ¼ fbss1‚ . . . ‚ bssPg. Define the purity of the root node as

D1ð�Þ ¼ ð1 þ$ð#1ÞÞ�1
.

(2) To form a cluster of sizeC ¼ 2 split the data atQs. All bss j � Qs become

cluster 2, all other values become cluster 1. Call the resulting

configuration #2ðsÞ and let D2ðsÞ ¼ ð1 þ$ð#2ðsÞÞÞ�1
denote its

node purity. The best cluster configuration of size C ¼ 2 is denoted

by #2 ¼ #2ðs*Þ. This configuration satisfies D2ðs*Þ � D2ðsÞ for all s.

(3) Form clusters of size C ¼ 3 by splitting #2 using the remaining

splits in {Q1, . . . ,Q99}. Let #3ðsÞ be the cluster configuration of

size C ¼ 3 obtained by using the split Qs. The best configuration of

size C ¼ 3 is denoted by #3 ¼ #3ðs*Þ and satisfies D3ðs*Þ � D3ðsÞ
for all s.

(4) Repeat. Select the cluster configuration #* ¼ #Cðs*Þ having the

highest node purity DCðs*Þ, where 1 � C � 100.

(5) To variance stabilize the data, cluster bss j using the optimal configura-

tion #*. Rescale expression values within each cluster l 2 #* by

dividing by bssðlÞ.
Note: The algorithm used throughout the paper followed the procedure

outlined above but with one small change made to reduce computa-

tions. Rather than determining cluster configurations for each value C ¼
1, . . . , 100, the algorithm included a check which halted at the first sign

of a decrease in node purity. While this does not guarantee a global maxi-

mum, our experience shows the node purity function is concave in C, and

when node purity begins to decrease, it continues to decrease.

3 ILLUSTRATION: VARIANCE STABILIZATION

3.1 Cognitive impairment

For our first illustration we consider a microarray experiment

based on rat brain tissue [Blalock et al. (2003)]. The goal of this

study was to identify gene expressions involved in age-dependent

cognitive decline. Male Fischer rats aged 4 months (Young, n1 ¼
10), 14 months (Middle aged, n2 ¼ 9) and 24 months (Aged, n3 ¼
10) were trained sequentially over 7 days after which hippocampal

tissue was collected and then interrogated using Affymetrix

microarrays. The data are available at the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) data repository under series record accession number

GSE854. See www.ncbi.nlm.nih.gov/geo.

The data were already normalized and we applied our CART

procedure directly to the normalized data without any further

pre-processing. This is the typical scenario for how our method

is applied in practice. Microarray data are first normalized prior

to inference, and because such data often exhibit departures from

equality of variances, it is advisable to variance stabilize it before

inference. Our procedure works well with popular normalization

methods such as MAS 5.0 (Affymetrix, 2001) and RMA (Irizarry

et al. 2003).

The fact that normalization procedures do not necessarily stabi-

lize the variance is made amply clear in Figure 1. There we have

plotted the mean expression value versus the standard deviation for

each age group. Note the increase in standard deviation as mean

expression increases. Clearly there is a severe violation of homo-

geneity of variance.

Figure 2 depicts the percentile splitting values found by the

CART procedure. The y-axis on the left-hand side plots splits as

a function of C (where C ¼ 1, . . . , 100), while the y-axis on the

right-hand side are pooled standard deviations for the percentile.

Each line on the plot is the splitting value for a cluster l traced out

as C increases starting from when it is formed. For example, when

C ¼ 2 the best split is Q71, which is roughly equal to a pooled
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standard deviation of 240. Cluster 1 is bss j > Q71 and cluster 2

corresponds to bss j � Q71.

Figure 2 shows that clusters split rapidly early on. It is not until

C ¼ 20 and higher that clusters start to stabilize. Clearly the algo-

rithm is efficiently carving up the data with very few splits. Figure 3

shows how well F̂F# approximates the null target distribution func-

tion F as a function of C. On the plot we have superimposed the

99 percentiles of the transformed pooled standard deviations for

each cluster configuration #C for C ¼ 1 to C ¼ 100. The thick gray

line is the theoretical values under F. As can be seen there is a rapid

convergence to the null distribution, after which overfitting starts

to occur. As C gets very large all standard deviations begin to

converge to the value of one and overfitting will be very bad.

Our algorithm stops very close to the theoretical null (recall that

our procedure terminates once node purity starts to decrease; to

produce Figures 2 and 3 we forced our algorithm to investigate

all C values). The optimal value was C ¼ 15 with a node purity

value of 0.997 (the maximum value possible being 1.0).

The effectiveness of the transformation can be seen in Figure 4.

There we have plotted the mean expression versus the standard

deviation for the CART transformed data. Except for a small

clump of genes with standard deviations near 0.5 the transformation

is seen to be highly effective. As a comparison we have also plotted

the means and standard deviations obtained using the variance sta-

bilizing procedure of Huber et al. (2002). This procedure can be

used for simultaneous normalization and variance stabilization of

the data. We implemented the method using the ‘vsn()’ command

in Bioconductor [see Chapter 2 of Gentleman et al. (2005) for

illustration]. Figure 5 are the plots derived using the original

Fig. 1. Mean expression value versus standard deviation for each gene (P ¼
8740) from brain tissue data (Blalock et al., 2003). Plots from left to right are

Young aged, Middle aged and Aged rats.

Fig. 2. Cluster configurations defined by percentiles (y-axis on left) and

pooled standard deviations (y-axis on right) using the CART Stabilization-

Regularization algorithm applied to brain tissue data.

Fig. 3. Percentile values of pooled standard deviations after transforming

brain tissue data using C clusters (C ¼ 1, corresponding to the original non-

transformed data, is the most vertical curve, whereas C ¼ 100 is nearly

horizontal). Thick gray line is target null.

Fig. 5. Mean expression versus standard deviation using the Bioconductor

procedure vsn(). Here each point on the plot corresponds to a probe from

background corrected raw CEL data. As before, plots from left to right are

Young, Middle and Aged rats.

Fig. 4. Mean expression values versus standard deviations from CART trans-

formed data (brain tissue data). Plots from left to right are Young aged, Middle

aged and Aged rats.

CART variance stabilization and regularization
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CEL files. The vsn() procedure can also be applied to any data

matrix. Figure 6 was obtained using vsn() on the normalized

data used in Figure 4.

3.2 Unequal variances across groups

So far our algorithms have assumed sample variability may

differ across genes but not across experimental groups. The next

example shows this assumption may not always hold. We illustrate a

graphical tool for assessing equality of variances across groups and

discuss how to modify the CART algorithm in this case.

For our example we consider dataset C from Pomeroy et al.
(2001). Here tissue samples were collected from 60 children

with medulloblastomas. Of these data, 21 samples came from

individuals who died (group 1) and 39 from survivors (group 2).

Samples were interrogated using HuGeneFL DNA microarrays. The

resulting data were then normalized using software from Affymetrix

[see Pomeroy et al. (2001)]. In total there were P ¼ 7129 genes on

each array. The data can be found at www.broad.mit.edu/mpr/CNS.

Figure 7 plots the mean expression value versus the standard

deviation for each of the two groups. Once again we see that the

CART procedure has effectively stabilized the variance.

However, we had some concerns regarding the assumption of

equal variances across the two groups. To graphically test this

we used the following procedure. Using the optimal cluster config-

uration found by CART we separately transformed the data for each

of our two groups. This was done by dividing the expression values

in group k 2 f1‚2g in cluster l by the square root of the mean cluster

sample variance for the group:

bss2
kðlÞ ¼

1

#fj : lj ¼ lg
X
lj¼l

bss2
k‚ j:

Thus, if chip i belongs to group k, the transformed expression

value for a gene j is Y*
i‚ j ¼ Yi‚ j/bsskðljÞ and the transformed sample

variance is bss2
k‚ j/bss2

kðljÞ.
We then combined the transformed standard deviations for each

group k into blocks of sample size 100 within a CART specified

cluster and computed the resulting mean and standard deviation of

each block. These values are presented in Figure 8.

If population variances are equal between survivors and deaths,

the mean value of the transformed standard deviations for each

group should be concentrated near one. However, Figure 8

shows transformed standard deviations for deaths are systematically

lower (left plot) with systematically higher variability (right plot).

The higher variability is owing to a sample size effect and

is not unexpected. Recall that the sample size for survivors is

n2 ¼ 39, while for deaths n1 ¼ 21. The lower mean values, however,

cannot be explained away, and suggests variability differences

across the groups.

3.3 Clustering strategy for unequal variances

To deal with the issue of differing variances across groups we

modify our CART clustering procedure. Recall bss2
kðljÞ is the

mean cluster sample variance for gene j for group k, where cluster

formation is based on the pooled standard deviations over all

groups. Since population variances are unequal, it stands to reason

that a better cluster configuration, and hence better regularized

estimate of variance, can be obtained by working with each

group separately.

The idea is straightforward and applies to more than two groups.

One simply runs the CART procedure separately on each group k,

obtaining an optimal cluster configuration #*
k . For example, for two

groups k and k
0
, merge the two cluster configurations into a more

refined cluster configuration #* and use this new configuration for

regularized estimates of population variances. For example, if ‘x’

represents a gene, ‘ j ’ a cluster boundardy, and #*
1 and #*

2 are

indicated by the top and bottom rows of the left-side of the figure

below, then the refined cluster #* formed by merging #*
1 and #*

2 is

Fig. 8. CART clustering configuration was used to separately transform

survivors (gray points) and deaths (black points) from embryonal tumor

data. Means and standard deviations of the transformed standard

deviations are given in left and right plots respectively. Dashed vertical lines

are percentile splitting points of the cluster configuration (genes have

been sorted so that percentile splitting values decrease going from left to

right).

Fig. 7. Mean expression values versus standard deviations from embryonal

brain tumor data [dataset C from Pomeroy et al. (2001)]. First two plots are

deaths and survivors from untransformed data, while last two plots are deaths

and survivors from CART transformed data (C¼ 17 with node purity 0.995).

Fig. 6. vsn() applied to normalized data of Figure 4.
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given on the right of the figure:

x x j x x j x

x x x j x x
) x x j x j x j x

x x j x j x j x

In general, the new cluster configuration will contain more clus-

ters than either of the original configurations, but in our experience

will not be so large that over-regularization occurs. For example,

for the embryonal brain tumor data, #*
1 and #*

2 had C ¼ 10 and C ¼
14 clusters, respectively, while the merged cluster configuration,

#*, contained C ¼ 20 major clusters (clusters with more than

100 genes). Let bss*
1ðl1‚ jÞ and bss*

2ðl2‚ jÞ denote the square root of

the mean cluster sample variance for gene j from groups 1 and

2 based on #*. The modified regularized unequal variance t-test is

t*j ¼
Y 1‚ j � Y 2‚ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibss*2

1 ðl1‚ jÞ/n1 þ bss*2
2 ðl2‚ jÞ/n2

q :

In our experience this modification works very well when

equality of variances across groups is suspect. We note that the

variance stabilization procedure discussed above is incorporated

in the 3.0 release of BAMarray� and an interactive diagnostic

plot is available for assessing accuracy of stabilization. Interested

readers should visit www.bamarray.com for more details.

4 ILLUSTRATION: REGULARIZATION

Performance of the CART regularized t-test was studied using two

sets of data. Our first set of data was synthetically produced by

simulation from the well-known additive and multiplicative error

model of Durbin et al. (2002). Our second example used microarray

data from the rich spike-in experiment of Choe et al. (2005). Per-

formance in both cases was measured by how well the CART t-test

performed relative to the following tests: (1) conventional t-test, (2)

t-test computed by logarithmically transforming the data, (3)

Cyber-T test described in Baldi and Long (2001), available as

R-code at http://visitor.ics.uci.edu/genex/cybert and (4) the Dh
difference statistic of Huber et al. (2002) calculated using the

vsn() procedure discussed earlier.

In addition to the CART t-test, we also studied the performance

of a hybrid CART t-test. In place of the mean pooled variance of a

cluster, the hybrid test used a weighted estimate of the variance. The

‘local’ variance for a gene (for a specific group) within a cluster l
was estimated by averaging out the closest 100 neighbors to it

in terms of mean signal (this is similar to the strategy used by

Cyber-T). For the hybrid test, the sample variance for a gene for

a given group was calculated by taking this value and multiplying

it by W, the fraction of observations within the cluster relative to

the number of genes, and then adding to this ð1 � WÞ times the

mean pooled variance of the cluster. In this way, clusters with small

numbers of genes will have small values for W and will tend towards

the overall mean pooled variance of the cluster, thus sharing

information more globally. For bigger clusters, we have the luxury

of more local sharing of information. In such cases this is achieved

because W will be large. The hybrid test, similar to Cyber-T, applies

in unequal variance settings only.

4.1 Simulated data

Our synthetic data were simulated using the additive and multiplic-

ative error model of Durbin et al. (2002). Specifically, for our

simulation we took P¼ 10 000, n¼ m¼ 5 where expression values

for group 1 were sampled using

Yi‚ j ¼ m1‚ j þ ðm1‚ j þ b1Þexpðrhi‚ jÞ þ n1«i‚ j‚ ð7Þ

for i ¼ 1, . . . , n1, whereas for group 2,

Yi‚ j ¼ m2‚ j þ ðm2‚ j þ b2Þexpðrhi‚ jÞ þ n2«i‚ j‚ ð8Þ

for i ¼ n1 + 1, . . . , n1 + n2. We took fhi‚ j‚«i;jg to be i.i.d. N (0,1)

variables. This type of model ensures the sample variance for a

gene will be related to its mean signal. In particular, when hi,j is

small, the means in (7) and (8) are dominated by m1,j and m2,j

respectively. However, when hi,j is large, the means are dominated

by (m1,j + b1)M and ðm2‚ j þ b2ÞM, respectively, where

M ¼ Efexpðrhi‚ jÞg. At the same time there is a corresponding

increase in the variance by ðm1‚ j þ b1Þ2V and ðm2‚ j þ b2Þ2V,

respectively, where V ¼ Varfexpðrhi‚ jÞg.

With 80% probability, we selected m1‚ j ¼ m2‚ j ¼ 0. The other

20% of the time, corresponding to differentially expressing genes,

m1, j and m2, j were independently sampled from an exponential

density with mean k, where k was randomly sampled from

{1, . . . , 10}. We ran two distinct simulations. For our first sim-

ulation, referred to as Synthetic (i), we set b1 ¼ b2 ¼1, r ¼ 0.2

and n1 ¼ n2 ¼ 1. This represents a setting where variances

are equal over groups. Observe that r is chosen significantly smaller

than n. In particular, the value r ¼ 0.2 ensures the standard devia-

tion V1/2 is �21% of the standard deviation of «i, j, which is

not uncommon in practice. Our second simulation, Synthetic (ii),

used b1 ¼ b2 ¼ 1 and n1 ¼ 1 and n2 ¼ 3. Because n2 is larger than

n1, this represents a setting where variances are unequal across

groups.

4.2 Spike-in data

Our second example uses the spike-in array data of Choe et al.
(2005). Here data were collected using Affymetrix GeneChips

involving target samples comprising 3860 individual cRNAs of

known sequence spiked-in at various concentrations. A total of

six chips were collected. The first three representing control data

(C), and the last three, spiked-in data (S). In total there was

14 010 probesets, of which 2535 represent genes spiked-in at

equal 1· concentrations in both groups (the non-differentially

expressing control genes), while 1331 represent genes spiked-in

at higher levels in the S group (the differentially expressing

genes). The remaining 11 475 probesets are considered ‘empty’

and represent non-differentially expressing genes. The complex

nature of the data requires elaborate normalization. However, rather

than attempting our own normalization of the data, we used the top

10 normalized datasets discussed in Choe et al. (2005). These are

available at http://www.elwood9.net/spike. Careful analysis

revealed that the first five and last five of these datasets have similar

mean and standard deviations within their respective groups, but are

dissimilar across groups. This is because a median polish summa-

rization method was used for the first five datasets, whereas MAS

5.0 summarization was used for the last five datasets [see Choe et al.
(2005) for details]. Therefore, when analyzing performance we

considered the two groups separately. We refer to these two groups

as Spike-in (i) and Spike-in (ii), respectively.
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4.3 Results

Table 1 tabulates the results from our experiments. The table

records the total number of false positives (FP), the total number

of false negatives (FN) and the total number of misclassifications

(Miss) for each procedure. Since each of our procedures have

different properties, and hence have different cutoff values for

identifying differentially expressing genes, the values reported

are based on the top 20% and top 10% of genes ranked by absolute

value of the test statistic for the synthetic and spike-in datasets

respectively. The values reported in Table 1 for Synthetic (i) and

(ii) are averages (rounded off) over 100 independent replications.

Except for Synthetic (i), all results were based on tests assuming

unequal variances across groups. In particular, CART unequal vari-

ance tests used the method of Section 3.3 (the hybrid test being

defined suitably), whereas standard t-tests used (1). For Synthetic

(i), all tests assumed an equal variance model (Cyber-T and the

hybrid CART test do not apply here). In this case, regularized

CART t-tests used (5) with tj ¼ 1, whereas standard t-tests were

based on (2).

The conclusions from Table 1 are very interesting. These are

listed as follows:

(1) For the synthetic datasets, the Dh method, corresponding

to vsn(), is nearly the worst performer. This was surprising

to us, since this is a parametric procedure specifically designed

to estimate mean–variance relationships of the form described

by (7) and (8). We found that as we increased r towards

the value of 1 (the standard deviation of «i,j), the performance

of D h improved, but as one of our referees pointed out, such

large values of r are unrealistic in practice. Moreover, when

applied to the spike-in datasets, performance of Dh is also bad.

Generally, our results do not favor Dh.

(2) The CART procedures are best for the synthetic datasets.

The fact that they are better than a parametric method speci-

fically designed for this example is highly promising. Over the

spike-in data, the hybrid CART procedure does very well. In

fact, of all procedures it strikes the best balance in all examples.

Using both local and cluster wide information appears to be a

robust form of regularization.

(3) Cyber-T has the best performance over the spike-in data.

This fact was also noted in Choeet al. (2005). The large number

of genes with low expression in this experiment seems to favor

Cyber-T’s method for pooling information. However, for the

synthetic data, the method does not perform quite as well.

(4) The t-tests have average performance in all examples. It is

clear that careful use of regularization can lead to significant

improvement in their performance.

(5) It is interesting to note how all procedures are worse in the

unequal variance Synthetic (ii) simulation compared with the

equal variance Synthetic (i) simulation. This shows the tre-

mendous loss in power in small sample sizes which occurs if

we cannot tap into an equal variance assumption.
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