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ABSTRACT

Extending previous work on quantile classifiers (g-classifiers) we propose the g*-classifier for the class
imbalance problem. The classifier assigns a sample to the minority class if the minority class conditional
probability exceeds 0 < g* < 1, where g* equals the unconditional probability of observing a minority class
sample. The motivation for g*-classification stems from a density-based approach and leads to the useful
property that the g*-classifier maximizes the sum of the true positive and true negative rates. Moreover,
because the procedure can be equivalently expressed as a cost-weighted Bayes classifier, it also minimizes
weighted risk. Because of this dual optimization, the g*-classifier can achieve near zero risk in imbalance
problems, while simultaneously optimizing true positive and true negative rates. We use random forests
to apply g*-classification. This new method which we call RFQ is shown to outperform or is competitive
with existing techniques with respect to G-mean performance and variable selection. Extensions to the

multiclass imbalanced setting are also considered.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Random forests, introduced by Leo Breiman [1], is an increas-
ingly popular learning algorithm that offers fast training, excellent
performance, and great flexibility in its ability to handle all types
of data [2,3]. It provides its own internal generalization error esti-
mate (i.e., out-of-bag error) as well as measures of variable impor-
tance [1,4-6] and class probability estimates [7]. Random forests
has been used for predictive tasks as varied as modeling mineral
prospectivity [8], lake water level forecasting [9], identifying poten-
tially salvageable tissue after acute ischemic stroke [10], identifying
biomarkers for diagnosis of Kawasaki disease [11], classifying child-
hood onset schizophrenia [12], electrical load forecasting [13], and
for pedestrian detection [14]. The random forests algorithm has
also been generalized beyond classification and regression, most
importantly to random survival forests, where each terminal node
of a tree in the forest provides a survival function estimate [15,16].
Random survival forests has been used to analyze survival prob-
lems with great success; for example, in esophageal cancer stag-
ing [17,18].

In biomedical and other real world applications, a common
problem is the occurrence of imbalanced data, defined as data fea-
turing high-imbalance in the frequency of the observed class la-
bels (see Section 2 for a formal definition). Some examples are
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disease prediction [19] and diagnosing aviation turbulence [20].
Imbalanced data has been observed to seriously hinder the clas-
sification performance of learning algorithms, including random
forests and other ensemble methods because their decisions
are based on classification error [21] and where there is high-
imbalance in the frequency of the observed class labels a low error
rate can be achieved by classifying all of the samples as members
of the majority class.

Classification of class imbalanced data sets has been identi-
fied as a top problem in machine learning [22] and there is an
ever increasing body of literature devoted to this extremely im-
portant problem. He and Garcia [23] and Sun et al. [24] system-
atically reviewed classification in the presence of class imbalance.
As examples of more specialized reviews, Galar et al. [21] fo-
cused specifically on using ensembles to learn class imbalanced
data and Lopez et al. [25,26] explored imbalanced data character-
istics. Finally, three very recent, useful reviews deserve mention-
ing: Krawczyk [27] thoroughly reviewed open research challenges
in learning imbalanced data; Haixiang et al. [28] exhaustively re-
viewed existing papers on imbalanced data published between
2006 and 2016 and categorized them with respect to method and
the journals in which they were published; and Das et al. [29] pro-
vided a comprehensive review of current approaches to imbal-
anced data and class overlap and open issues with the same in
the broader context of data irregularities.

Section 2 formally defines the class imbalance problem and
provides a breakdown of methods that have been used to address
this problem. As discussed there, of the various methods proposed,
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undersampling the majority class so that its cardinality matches
that of the minority class is among the most popular. In the con-
text of random forests, undersampling the majority class provides
improved classification performance with respect to the minority
class [30] and appears to be the most common approach when us-
ing random forests to learn imbalanced data due to the fact that
it was implemented in Breiman’s original Fortran code [4] used
by the randomForest R-package [31]. This method is called bal-
anced random forests (BRF) and it is an example of what has been
referred to in the literature [32] as a data level method, which
transform the distributions of the classes in the training data. We
will show that BRF has an important connection to our approach
even though our method is not an example of a data level method.

In Section 3, we propose our new approach to the class im-
balance problem using a density-based argument. This results in a
classifier that can be seen to be an example of a quantile classi-
fier, or g-classifier [33], which classifies samples based on whether
the conditional probability of the minority class exceeds a speci-
fied threshold 0 <q < 1. Theorem 2 shows that the specific thresh-
old value g* of this classifier (q*-classifier) has the useful property
that it maximizes the true positive and true negative rates. More-
over, because it can be equivalently expressed as a cost-weighted
Bayes classifier, it is also shown to minimize weighted risk. Be-
cause of this dual optimization, unlike the traditional Bayes clas-
sifier (which is a g = 0.5 median classifier), the g*-classifier can
achieve near zero risk in highly imbalanced data, while simulta-
neously optimizing true positive and true negative rates. Further-
more, we show surprisingly that balanced sampling as used by BRF
also has this optimality property of maximizing the true positive
and true negative rates (Theorem 3). Moreover, we show that the
q*-classifier’s optimality continues to hold even if sampling strate-
gies are imposed (Theorem 4). Because we choose to implement
q*-classification using the full data, this means balanced sampling,
while achieving the same optimality property, comes at the cost
of efficiency since it only uses a fraction of the data. We apply g*-
classification with random forests, which we call RFQ, using a large
comparative benchmark study (Section 4) and find it highly com-
petitive and not only that but we are able to identify conditions
under which RFQ significantly outperforms BRF (Section 5). These
findings are further confirmed using synthetic data and through
in-depth case study analyses. Section 6 shows RFQ also outper-
forms BRF with respect to variable selection. Section 7 consid-
ers the extension of RFQ to the multiclass imbalanced setting.
Section 8 compares RFQ to boosting methods. Section 9 concludes
with a discussion of our findings.

2. Imbalanced data setting

We now formally define the imbalanced data setting and intro-
duce notation to be used throughout the paper. Denote the learn-
ing data by .2 = (X;,Y;)1<i<n. Where X; € 2 is the d-dimensional
feature and Y; € {0, 1} is the binary ordinal response. It is assumed
that (X;, ;) are i.i.d. from a common distribution P. Let (X, Y) de-
note an independent generic data point with distribution P.

Our goal is to build an accurate classifier for Y given X = x when
the learning data is imbalanced. To help quantify what is meant
by “imbalancedness”, we start by first defining the imbalance ra-
tio (IR). Following the convention in the literature, we assume that
the majority class labels are 0, and outnumber the minority class
labels, 1.

Definition 1. The imbalance ratio (IR) is defined as IR = Ny/N;
where Ny and N; denote the cardinality of the majority and mi-
nority samples, respectively. A data set is imbalanced if IR > 1.

It has been observed that class imbalance is not a problem in
and of itself and does not necessarily lead to poor generalization

in classification. If the training data is such that the classes can
be separated in the feature space, then good classification will be
achieved irrespective of IR. Rather the problem is that of train-
ing the classifier on too few minority examples in the presence
of class overlap and small subgroups of minority class examples
surrounded by majority class examples in the data space (some-
times referred to as “small disjuncts”), which frequently charac-
terize imbalanced data. This combination of characteristics, termed
“concept complexity,” [34] make it difficult for a classifier to con-
struct a good decision boundary leading to poor classification per-
formance [35-37].

In order to quantify the complexity of imbalanced data, we
adopt the approaches in [38] and [36], where they evaluate the
distribution of the two classes in the local neighborhood of each
minority example using k = 5 nearest neighbors. We adopt their
taxonomy of types of minority examples except that we make no
distinction between minority examples with 4/5 and 5/5 nearest
neighbors of the majority class.

Definition 2. A minority class example is safe, borderline, or rare
if 0 to 1, 2 to3, or 4 to5 of its 5 nearest neighbors are of the
majority class, respectively.

We show in Section 5 that the percentage of minority class
samples that are rare plays an important role in explaining differ-
ences between the g*-classifier and BRF.

Now we define some formal notions of imbalancedness. Follow-
ing [39], we distinguish between marginally imbalanced and condi-
tionally imbalanced data.

Definition 3. The data is marginally imbalanced if p(x)«1/2 for
all x e 27 where p(x) =P{Y = 1|X =x}.

Thus, marginally imbalanced data is data for which the proba-
bility of the minority class is close to zero throughout the feature
space.

Definition 4. The data is conditionally imbalanced if there exists a
set A ¢ 2" with nonzero probability, P{X € A} > 0, such that P{Y =
1|X e A} ~ 1 and p(x)« 1/2 for x¢A.

In contrast to marginally imbalanced data, conditional imbal-
ancedness occurs when the probability of the minority class is
close to 1 given the features lie in a certain set, and approximately
zero otherwise. In both cases, it is assumed that the minority class
is rare.

2.1. Related work

As briefly mentioned in the Introduction, there is a vast lit-
erature on methods that have been used for the class imbalance
problem. Methods to address the problem can be broadly grouped
into data level methods, which transform the distributions of the
classes in the training data, and algorithmic level methods, which
adapt existing learning algorithms or develop new ones [32].

2.1.1. Data level methods

Data level methods, by far the most popular approach to im-
balanced data [28], can be further subdivided into those that un-
dersample the majority class or oversample the minority class to
achieve balanced training data.

e One-Sided Sampling [40] selectively subsamples the major-
ity class, removing only majority class instances that are ei-
ther redundant with other majority class instances or have
minority class instances as their 1-NN. These “Tomek links”
are removed since a small amount of attribute noise can
push these examples to the incorrect side of the decision
boundary.



234 R. O'Brien and H. Ishwaran/Pattern Recognition 90 (2019) 232-249

o Balanced Random Forests (BRF) [30], discussed in the
Introduction, undersamples the majority class so that its
cardinality matches that of the minority class in each
bootstrap sample. BRF is a common approach when using
random forests due to the fact it is implemented in the pop-

ular randomForest R-package [31].

Neighborhood Balanced Bagging [38] focuses bootstrap sam-

pling toward minority examples that are difficult to learn

while simultaneously decreasing probabilities of selecting
examples from the majority class. The extent to which an
example is considered difficult to learn is quantified by de-

termining the number of majority examples among its k-

nearest neighbors.

» Synthetic Minority Over-sampling Technique
(SMOTE) [41,42] generates new artificial minority class
examples by interpolating among the k-nearest neighbors
that are of the minority class (i.e., artificial minority in-
stances are introduced on the lines between each minority
instance and its k-nearest minority class neighbors until the
class frequencies are approximately balanced).

e A number of methods that combine boosting with sam-
pling the data at each boosting iteration have been de-
veloped; SMOTEBoost [43] combines SMOTE with boosting,
RUSBoost [44] combines random undersampling with boost-
ing, and EUSBoost [45] combines evolutionary undersam-
pling with boosting.

2.1.2. Algorithmic level methods

As an alternative to sampling the data to balance the cardinal-
ity of the classes, learning algorithms can be modified to improve
classification over the minority class.

o SHRINK [46] labels all the instances in a region as minor-
ity class provided the region contains at least one minor-
ity class example. SHRINK then searches over these regions
for the optimal minority class region with the greatest num-
ber of minority class samples relative to majority class sam-
ples. However, SHRINK fails in data sets where there exists
more than one substantial cluster of minority class instances
and it provides no advantage in data sets without significant
class overlap.
Hellinger Distance Decision Trees (HDDT) [47] use Hellinger
distance, a measure of distributional divergence, as the split-
ting criterion. The authors argue that the skew insensitivity
of Hellinger distance makes it superior to standard splitting
rules such as the Gini index in the presence of imbalanced
data.

o Near-Bayesian Support Vector Machines (NBSVM) [48] com-
bines decision boundary shifting with unequal regularization
costs for the majority and minority classes. NBSVM uses the
empirical relative frequencies of the two classes as estimates
of the prior probabilities to shift the decision boundary to-
ward the Bayes optimal decision boundary. However, the
performance of NBSVM is kernel-dependent (as with stan-
dard SVM) and is poor when the minority class is compact
in comparison to the majority class.

e Class Switching according to Nearest Enemy Dis-
tance [49] adapts a technique proposed by Breiman [50] to
highly imbalanced data by switching the labels of major-
ity class samples with a probability proportional to their
Euclidean distance to the closest minority class sample.

3. An optimal quantile classifier for class imbalanced data

Our approach falls under the class of algorithmic level proce-
dures. Following [33], we define a quantile classifier (g-classifier)

as

8q(%) = 1{p=q).

where 0 <q <1 is a prespecified quantile threshold. If we have g
= 1/2, which [33] term a median classifier, we obtain the familiar
Bayes classifier:

88 (X) = T(pc=1/2)-

As noted in [33], minimizing loss subject to unequal misclassi-
fication costs is equivalent to classification based on p(x)>q using
thresholds q other than 1/2. This will be demonstrated presently
and in so doing explain why imbalanced data is so challenging for
classifiers.

Define the risk for a classifier 8(x) as

T((S, Lo, Z]) = E[£01{S(X)=1,Y=O} + Z11{(§(X)=0.Y=1}j|' (1)

Here ¢y, ¢; > 0 are fixed constants associated with the cost of mak-
ing one of the two classification errors: ¢y is the cost of misclas-
sifying a majority class instance; ¢; is the cost for misclassifying
a minority class instance. Assigning specific losses leads to the in-
terpretation of (1) as a cost-weighted risk function. Under uniform
weights ¢g = ¢; = 1, the risk (1) simplifies to classification error,
]P’{S(X) #Y}, which we denote as r(8).

Under the cost-weighted risk (1), the optimal classifier is the
cost-weighted Bayes rule, defined as

Swe (%) = V(px)=co/ (o +e1)) (2)

which we recognize as a quantile classifier with q = ¢¢/(¢g + €1).
The following well known result establishes the optimality of the
cost-weighted Bayes classifier [51]. For convenience we provide a
proof in Appendix A.

Theorem 1. The cost-weighted Bayes rule is optimal in that its risk
satisfies r(8wg., £g, £1) < 1(0, Lo, £1) for any classifier 6 : 2 — {0, 1}.
Its risk equals

r(8ws, £o, £1) = E[min{¢; p(X), o (1 — p(X))}]. (3)
Thus, (3) is the smallest weighted risk achievable by a decision rule.

Now consider what happens in imbalanced data if performance
is measured using classification error, ¢y = ¢; = 1. In this case, the
cost-weighted Bayes classifier reduces to the (unweighted) Bayes
classifier. Assuming marginal imbalance, i.e. p(x) « 0.5, the Bayes
rule is dg(x) =0, thereby classifying all observations as majority
class labels. Under classification error we know this must be the
optimal rule. In particular by (3), the Bayes error equals r(dg) =
E[min{p(X),1 - p(X)}] = E[p(X)] ~ 0 which is essentially perfect.

3.1. A density-based approach

We see that classification error provides a strong incentive for
learning algorithms to correctly classify majority class samples at
the expense of misclassifying minority class samples. This is obvi-
ously problematic and a better approach is to demand good per-
formance from a classifier under both types of classification errors.
Define the TNR (true negative rate) and TPR (true positive rate)
for a classifier 6 as follows:

TNR(S) =P{§(X) =0]Y =0}, TPR(}) =P{§(X) =1|Y = 1}.
Our goal is to find a classifier that achieves both high TNR and TPR

values in imbalance problems. The Bayes rule, §g, does not achieve
this goal because it has a TNR value of 1 but a TPR value of 0.

Definition 5. A classifier § : 2 — {0,1} is said to be TNR+TPR-
optimal if it maximizes the sum of the rates, TNR + TPR.

To achieve the goal of TNR+TPR optimality, we introduce the
following classifier derived from a density-based approach. The
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Table 1
Notation used throughout the paper.
S(X) Generic classifier
Lo, £ misclassification costs for majority and minority classes
r(S, Lo, 1) risk for S(x)
T the marginal probability that Y =1, 7 = P{Y =1}
. =Ni/N relative frequency of minority class
p(x) conditional class probability function, p(x) = P{Y = 1|X =x}
fx(x) density for X
8q(x) quantile classifier (g-classifier)
Sp(x) Bayes classifier
Swa(x) cost-weighted Bayes classifier

dq- () q*-classifier (quantile classifier with g = 1)

classifier, denoted by §p(x), assigns an instance x to the minority
class if its data density for minority class labels, fyy(x|1), is larger
than the data density for majority class labels, fxy(x|0):

dp(x) = 1{fx\y(X|1)fow(X\0)}‘

Basing the classifier on the conditional density of the features, fyy,
rather than the conditional density of the response, p(x), removes
the effect of the prevalence of the minority class labels. This is
one way to see how &p is able to handle imbalancedness. More
directly we can show that §p is TNR+TPR-optimal. Here is an in-
formal argument showing this. First notice that for a classifier §
to achieve TNR+TPR-optimality it should maximize the probabil-
ity of the events {§(X) = 0]Y =0} and {§(X) = 1|Y = 1}; this be-
ing equivalent to tracking the regions of the data space where
the respective conditional densities are maximized. The value of
TNR + TPR conditional on . for the classifier & equals

ﬁ fiy (x]0) dx + / Fry (|1 dx
5(x)=0 d(x)=1

<

/ iy (10) dx+ [
Fxiy (x10)> fxyy (x[1) Fxiy (x10)=<fxpy (x[1)
The right-hand side is the TNR + TPR value for ép, which shows
that it is the optimal TNR+TPR-rule. A more formal proof of this
fact is given shortly.

Before proceeding, we introduce a table of notation that will be
particularly useful in this and subsequent sections (see Table 1).

3.2. The q*-classifier

While it is convenient theoretically to describe the density-
based classifier in terms of the conditional density of the data, in
practice it will be difficult to implement the classifier as stated.
However, we can rewrite §p(x) using the following identity:

Fxy (x|1) =fx.Y(X~ 1)/P{Y = 1}=]P’{Y =1X =x}fxx)/P{Y =1}
Sy x10)  fxy (x,0)/P{Y =0} P{Y = 0[X = x} fx (x)/P{Y = 0}’

Cancelling the common value fy(x) in the numerator and de-
nominator, and using the notation of Table 1, we have

Sy &) p(1—m)
Sy xlo) — (1= p))m”
(4)

With a little bit of rearrangement, we now see that (4) is a g-
classifier with ¢ = (notice analogously for the Bayes classifier
that 8p(x) = 1(a,x=1) Where Ag(x) = p(x)/(1 - p(x)), which is a g-
classifier with g = 0.5). This leads to the following definition of the
proposed classifier.

8D(X) = 1(AD(x)zl}v where Ap(x) =

Definition 6. Call (Sq* (%) = 1p>n the g*-classifier (and keep in
mind 8- = ép).

Although [33] introduced the extremely useful concept of a
quantile classifier, they did not address how to select the optimal

Fxy (x|1) dx.

q. In deriving the g*-classifier, we have informally argued that g
should be . In the following result, we formally justify our selec-
tion of g by showing that the g*-classifier is able to achieve a near
zero risk while jointly optimizing TNR and TPR.

Theorem 2. The q*-classifier is TNR+TPR-optimal. Furthermore, it is
the cost-weighted Bayes rule (2) under misclassification costs ¢q = 1
and ¢ = (1 —m).

Theorem 2 shows that the g*-classifier is not only TNR+TPR-
optimal, but also weighted risk optimal under misclassifica-
tion costs ¢g=m and ¢; = (1-m). In particular, by (3) of
Theorem 1 we have

r(8q 7,1 -m) =E[min{(1 - 7)p(X), 7 (1 - p(X))}]
<E[r(1-pX))]=m.

Notice that the right-hand side will be nearly zero for both types of

imbalanced data: marginally and conditionally imbalanced. More-

over, unlike the Bayes rule, which also achieves a near zero risk,

Theorem 2 shows the g*-classifier is able to do this while satisfy-
ing the requirement of a jointly optimized TNR and TPR.

Proof of Theorem 2. Maximizing TNR and TPR is equivalent to
minimizing FPR = 1— TNR and FNR = 1- TPR. For any classifier

§, we have by definition

FPR(8) + FNR(S)
=P{§(X) =1|Y =0} + P{5(X) = 0]Y = 1}
P =1Y=0} PUX)=0Y=1}

P{Y = 0} P{Y =1}
[I{S(X)l,YO} 1{S(X)o.yl}]
=E + )
£ 2

Minimizing the above expression does not change if we multiply
by ¢g¢; throughout. Therefore, minimizing the FPR and FNR rate is
equivalent to minimizing

E[eol{S(X)zl.Y:(J} + Z11{S(X):o,y:1}]

which is the weighted risk r(S,eO, ¢1) where ¢g=m and ¢; =1-
7. By Theorem 1, this is minimized by the weighted Bayes rule (2),

which equals the g*-classifier under the stated choices for ¢, and
¢. O

3.3. Response-based sampling: Balancing the data

One common strategy to overcome the imbalance problem is to
undersample the majority class to evenly balance the data. We can
describe this process more formally by introducing auxiliary vari-
ables S; €{0, 1} where values S; = 1 indicate subsampled cases. The
subsampled learning data is defined as % = {(X;.Y;) :S;=1,i=
1,..., N} where data values are selected with probabilities that de-
pend only on the value of Y and not X. This is called response-
based sampling. In particular,

e - (1)

ifY=1
otherwise,

(5)

where 0 <mg(Y) < 1.
By (5), the probability a randomly selected Y from % equals
Y=1Iis

7S =By =1js=1) = T8 = 13;1{;:1?}){‘/ =1_ H;T{SSU:)T}. (6)

Likewise, 1 —75 =P{Y =0|S=1} = 75(0)(1 — 7)/P{S=1}. In order
to have balanced labels we must have 75 =1/2, or equivalently
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75 =1 -5, which implies by (6)

ns(1) 1-m
ng(O): w (7)

The factor (7) calls to mind the factor in (4) that modulates the
difference between 8y and §p. This is not a coincidence as we now
show. In what follows, we expand upon the justification for under-
sampling provided by [33], which can be inferred from [52]. Let &3
be the Bayes rule constructed using .#s (call this the subsampled
Bayes rule). For a given x,

rPe
A-px) =

where by definition pS(x) =P{Y =1|X =x,5S=1}. By Bayes theo-
rem,

SSx) =1 if

Ry (1) Ry (x.0)
S(x) — JXY 1 pS(x) = 2X¥ )
&) 500 pr® 0
Consequently,
o Ry 1)
S =1 if XX 751,
(%) 1 )%_y x.0)

By definition,

PX=xY=15=1}

fyx D =PX=xY=1S=1}= B =1)

Noting that

PX=xY=1S=1}=P{S=1X=xY =1]P(X =x,Y =1}
=P{S=1]Y =1} fxy(x, 1)
= 7s(Dp(x) fx (%),

we have

75 (1DPGOSx (X)

f)%Y(XJ): PS =1}

Applying a similar argument to f3, (x,0), and cancelling the com-
mon value fy(x) and P{S = 1}, deduce that

P L&D p@ms) (8)
A-pP®)  f,x0 (1-px)mrs0)
Therefore,
5500=1 if —P® . 750

(1-p@) ~ 7s(1)’

Under (7), the right-hand side equals 7 /(1 — 7). Hence, & (x) =
dp(x) under (7). This implies that the subsampled Bayes rule is
TNR+TPR-optimal under (7).

Theorem 3. Under balanced subsampling (7), the subsampled Bayes rule
85 is TNR+TPR-optimal.

3.4. The q*-classifier is invariant to response-based sampling

In contrast, the g*-classifier is unaffected by response-based
sampling and retains its TNR+TPR-optimality no matter what the
target balance ratio is. Let 8(51* (x) be the g*-classifier constructed

using .%. By definition, (S‘SZI* (%) =1 50)2n5y Where 75 =P{Y =
1|S = 1}. Equivalently,
S _ S
g POa-m) -
(1-pS(x))7s
Therefore, using (8),

¢ POTA-7) _ py/m
" (A -pX)ms(@7S ~ (A -px)/A-m) ~ 1, (9)

(Sfr x) =1

Sél” x) =1

where we have used the following identity which follows
from (6)

ws()/ms  P{S=1y=m
7s(0)/(1—-75)  P{S=1}/(1-m)’

In other words, 8(531* =48q (compare (9) to (4)). We can there-

fore conclude that Sqr remains TNR+TPR-optimal. Combined with
Theorem 3 we have therefore established the following.

Theorem 4. Under response-based sampling of the form (5), 821* = Sq*,
and therefore 5. is TNR+TPR-optimal. Moreover, under balanced sam-
pling (7), all three methods are equivalent:

8 =85 =5q.

and all three methods are TNR+TPR-optimal.

4. Application to random forests

In practice, the value of p(x) is unknown and therefore must
be estimated. In this scenario, when we refer to g*-classification
we mean classification using an estimated value for p(x) to
classify observations using the quantile ¢ = 7. In general, we can
apply g-classification based on any specified 0 < q < 1. Here we in-
vestigate the performance of g*-classification when applied with
random forests. We refer to this procedure as RFQ. As a compar-
ison procedure, we will use balanced random forests, which we
continue to refer to as BRF. We also use the standard random
forests algorithm as comparison and refer to this as RF.

Algorithm 1 provides a description of the RF classification al-

Algorithm 1 Random Forest Classification (RF).
Input:

1: Learning data .2 = (X;, Y))1<i<n

2: User specified values of ntree,nodesize,mtry
Learning Phase:

3. procedure RF(.Z ,ntree,nodesize,mtry)

4: form=1,..., ntree do

5: Select N values with replacement from .# and grow a
treeusing this data as follows

6: for all tree nodes do

7: while observations in node > nodesize & impurity
present do

8: Randomly select without replacement mtry fea-
tures for splitting

9: Determine decrease in impurity for each selected
feature for splitting

10: Split on the variable whose optimal split decreases
impurity the most

11: end while

12: end for

13: Calculate pp(-), the tree estimated value for p(-)

14: end for

15: Let Pre(-) = Y m*$® Pm(-)/ntree be the RF ensemble estima-
tor for p(-)

16: end procedure
Classification Phase: R
17: Classify x using the ensemble classifier ogp(x) = 1(p..(x)>1/2)

gorithm. The algorithm requires the following parameters: ntree
(number of trees trained in the forest), nodesize (target terminal
node size), and mtry (number of random features used to split a
tree node). RFQ and BRF apply Algorithm 1 exactly as RF does but
with the following one line modifications:
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Fig. 1. Summary of 143 benchmark imbalanced data sets. Top figures display dimension of feature space d, sample size N, and imbalance ratio IR. Bottom figure displays d
versus N with symbol size displaying value of IR. This identifies several interesting data sets with large IR values, with some of these having larger d.

RFQ: Line 17 of Algorithm 1 is modified as follows. In place of

median (Bayes) classification, dgp(x) = l{ﬁRF(")zl/Z}’ RFQ applies

q*-classification, SRFQ(X) = l{ﬁRF(X)zﬂ}.

BRF: Line 5 of Algorithm 1 is modified as follows. Rather than
selecting a bootstrap sample of size N, a sample of size 2Ny is used,
where the probabilities for minority and majority class instances
to be selected for the bootstrap sample are w5(1) = (Ng/N;)ws(0),
thus satisfying the balancing condition (7). Keep in mind that BRF
uses the Bayes rule for classification; thus the classification rule
used in Line 17 is the same for BRF.

4.1. Performance comparisons on benchmark imbalanced data

In theory, both BRF and RFQ will possesses the TNR+TPR-
property: this is true for BRF by Theorem 3 because it satisfies the
balancing condition (7), while for RFQ this holds by Theorem 2 be-
cause it applies g*-classification. However this is predicated on
knowledge of the true probability function p(x), which in practice
must be estimated, and therefore performance in practice may be
very different. In particular, an advantage of RFQ is that is uses a
much larger sample size than BRF which should increase its effi-
ciency in estimating p(x).

To see how the two methods performed in practice we tested
them using a diverse collection of 143 benchmark imbalanced data
sets (see Fig. 1 for summary statistics of the data sets; Supplemen-
tary Materials Appendix C provides background information on
the data). Analyses were performed in R [53] using the R-package
randomForestSRC [54]. Forests of size ntree = 1000 were used
for each training data set. Default settings for random forests were
used: trees were grown to purity (nodesize = 1), and random fea-
ture selection was set at mtry = d/3. Tree node splits (Lines 6-12
of Algorithm 1) were implemented using Gini splitting. The value
q* = required for RFQ was estimated using the empirical rela-
tive frequency of the minority class labels, # = N;/(Ng + N7). In

addition to BRF and RF, we also considered standard random
forests under Hellinger distance splitting [47], and BRF with
Hellinger splitting.

4.1.1. Performance metrics: The G-mean

In assessing performance, we used TNR, TPR, and the G-mean.
The G-mean is the geometric mean of TNR and TPR, i.e.,, G-mean =
(TNR x TPR)!/2 and it is meant to replace misclassification rate in
imbalanced data settings, since an overall accuracy close to 1 can
be achieved by classifying all data points as majority class labels
for heavily imbalanced data as previously noted. By way of con-
trast, the G-mean is close to 1 only when both the true negative
and true positive rates are close to 1 and the difference between
the two is small [46].

4.1.2. The q*-classifier appears to optimize the G-mean

Before discussing the results, it is worth noting that even
though the g*-classifier was not specifically developed to maxi-
mize the G-mean, we observed that by applying random forests
g-classification under different values of g, that the maximum G-
mean is achieved when q is approximately 7 (i.e., the G-mean ap-
pears to be maximized by RFQ). This is illustrated in Fig. 2 us-
ing 8 selected benchmark data sets. This is strong evidence that
TNR+TPR-optimality is a useful property for a classifier.

4.1.3. Results

For the analysis of the 143 benchmark data sets, we used 10-
fold cross-validation repeated 250 times. The G-mean for each
procedure is reported in Fig. 3. We observe that RFQ and BRF out-
perform all other methods. We also observe that using Hellinger
distance as the splitting criterion instead of the Gini index does
not noticeably improve performance, and thus we did not include
it in further experiments.
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Fig. 3. G-mean performance of different classifiers across 143 benchmark imbalanced data sets. (BRF=Balanced Random Forests; RF=Random Forests; RFQ = Random Forests

q*-classifier).
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5. Analyzing performance differences between RFQ and BRF

From Fig. 3 it appears that RFQ and BRF have roughly similar
performance overall. However, upon further investigation (Fig. 4),
we found that when the imbalance ratio is high, and when the
percent of minority class examples of the rare type is high, and
when d is high, RFQ outperformed BRF. We investigate this effect
further in this section.

5.1. An explanation of why RFQ is better

As we have noted previously, while RFQ and BRF both pos-
sess the TNR+TPR optimality property, in practice the difference
between the two methods is that RFQ utilizes all N data points,
whereas BRF uses the smaller sample size of 2N, which it must in
order to balance the data.

We suggested that the reduced sample size of BRF reduces its
efficiency in estimating unknown model parameters. We now pro-
vide a more detailed explanation of how this affects BRF's per-
formance for the scenarios described above. We consider a sim-
ple logistic regression setting where the true conditional class
probability function is

1
1+exp(—a — BTx)"

By (4), 8q* (x) =1 if log(Ap(x))>0. Hence x is classified as a mi-
nority class instance if

p(X) ( n )
log(1 —p(x)) > log )
Under the logistic model this simplifies to o + 87x > y, where y =
log(xr/(1 — 7)) (as comparison, the Bayes rule, g(x), classifies x as
a minority class sample if log(Ag(x)) >0, which simplifies to o +

BTx > 0). To gain more insight into (Sq* (x), first note the following
identity for m:

T=PY=1}= / Foix (11%) fx (x) dx = / P fi (x) dx.

Now in the setting of marginal imbalance, since p(x)~0, we must
have o « 0, and therefore,

px) =

T

1
/|:1+exp(—(x—ﬁTx)i|fX(X)dX

1
EXp(a)/ [eXD(oz) +exp(—/3TX)}fX(x) o

exp(a) / exp(Bx) fx (x) dx.
Combining this with 7 ~0, deduce that
y =log (%) ~ log () ~ a + log [/ exp(BTx) fx (x) dx].

The g*-classifier classifies x as a minority class instance if o +
BTx > y. Hence, g (x) = 1 if

&

BTx = log| / exp(B) fi(x) d .

For example, if X~N(u, X)
1
/eXP(,BTX)fx (x) dx = exp (/ST;L + EﬁTzﬂ)

Therefore, 8- (x) =1 if BTx > BT + (1/2)BTEB.

The above represents the theoretical boundary for achieving
TNR+TPR optimality, but RFQ and BRF must classify the data ac-
cording to an estimated 8q*. Suppose the two procedures directly

estimate 8- (x) by estimating 6 = (8, BT, BTEp) (i.e., instead of

Table 2
Simulated data sets.

N2 Signal®>  Noise¢ IRY % Rare®
Two Norm' 1250 20 500 49 99%
Waveforms# 1250 21 500 49 99%
TwoClassSim" 1250 20 500 9 92%
Friedman 1! 1250 5 500 49 99%
Friedman 2! 1250 4 500 48 99%
Friedman 3! 1250 4 500 49 99%

2 The sample size for training data and test data.

b The number of signal (true) variables.

¢ The number of resampled noise variables.

4 As defined in Definition 1.

¢ As defined in Definition 2.

f Class 2 is randomly downsampled to 25 instances.

& Classes 1 + 2 form the majority class; class 3 is randomly
downsampled to 25 instances.

h Intercept = - 16 and 100 of the 500 noise variables correlated
with p = 0.7.

I Where y > Yq-0.8 are classified as 1 and 0 otherwise.

indirectly estimating p(x)). Then RFQ will have an advantage be-
cause estimating 6 uses data across both classes and RFQ uses
all N data points whereas BRF uses a sample size of 2N; evenly
split across the two classes. Furthermore, performance differences
will become magnified as the imbalance ratio increases (since 2N,
becomes even smaller compared with N) and when the dimen-
sion d increases (since estimation becomes more difficult). This
also explains why RFQ is better in rare instance settings. Recall
from Definition 2 that a minority class example x is rare if 4 to
5 of its nearest neighbors are majority class examples. We can
imagine a setting where rare instances are a by product of in-
distinguishable conditional densities. That is, for x’ close to x we
have f(x'|1) = f(x’|0). If this region has positive measure, then
by the identification of finite mixtures of multivariate normals,
f(x]1) = f(x|0) = f(x) almost everywhere. This shows data from
both classes are important for estimating all components of 6, thus
further favoring RFQ.

5.2. Performance comparisons on simulated data

To provide further evidence for the above, we converted
five simulations from the mlbench R-package [55] into imbal-
anced data in addition to simulating imbalanced data directly
using the caret package [56] as detailed in Table 2. We re-
peated each experiment 250 times with forests of 5000 trees
grown on each training data set (nodesize=1, mtry=d/3). We
compared the performance of RFQ to BRF and standard ran-
dom forests (RF) and obtained the following results reported in
Table 3. The results are consistent with what we observed across
the 143 benchmark data sets. Clearly, RFQ outperforms BRF (as
well as RF) with respect to the G-mean, across all of the six
simulated high-dimensional imbalanced data models (Wilcoxon
signed rank test p-value = 0.03). This shows RFQ can offer
significant improvement for complex imbalanced data in high-
dimensional settings.

5.3. Cognitive impairment data

We chose the Alzheimers Disease CSF Data from the
AppliedPredictiveModeling R-package [57] to further ex-
plore performance of RFQ in difficult settings. This data set is a
modified version of the data in [58]. There are N = 333 observa-
tions with d = 130 predictors; the outcome is presence/absence
of cognitive impairment with Ny = 242 controls and N; = 91
impaired, for an IR of 2.66. We explored the relationship among



240 R. O'Brien and H. Ishwaran/Pattern Recognition 90 (2019) 232-249

0.0 02 04 06 08 1.0 0.0 0.2 04 0.6 0.8 1.0
| ! ! ! ! ! | ! ! ! ! !

10

40

10
|

2 ? o
1 o ©
o T .
£ §
3 o 8
[ - ©
o Ro!
o E
= - o
- - - S
— _,—/ / - o
| w©v
|
9_
. - 2
0 ] —J
o =~ — —_
o _]
|

T ! ! ! ! T ! ! ! ! T
0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0

% Minority Class of the Rare Type

Fig. 4. A closer look at difference in G-mean performance of RFQ and BRF for benchmark data sets. Vertical axis plots difference in G-mean as a function of % rare minority
class examples, feature dimension d, and imbalance ratio IR. There is an increasing trend upwards (thus favoring RFQ) as % rare minority class examples increases with

increasing d and increasing IR.



R. O'Brien and H. Ishwaran/Pattern Recognition 90 (2019) 232-249 241
Table 3
Performance comparisons on simulated data sets.
RFQ BRF RF
TPR TNR G-mean  TPR TNR G-mean  TPR TNR G-mean
Two Norm 86.71 58.88 71.34 13.55 100 3537 1.96 100 14.00
Waveform 91.58 56.04  71.56 53.98 9429 7087 1.96 100 14.00
TwoClassSim  84.73 5632  69.00 738 99.79  26.28 1.86  99.98 1149
Friedman 1 6820 5413  60.46 293 99.97 1643 200 100 14.12
Friedman 2 9554 56.26  73.27 11.35 99.89 3199 1.98 100 14.02
Friedman 3 48.71 54.84 5133 2.06 100 14.26 2.01 100 14.14
Table 4
Performance on cognitive impairment data.
RFQ BRF RF
TPR TNR G-mean  TPR TNR G-mean  TPR TNR G-mean
Scenario 1° 88.78 7148  79.34 7582 8814 8133 4966 9642 6834
Scenario 2" 89.72  69.21 78.50 6583 89.82 76.35 27.83 98.86  50.93
Scenario 3¢ 89.09 66.89  76.87 59.11 90.84  72.64 1445 99.64 36.19
Scenario 4¢ 8792 6258 73.78 4867 9244 6624 8.23 100 2757
Scenario 5¢ 88.82 6587 7613 65.68 89.78  76.19 13.79 9959 3514
Scenario 6" 8937 6048 7311 52.82 9255  69.09 7.27 99.99  26.06
Scenario 72 8894 5519  69.56 39.03 9453 5936 5.75 100 23.68
Scenario 8" 88.83 4701 64.01 2225 9711 44.33 5.27 100 22.92
Scenario 9' 8454  62.10 71.97 56.98 89.57  70.61 6.85 99.95 2538
Scenario 10/ 8494 5333 66.73 3826 9442 5845 5.46 100 23.23
Scenario 11¢ 85.17 4542  61.56 2099 9714 4253 5.23 100 22.86
Scenario 12! 8446  36.85 55.01 9.46 99.24  28.80 5.21 100 22.83
Scenario 13™ 7876 6126  68.88 49.17 8842  64.65 5.55 100 23.37
Scenario 14" 7833 5141 62.84 2564 9535  46.63 5.22 100 22.84
Scenario 15° 7915 4384 58.21 12.10 98.41 31.94 5.21 100 22.83

Scenario 16° 7896  36.10 52.63 6.49

99.74  24.68 5.21 100 22.83

Original data
Original data + 200 noise variables
Original data + 500 noise variables

a
b
c
d Original data + 1000 noise variables
e
£

Subsampled data with 40 cases randomly selected and all controls
Subsampled data with 40 cases randomly selected and all controls + 200 noise variables

& Subsampled data with 40 cases randomly selected and all controls + 500 noise variables
h Subsampled data with 40 cases randomly selected and all controls + 1000 noise variables
I Subsampled data with 20 cases randomly selected and all controls

i Subsampled data with 20 cases randomly selected and all controls + 200 noise variables
k Subsampled data with 20 cases randomly selected and all controls + 500 noise variables
! Subsampled data with 20 cases randomly selected and all controls + 1000 noise variables
M Subsampled data with 10 cases randomly selected and all controls

" Subsampled data with 10 cases randomly selected and all controls + 200 noise variables
© Subsampled data with 10 cases randomly selected and all controls + 500 noise variables
P Subsampled data with 10 cases randomly selected and all controls + 1000 noise variables

performance, dimensionality, and IR by adding progressively more
noise variables (obtained by resampling the predictor variables)
and by progressively subsampling the minority class, where each
smaller subsample of the minority class was randomly sampled
from the subsample of the previous iteration (i.e., nested sub-
samples). Table 4 contains the results of 10-fold cross-validation
repeated 250 times under the various scenarios with forests of
5000 trees grown on each training data set with nodesize=1,
mtry=d/3 for each scenario.

Even though the unaltered cognitive impairment data features
a modest IR of 2.66, standard random forests (RF) only classifies
slightly less than half of the patients with cognitive impairment
correctly and its performance rapidly deteriorates with the addi-
tion of noise and increasing IR through subsampling the minority
class. While BRF tends to perform well on the unaltered data and
under increasing IR, its performance rapidly deteriorates in higher
dimensions (i.e., with increasing noise) to the point that its perfor-
mance is not much better than RF and significantly inferior to RFQ.
In contrast, RFQ outperforms BRF (and RF) with respect to the G-
mean under all scenarios considered except for the unaltered data

with no noise and the data with 40 of the 91 cognitively impaired
patients randomly selected with no noise (Wilcoxon signed rank
test p-value <0.001). Under all scenarios the performance of RFQ
over the minority class remains constant and is superior to BRF
and RF, although with the cost of an increased FPR with increasing
dimensions.

5.4. Customer churn data

As another example, we looked at the Customer Churn Data
from the C50 R-package [59]. This is artificial customer churn data
modeled on real world data where the outcome is customer churn
yes/no. The data is already split into training and test data, so no
cross-validation is required. In the training data there are N = 3333
observations of which N; = 483 are instances of customer churn,
for an IR of 5.90.

As with the cognitive impairment data, we progressively add
more noise variables and progressively subsample the minority
class. Table 5 contains the results of running the test data through
the forests under the various scenarios with forests of 5000 trees
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Table 5
Performance on customer churn data.
RFQ BRF RF
TPR TNR G-mean TPR TNR G-mean TPR TNR G-mean
Scenario 1° 86.19 90.02  88.09 8352 9564 89.37 7372 99.79  85.77
Scenario 2" 89.31 75.55 8214 6437 9411 77.83 30.07 100 54.83
Scenario 3¢ 91.09 71.60  80.76 4298 9633 6435 18.49 100 42.99
Scenario 4¢ 9020 69.80 79.34 3408 9764 5768 6.46 100 25.41
Scenario 5¢ 87.08 87.88 8748 82.18 93.21 87.52 61.69 9993 7852
Scenario 6 8842 7146 79.49 4744 9494 6711 9.13 100 30.22
Scenario 72 8842 6716 77.06 35.41 97.02 58.61 2.45 100 15.65
Scenario 8" 8575 6294 7346 21.16 99.17 45.81 0.22 100 4.72
Scenario 9' 8129 8455 8291 7327 9183 82.03 46.55 100 68.23
Scenario 10/ 8040 6793 73.90 31.85 9598 5529 2.00 100 14.16
Scenario 11% 8129  64.81 72.58 25.61 97.37 49.94 0.22 100 4.72
Scenario 12 78.62  59.82  68.58 8.69 99.58 2941 0.22 100 4.72
Scenario 13™  82.63 84.34 8348 6526  91.69 7735 12.25 100 35.00
Scenario 14" 80.85  62.11 70.86 3096  96.19 54.57 2.90 100 17.02
Scenario 15° 79.51 59.33  68.69 13.59 9896  36.67 2.45 100 15.65
Scenario 16P 80.40  56.01 67.11 2.00 99.86  14.15 0.22 100 4.72
2 Original data
b Original data + 200 noise variables
¢ Original data + 500 noise variables
d Original data + 1000 noise variables
¢ Subsampled data with 240 cases randomly selected and all controls
f

Subsampled data with 240 cases randomly selected and all controls + 200 noise variables

& Subsampled data with 240 cases randomly selected and all controls + 500 noise variables
h Subsampled data with 240 cases randomly selected and all controls + 1000 noise variables
I Subsampled data with 120 cases randomly selected and all controls

I Subsampled data with 120 cases randomly selected and all controls + 200 noise variables
k Subsampled data with 120 cases randomly selected and all controls + 500 noise variables
! Subsampled data with 120 cases randomly selected and all controls + 1000 noise variables
m Subsampled data with 60 cases randomly selected and all controls

" Subsampled data with 60 cases randomly selected and all controls + 200 noise variables

© Subsampled data with 60 cases randomly selected and all controls + 500 noise variables

P Subsampled data with 60 cases randomly selected and all controls + 1000 noise variables

grown on each training data set with nodesize=1, mtry=d/3 for
each scenario.

We observe exactly the same pattern of performance with the
customer churn data as with the cognitive impairment data. As be-
fore, the performance of RF rapidly deteriorates with the addition
of noise and increasing IR; BRF performs decently on the unaltered
data and under increasing IR but its performance rapidly deterio-
rates in higher dimensions; RFQ outperforms BRF and RF with re-
spect to the G-mean under all scenarios except for the unaltered
data with no noise and the data with 240 of the 483 instances of
customer churn randomly selected with no noise (Wilcoxon signed
rank test p-value < 0.001). Under all scenarios the performance
of RFQ over the minority class remains constant and is superior to
BRF and RF but with increased FPR in higher dimensions.

6. Variable importance

We claim that the standard variable importance (VIMP) mea-
sure in random forests introduced by Breiman and Cutler [1,4],
called Breiman-Cutler importance [6], is inappropriate for RFQ in
the presence of significantly imbalanced data due to the fact that
almost all nodes in an individual tree will contain 0/s. We propose
instead to assess variable importance using the G-mean combined
with Ishwaran-Kogalur importance [15,54], the latter being an en-
semble rather than tree-based measure.

In Breiman-Cutler permutation importance, a variable’s OOB
(out-of-bag) data is permuted and run down the tree. The original
0OB prediction error is subtracted from the resulting OOB predic-
tion error, resulting in tree importance. Averaging this value over
the forest yields permutation importance. This type of importance,
which is tree-based, is appropriate for BRF because each tree is a

reasonably good classifier, therefore making prediction error a rea-
sonable way to assess a variable’s contribution to the model.

For RFQ this will not be a good measure because RFQ’s good
prediction performance arises from converting a random forest en-
semble classifier into a random forest ensemble g-classifier. There-
fore, we will instead use Ishwaran-Kogalur importance [15,54],
an ensemble-based measure, defined as the prediction error
for the original ensemble subtracted from the prediction error
for the new ensemble obtained by permuting a variable’s data.
For RFQ, performance is measured by the G-mean. Thus, we ap-
ply Ishwaran-Kogalur importance using G-mean prediction error.
Ensembles were defined in blocks of 20 trees. For BRF, we also
use G-mean for prediction error, but with Breiman-Cutler impor-
tance. We also compare results to standard random forests (RF) us-
ing Breiman-Cutler importance calculated using classification error
(the standard approach).

To assess performance of the proposed variable importance
measures, we used the twoClassSim function from the caret
package [56]: 2 factors, 15 linear variables, 3 non-linear variables,
and 20 noise variables. Sample size was N = 1000 with IR = 6
which was induced by downsampling class 2. Results averaged
from 1000 runs are displayed in Fig. 5. The results show RFQ out-
performs BRF which, in turn, outperforms RF.

7. Multiclass imbalanced data

In this section we explore the performance of RFQ, BRF and
RF in the multiclass imbalanced data setting. We accomplish this
by decomposing the multiclass imbalanced data into K(K-1)/2 two-
class data sets, where K is the number of classes, obtaining clas-
sifiers on each and then taking a majority vote over the results.
The empirical results that follow are based on forests of 5000 trees
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grown on each training data set with nodesize=1, mtry=d/3
and 50 resampled noise variables.

7.1. Waveform simulations

As a preliminary exploration of the more challenging multiclass
imbalance data setting [60]|, we chose the waveform data simu-
lation from the mlbench R-package [55], which produces three
classes of (approximately) equal size. We generated N = 1000 sam-
ples for the training (initially) and test data sets. To obtain multi-
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Fig. 7. G-mean performance of boosting classifiers versus RFQ for Friedman high
dimensional simulations. (Spline Boost, Tree Boost are boosted splines and boosted
trees using binomial loss; Tree HBoost are boosted trees with Huber loss; RFQvsel
is RFQ with variable selection filtering).

class imbalanced data, we subsampled the second and third classes
to obtain different class ratios. For each of the three class imbal-
anced data sets derived from the waveform simulation, we adopted
the approach of [61] and trained RFQ, BRF and RF on (3) =3 two-
class data sets. The multiclass classifier was obtained by taking
a majority vote over the three predicted class labels for the test
data. We compared the performance of the RFQ, BRF and RF mul-
ticlass classifier using Friedman’s one-vs-one approach using the
true positive rate for each of the three classes and the G-Mean.
This we did 250 times, averaging the results, which are listed in
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Table B.1 of Appendix B, where the “true positive rates” (i.e., the
performance metrics within each class) are denoted by TPR1, TPR2
and TPR3, respectively.

The (unweighted) G-mean is not necessarily the appropriate
metric for measuring classification performance in the multiclass
imbalanced data setting, especially in cases of extreme imbalance.
For the imbalanced data sets with the ratios 100:25:1, 100:10:1
and 100:5:1 the G-means for RFQ and BRF are similar but TPR
for the third class with the fewest instances is in the range 85-
86 for RFQ whereas the range is 42-44 for BRF. Granted, TPR over
the first class with far more instances than the other classes is ap-
proximately 52-55 for RFQ whereas it is approximately 86-87 for
BRF, but in real-world settings the cost associated with misclassify-
ing the class with the fewest instances is likely to be far higher, as
with two class imbalanced data. To account for this, we also looked
at the G-means for two classes at a time, denoted as G-mean, for

classes k and k', as well as the weighted G-mean, which in the
three class setting we define as

Weighted G-Mean = (TPR1#1 x TPR2%> x TPR3#>) "/ /247,
Specifically, in Table B.2 of Appendix B, we looked at the weighted
G-mean with 8; = 1/2 and B, = B3 = 1, which is not necessarily
ideal because it does not take into account the imbalance between
the second and third classes; nevertheless, it is sufficient to illus-
trate our point.

In Table B.2 we see a pronounced difference in the weighted
G-mean with 81 = 1/2, 8, = 1, and B3 = 1 for the highly imbal-
anced data sets with the ratios 100:25:1, 100:10:1 and 100:5:1. To
see why this is appropriate we look at the two class G-means. The
performance of RFQ is superior to BRF with respect to G-meanj3
and G-mean,3, whereas BRF is superior to RFQ only with respect
to G-meani,. Even though the performance of RFQ is superior with
respect to two of the three two class G-means and the difference
in G-meany3 in favor of RFQ is approximately the same as the dif-
ference in G-meany; in favor of BRF, the unweighted G-mean is in-
sensitive to this. For this reason, we believe that the weighted G-
mean in especially appropriate in the multiclass imbalanced data
setting.

7.2. Cassini simulations

As another example, we chose the cassini data simulation from
the mlbench R-package [55], which produces three classes of in
the ratio 2:2:1. As with the waveform simulation, we generated N
= 1000 samples for the training (initially) and test data sets with
noise variables and then subsampled the second and third classes
to obtain different class ratios.

The averaged results from 250 repetitions are listed in
Table B.3 of Appendix B. In contrast to the waveform imbalanced
data sets, for the cassini data sets with the most extreme class
imbalance, i.e.,, 100:50:1, 100:25:1, 100:10:1 and 100:5:1, RFQ is
clearly superior to BRF with respect to the unweighted G-mean.

We then looked at the weighted G-mean with §; = 1/2 and
B> = B3 = 1. In Table B.4 of Appendix B, we see an even more
pronounced difference in performance between RFQ and BRF with
respect to the weighted G-mean with 8; = 1/2, 8, = 1, and 83 =
1 for the extremely imbalanced data sets with the ratios 100:50:1,
100:25:1, 100:10:1 and 100:5:1 and essentially identical perfor-
mance over most of the other imbalanced data sets.

It should be noted that these results are limited in that we only
considered three class imbalanced data, which is a special case in
that the number of competent classifiers (i.e., classifiers trained
on a given class) outnumber non-competent classifiers (i.e., clas-
sifiers that were not trained on the class in question); for three
class imbalanced data using one-vs-one there are exactly two com-

petent classifiers and one non-competent classifier, so classifica-
tion by majority vote works. However, the ratio of competent to
non-competent classifiers becomes 1:1 for data with four classes
and monotonically decreases in favor of non-competent classifiers
as the number of classes increases. In these imbalanced multi-
class settings, a more sophisticated approach using some form of
weighted voting should be used instead [60,62].

8. Comparison to boosting

Gradient boosting is another machine learning method known
to possess state of the art classification performance. Therefore we
sought to compare performance of RFQ to boosting. For boosting
procedures, we used boosted parametric splines using binomial
loss (Spline Boost). For nonparametric boosting, we boosted trees
using binomial loss (Tree Boost) and Huber loss (Tree Hboost).
Parametric spline boosting was implemented using the R-package
mboost [63] and tree boosting by the R-package gbm [64]. In both
cases, 1000 trees were boosted with regularization parameter 0.1.
Depth of trees was set to three interactions and spline bases were
set to default values used by mboost.

As an enhancement to RFQ we also considered an extension
using variable selection. Using a preliminary RF, we calculated
Ishwaran-Kogalur importance using G-mean prediction error as in
Section 6. Variables were then removed if they were deemed non-
significant at the 5% level, where level of significance was obtained
using asymptotic confidence regions calculated using random for-
est variable importance subsampling [6]. Using the remaining non-
filtered variables, RFQ was then run as before. We call this method
RFQvsel.

We used the three Friedman simulations to test performance.
Sample size was set to N = 1250 with G-mean performance as-
sessed on a test set of the same size. Low dimensional simulations
with 25 noise features and high dimensional simulations with 250
noise features were used. All experiments were repeated indepen-
dently 250 times.

Figs. 6 and 7 display the test set G-mean performance values
for the low and high dimensional simulation scenarios, respec-
tively. Overall, the results are very encouraging for RFQ procedures
which are overwhelmingly superior to boosting procedures. Inter-
estingly, the dimension reduction used by RFQvsel performed very
well, especially in the high dimensional simulations. For example,
in the Friedman 1 simulation performance of RFQvsel is more ro-
bust to increasing dimension than RFQ. In terms of the boosting
procedures there appears to be no overall consensus. Sometimes
Huber loss for trees is better than binomial loss. There is also no
clear winner between parametric and nonparametric boosting.

9. Discussion

We introduced a classifier based on the ratio of data den-
sities for learning imbalanced data and showed this resulted
in a q-classifier with the property that its threshold q=gq*
yielded TNR+TPR-optimality. We called this the g*-classifier and
implemented g*-classification using random forests. We coined this
method RFQ and showed RFQ to be highly competitive with the
current and widely used balanced random forests (BRF) method
of undersampling the majority class (used by the randomForest
R-package for example). In our experiments with 143 imbalanced
benchmark data sets, we observed that while BRF significantly im-
proves classification with respect to the minority class, and un-
questionably outperforms the standard random forests algorithm,
its performance is roughly the same as RFQ on standard im-
balanced data sets, but generally inferior in the difficult setting
of high-complexity, high-imbalancedness, and high-dimensionality.
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Fig. 8. Computational times for RFQ and BRF for Friedman 1 simulation for different sample sizes N and feature dimension d. Top plot is relative CPU time for RFQ versus

BRE. Bottom plot is log-relative CPU time.
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This was further confirmed by in depth experiments on simu-
lated and real world data sets. Furthermore, we demonstrated that
RFQ is better at selecting variables across imbalanced data using
G-mean as the performance criterion with Ishwaran-Kogalur im-
portance than BRF with Breiman-Cutler importance (the standard
method used in random forest analyses). In the multiclass imbal-
anced setting, we showed that RFQ also outperforms BRF over ex-
tremely imbalanced data sets.

However one advantage of BRF is that it is computationally
faster due to the low sample size used to construct its trees. At the
same time, this advantage does not appear to be large. Fig. 8 dis-
plays relative CPU times and log-relative CPU times for RFQ ver-
sus BRF for the Friedman 1 simulation as N and d are varied. Even
when d =100 and N = 50,000, the relative CPU time is only 14.
We also observe that as N increases, relative CPU times asymptote
which suggests that in big data settings these differences may not
be insurmountable. In fact, Theorem 4 suggests subsampling could
be used as a simple remedy for RFQ in big N settings. Recall that
Theorem 4 shows as long as the data is subsampled according to
a response based sampling scheme, RFQ will continue to maintain
its TNR+TPR optimality property. Subsampling will greatly reduce
computational time and importantly the sampling can be devised
so that the majority class label cardinality is much larger than the
value of Ny used by BRF, thereby also ensuring good classification
performance.
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Appendix A: Proof of Theorem 1

Although Theorem 1 is well known we provide a proof here for
the convenience of the reader.

Proof. We will show that

1
E[Z Ei(l{S(X):pj,yzj} - 1{5ws(X)=1—j<Y=j}>j| >0
j=0

(A1)

which implies that r(8, Iy, I;) — r(Swg. lo. ;) = 0. The first term in
the sum (A.1) when j =0 equals

to [1{8(X)=1,y=0} - 1{5WB(X):1.Y:0}]

=t [1{500:1} - 1{BWB<X>=1}]1{Y=0}

= 50[<1 - 1{8(X)=0}) - (1 - I{AWB<X>:0}>] [1 - 1{Y:1}]

= [I{BWB(X):O} - 1{8()():0}] [1 - 1{Y:1}]-

Similarly, the second term in the sum (A.1) when j=1is

& [1{S(X)=O,Y=1} - 1{5wa(X):0.Y:1}]

=4 [1{300:0} - 1{awa<x>=0}]1{v=1}

=4 [(1 - 1{8(x>=1]) - (] - 1{8WB<X):1}>]1{Y:1}

=0 [1{swg<x>:1} - 1{S(X)=1}]1{Y:1}'

Taking the expectation of Y conditional on X and .# of the sum
in (A.1), yields

£0[1{SWB<X>:0} - 1{3()0:0}][1 - p(X)]

+b [1{5WB(X)=1} - l{g(x)zl}]P(X),

where recall that p(X) = P{Y = 1|X}. We will show that the above
sum is greater than or equal to zero. Taking the expectation over X
and . completes the argument.

When p(X) > ¢q9/(£g + ¢1), we have

zo[o - 1{30():0}][1 — (0] +z1[1 - I{S(X):]}]p(X).

If S(X) =1, we have ¢[0-0][1-pX)]+¢1[1-1]pX)=0. If
S(X) =0, we have ({5 + ¢1)p(X) — 9 > 0.
When p(X) < ¢9/(€g + £1), we have

z0[1 - 1{30():0}][1 —pX)] +z1[0 - I{S(X):]}]p(X).

If S(X) =1, we have ¢y — (¢g+¢1)p(X) > 0. If S(X) =0, we have
£o[1=1][1 = p(X)] + £4[0 — 0]p(X) = 0.
This establishes (A.1). To complete the proof, we have to show

r(dws, o, £1) = E[min{¢; p(X), £o(1 — p(X))}].
The proof above reveals that r(Swg, lp, l1) is the expected value of

€o[1 = pXO) s, 00=1) + QP 5, 00-0)
=Lo[1 = PO px)t0/(to+e1)) T 1PV (p0x)<to/(to+01))
=min{¢y(1 — p(X)), t1p(X)},

where the last line follows because ¢¢(1 — p(X)) < ¢;p(X) if and
only if p(X) > €o/(€g +€1). O

Appendix B: Results from multiclass imbalanced data

Section 7 explored the performance of RFQ, BRF, and RF in the
multiclass imbalanced data setting. This was accomplished by de-
composing the multiclass imbalanced data into 3 two-class data
sets, obtaining classifiers on each and then taking a majority vote
over the results. Here we list the tables from the empirical anal-
ysis which were based on forests of 5000 trees grown on each
training data set with nodesize=1, mtry=d/3 and 50 resampled
noise variables.
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Table B.1
Performance comparisons on simulated 3 class imbalanced data sets derived from waveform.
RFQ BRF RF
Class ratios ~ TPR1 TPR2 TPR3 G-mean  TPR1 TPR2 TPR3 G-mean  TPR1 TPR2 TPR3 G-mean
5:4:1 6465 8446 9451 80.16 8020 90.80 79.87 8341 9038 9128 3784 6772
10:5:1 60.12 83.86 9418 77.94 8252 8844 7746 8261 96.10  81.83 19.46  53.18
10:1:1 5325 9026 9179  76.03 8375 81.63 8140 8215 99.92 36.03 3578 5024
20:5:1 55.12 8326 9248  75.05 83.65 8711 74.10 81.32 99.26 64.88 6.71 33.47
20:1:1 51.84 8739 8997  74.00 84.08 7820 7842  80.03 99.99  17.95 18.57 3041
50:25:1 57.77 76.55 8745  72.72 83.74 89.53 5934  76.05 9598 8210  0.02 0.68
50:5:1 52.78 7806 88.90 7135 8597 83.66  61.61 75.94 99.97  41.09 0.25 425
100:25:1 5474 7180 8538  69.28 8625 8799 4394 6854 99.27  65.01 0.00 0.00
100:10:1 5227 7324 86.09 68.84 86.68 8510 4224  66.77 99.96 4093  0.00 0.00
100:5:1 51.63 7482 8482  68.67 86.98 81.04 43.05 66.16 99.99 2046 0.00 0.00
Table B.2

Performance comparisons on simulated 3 class imbalanced data sets derived from waveform with respect to two class (un-
weighted) G-means and the weighted G-mean with 8; = 1/2 and 8, = B3 = 1 (cf. Table B.1).

RFQ BRF
Class ratios G-meany; G-means G-meanys Wt. G-mean G-meany; G-mean;3 G-meanys Wt. G-mean
73.84 78.13 89.32 86.22 85.29 79.98 85.13 86.55
70.92 75.19 88.84 84.86 85.38 79.88 82.71 85.31
69.25 69.83 90.97 84.48 82.60 82.49 8145 84.64
67.64 7131 87.71 82.91 85.30 78.63 80.27 83.80
67.19 68.18 88.59 82.61 80.97 81.07 78.19 82.40
66.38 70.97 81.73 79.71 86.53 70.22 72.60 78.35
64.01 68.34 83.21 79.43 84.71 72.49 7153 7791
100:25:1 62.51 68.23 78.10 76.65 87.04 60.76 61.44 70.29
100:10:1 61.66 66.95 79.22 76.75 85.77 59.53 59.00 68.42
100:5:1 61.94 66.03 79.43 76.72 83.85 60.20 58.10 67.75
Table B.3
Performance comparisons on simulated 3 class imbalanced data sets derived from cassini.
RFQ BRF RF
Class ratios ~ TPR1 TPR2 TPR3 G-mean  TPR1 TPR2 TPR3 G-mean  TPR1 TPR2 TPR3 G-mean
10:5:1 90.66 9741 97.55 95.13 98.58 100 94.76  97.73 99.52 100 9293 9740
25:5:1 7898  86.91 95.10 86.69 97.22 100 8454  93.57 99.66 100 7217 89.36
50:25:1 73.67 7341 91.15 78.87 96.49 100 5595  80.82 99.50 100 141 17.62
50:10:1 7260 70.85 9232 7790 96.33 99.99 5754 81.63 99.67 100 1.86 21.83
50:5:1 68.59  74.98 91.48 77.62 9592 9995 5845 8195 99.81 100 2.28 22.64
50:2:1 62.54 85.06 89.03 7775 9543  97.66 6348  83.47 99.75 99.98 450 29.32
100:50:1 70.67 7017 86.59  75.23 9549  99.61 2406  59.22 99.52 100 0.00 0.00
100:25:1 7024 6588 86.77 73.54 95.08 99.53 2469 59.93 99.60 100 0.00 0.00
100:10:1 66.12 60.27 8695 69.93 94.56  99.12 2454 5940 99.76 100 0.00 0.00
100:5:1 60.64 59.64 86.63 67.55 93.87 9737 26.52  60.67 99.76 100 0.00 0.00
Table B4

Performance comparisons on simulated 3 class imbalanced data sets derived from cassini with respect to two class (unweighted)
G-means and the weighted G-mean with 8; = 1/2 and B, = B3 = 1 (cf. Table B.3).

RFQ BRF
Class ratios G-mean;, G-meany3 G-means; Wt. G-mean G-meani, G-meany3 G-mean;s Wt. G-mean
10:5:1 93.97 94.03 97.46 96.70 99.28 96.63 97.33 97.97
25:5:1 82.82 86.62 90.87 90.17 98.60 90.55 91.84 94.01
50:25:1 73.51 81.81 81.68 83.00 98.23 72.86 74.20 81.31
50:10:1 71.67 81.76 80.76 82.17 98.14 73.92 75.33 82.14
50:5:1 71.64 79.10 82.66 82.66 97.91 74.37 75.94 82.53
50:2:1 72.85 74.40 86.79 84.09 96.53 77.36 78.23 84.13
100:50:1 70.39 78.00 77.71 79.71 97.52 46.21 47.28 59.71
100:25:1 67.96 77.86 75.33 78.00 97.28 46.99 48.14 60.46
100:10:1 63.02 75.58 72.03 74.92 96.81 46.53 4771 59.97
100:5:1 59.95 72.30 71.42 73.43 95.59 48.42 49.33 61.34
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