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a b s t r a c t 

Extending previous work on quantile classifiers ( q -classifiers) we propose the q ∗-classifier for the class 

imbalance problem. The classifier assigns a sample to the minority class if the minority class conditional 

probability exceeds 0 < q ∗ < 1, where q ∗ equals the unconditional probability of observing a minority class 

sample. The motivation for q ∗-classification stems from a density-based approach and leads to the useful 

property that the q ∗-classifier maximizes the sum of the true positive and true negative rates. Moreover, 

because the procedure can be equivalently expressed as a cost-weighted Bayes classifier, it also minimizes 

weighted risk. Because of this dual optimization, the q ∗-classifier can achieve near zero risk in imbalance 

problems, while simultaneously optimizing true positive and true negative rates. We use random forests 

to apply q ∗-classification. This new method which we call RFQ is shown to outperform or is competitive 

with existing techniques with respect to G -mean performance and variable selection. Extensions to the 

multiclass imbalanced setting are also considered. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Random forests, introduced by Leo Breiman [1] , is an increas-

ingly popular learning algorithm that offers fast training, excellent

performance, and great flexibility in its ability to handle all types

of data [2,3] . It provides its own internal generalization error esti-

mate (i.e., out-of-bag error) as well as measures of variable impor-

tance [1,4–6] and class probability estimates [7] . Random forests

has been used for predictive tasks as varied as modeling mineral

prospectivity [8] , lake water level forecasting [9] , identifying poten-

tially salvageable tissue after acute ischemic stroke [10] , identifying

biomarkers for diagnosis of Kawasaki disease [11] , classifying child-

hood onset schizophrenia [12] , electrical load forecasting [13] , and

for pedestrian detection [14] . The random forests algorithm has

also been generalized beyond classification and regression, most

importantly to random survival forests, where each terminal node

of a tree in the forest provides a survival function estimate [15,16] .

Random survival forests has been used to analyze survival prob-

lems with great success; for example, in esophageal cancer stag-

ing [17,18] . 

In biomedical and other real world applications, a common

problem is the occurrence of imbalanced data, defined as data fea-

turing high-imbalance in the frequency of the observed class la-

bels (see Section 2 for a formal definition). Some examples are
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isease prediction [19] and diagnosing aviation turbulence [20] .

mbalanced data has been observed to seriously hinder the clas-

ification performance of learning algorithms, including random

orests and other ensemble methods because their decisions

re based on classification error [21] and where there is high-

mbalance in the frequency of the observed class labels a low error

ate can be achieved by classifying all of the samples as members

f the majority class. 

Classification of class imbalanced data sets has been identi-

ed as a top problem in machine learning [22] and there is an

ver increasing body of literature devoted to this extremely im-

ortant problem. He and Garcia [23] and Sun et al. [24] system-

tically reviewed classification in the presence of class imbalance.

s examples of more specialized reviews, Galar et al. [21] fo-

used specifically on using ensembles to learn class imbalanced

ata and Lopez et al. [25,26] explored imbalanced data character-

stics. Finally, three very recent, useful reviews deserve mention-

ng: Krawczyk [27] thoroughly reviewed open research challenges

n learning imbalanced data; Haixiang et al. [28] exhaustively re-

iewed existing papers on imbalanced data published between

006 and 2016 and categorized them with respect to method and

he journals in which they were published; and Das et al. [29] pro-

ided a comprehensive review of current approaches to imbal-

nced data and class overlap and open issues with the same in

he broader context of data irregularities. 

Section 2 formally defines the class imbalance problem and

rovides a breakdown of methods that have been used to address

his problem. As discussed there, of the various methods proposed,
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ndersampling the majority class so that its cardinality matches

hat of the minority class is among the most popular. In the con-

ext of random forests, undersampling the majority class provides

mproved classification performance with respect to the minority

lass [30] and appears to be the most common approach when us-

ng random forests to learn imbalanced data due to the fact that

t was implemented in Breiman’s original Fortran code [4] used

y the randomForest R-package [31] . This method is called bal-

nced random forests (BRF) and it is an example of what has been

eferred to in the literature [32] as a data level method, which

ransform the distributions of the classes in the training data. We

ill show that BRF has an important connection to our approach

ven though our method is not an example of a data level method.

In Section 3 , we propose our new approach to the class im-

alance problem using a density-based argument. This results in a

lassifier that can be seen to be an example of a quantile classi-

er , or q-classifier [33] , which classifies samples based on whether

he conditional probability of the minority class exceeds a speci-

ed threshold 0 < q < 1. Theorem 2 shows that the specific thresh-

ld value q ∗ of this classifier ( q ∗-classifier) has the useful property

hat it maximizes the true positive and true negative rates. More-

ver, because it can be equivalently expressed as a cost-weighted

ayes classifier, it is also shown to minimize weighted risk. Be-

ause of this dual optimization, unlike the traditional Bayes clas-

ifier (which is a q = 0 . 5 median classifier), the q ∗-classifier can

chieve near zero risk in highly imbalanced data, while simulta-

eously optimizing true positive and true negative rates. Further-

ore, we show surprisingly that balanced sampling as used by BRF

lso has this optimality property of maximizing the true positive

nd true negative rates ( Theorem 3 ). Moreover, we show that the

 

∗-classifier’s optimality continues to hold even if sampling strate-

ies are imposed ( Theorem 4 ). Because we choose to implement

 

∗-classification using the full data, this means balanced sampling,

hile achieving the same optimality property, comes at the cost

f efficiency since it only uses a fraction of the data. We apply q ∗-

lassification with random forests, which we call RFQ, using a large

omparative benchmark study ( Section 4 ) and find it highly com-

etitive and not only that but we are able to identify conditions

nder which RFQ significantly outperforms BRF ( Section 5 ). These

ndings are further confirmed using synthetic data and through

n-depth case study analyses. Section 6 shows RFQ also outper-

orms BRF with respect to variable selection. Section 7 consid-

rs the extension of RFQ to the multiclass imbalanced setting.

ection 8 compares RFQ to boosting methods. Section 9 concludes

ith a discussion of our findings. 

. Imbalanced data setting 

We now formally define the imbalanced data setting and intro-

uce notation to be used throughout the paper. Denote the learn-

ng data by L = (X i , Y i ) 1 ≤i ≤N , where X i ∈ X is the d -dimensional

eature and Y i ∈ {0, 1} is the binary ordinal response. It is assumed

hat ( X i , Y i ) are i.i.d. from a common distribution P . Let ( X, Y ) de-

ote an independent generic data point with distribution P . 

Our goal is to build an accurate classifier for Y given X = x when

he learning data is imbalanced. To help quantify what is meant

y “imbalancedness”, we start by first defining the imbalance ra-

io (IR). Following the convention in the literature, we assume that

he majority class labels are 0, and outnumber the minority class

abels, 1. 

efinition 1. The imbalance ratio (IR) is defined as IR = N 0 /N 1 

here N 0 and N 1 denote the cardinality of the majority and mi-

ority samples, respectively. A data set is imbalanced if IR � 1. 

It has been observed that class imbalance is not a problem in

nd of itself and does not necessarily lead to poor generalization
n classification. If the training data is such that the classes can

e separated in the feature space, then good classification will be

chieved irrespective of IR. Rather the problem is that of train-

ng the classifier on too few minority examples in the presence

f class overlap and small subgroups of minority class examples

urrounded by majority class examples in the data space (some-

imes referred to as “small disjuncts”), which frequently charac-

erize imbalanced data. This combination of characteristics, termed

concept complexity,” [34] make it difficult for a classifier to con-

truct a good decision boundary leading to poor classification per-

ormance [35–37] . 

In order to quantify the complexity of imbalanced data, we

dopt the approaches in [38] and [36] , where they evaluate the

istribution of the two classes in the local neighborhood of each

inority example using k = 5 nearest neighbors. We adopt their

axonomy of types of minority examples except that we make no

istinction between minority examples with 4/5 and 5/5 nearest

eighbors of the majority class. 

efinition 2. A minority class example is safe, borderline , or rare

f 0 to 1, 2 to 3, or 4 to 5 of its 5 nearest neighbors are of the

ajority class, respectively. 

We show in Section 5 that the percentage of minority class

amples that are rare plays an important role in explaining differ-

nces between the q ∗-classifier and BRF. 

Now we define some formal notions of imbalancedness. Follow-

ng [39] , we distinguish between marginally imbalanced and condi-

ionally imbalanced data. 

efinition 3. The data is marginally imbalanced if p ( x ) � 1/2 for

ll x ∈ X where p(x ) = P { Y = 1 | X = x } . 
Thus, marginally imbalanced data is data for which the proba-

ility of the minority class is close to zero throughout the feature

pace. 

efinition 4. The data is conditionally imbalanced if there exists a

et A ⊂ X with nonzero probability, P { X ∈ A } > 0 , such that P { Y =
 | X ∈ A } ≈ 1 and p ( x ) � 1/2 for x 	∈ A . 

In contrast to marginally imbalanced data, conditional imbal-

ncedness occurs when the probability of the minority class is

lose to 1 given the features lie in a certain set, and approximately

ero otherwise. In both cases, it is assumed that the minority class

s rare. 

.1. Related work 

As briefly mentioned in the Introduction, there is a vast lit-

rature on methods that have been used for the class imbalance

roblem. Methods to address the problem can be broadly grouped

nto data level methods, which transform the distributions of the

lasses in the training data, and algorithmic level methods, which

dapt existing learning algorithms or develop new ones [32] . 

.1.1. Data level methods 

Data level methods, by far the most popular approach to im-

alanced data [28] , can be further subdivided into those that un-

ersample the majority class or oversample the minority class to

chieve balanced training data. 

• One-Sided Sampling [40] selectively subsamples the major-

ity class, removing only majority class instances that are ei-

ther redundant with other majority class instances or have

minority class instances as their 1-NN. These “Tomek links”

are removed since a small amount of attribute noise can

push these examples to the incorrect side of the decision

boundary. 
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• Balanced Random Forests (BRF) [30] , discussed in the

Introduction, undersamples the majority class so that its

cardinality matches that of the minority class in each

bootstrap sample. BRF is a common approach when using

random forests due to the fact it is implemented in the pop-

ular randomForest R-package [31] . 
• Neighborhood Balanced Bagging [38] focuses bootstrap sam-

pling toward minority examples that are difficult to learn

while simultaneously decreasing probabilities of selecting

examples from the majority class. The extent to which an

example is considered difficult to learn is quantified by de-

termining the number of majority examples among its k -

nearest neighbors. 
• Synthetic Minority Over-sampling Technique

(SMOTE) [41,42] generates new artificial minority class

examples by interpolating among the k -nearest neighbors

that are of the minority class (i.e., artificial minority in-

stances are introduced on the lines between each minority

instance and its k -nearest minority class neighbors until the

class frequencies are approximately balanced). 
• A number of methods that combine boosting with sam-

pling the data at each boosting iteration have been de-

veloped; SMOTEBoost [43] combines SMOTE with boosting,

RUSBoost [44] combines random undersampling with boost-

ing, and EUSBoost [45] combines evolutionary undersam-

pling with boosting. 

2.1.2. Algorithmic level methods 

As an alternative to sampling the data to balance the cardinal-

ity of the classes, learning algorithms can be modified to improve

classification over the minority class. 

• SHRINK [46] labels all the instances in a region as minor-

ity class provided the region contains at least one minor-

ity class example. SHRINK then searches over these regions

for the optimal minority class region with the greatest num-

ber of minority class samples relative to majority class sam-

ples. However, SHRINK fails in data sets where there exists

more than one substantial cluster of minority class instances

and it provides no advantage in data sets without significant

class overlap. 
• Hellinger Distance Decision Trees (HDDT) [47] use Hellinger

distance, a measure of distributional divergence, as the split-

ting criterion. The authors argue that the skew insensitivity

of Hellinger distance makes it superior to standard splitting

rules such as the Gini index in the presence of imbalanced

data. 
• Near-Bayesian Support Vector Machines (NBSVM) [48] com-

bines decision boundary shifting with unequal regularization

costs for the majority and minority classes. NBSVM uses the

empirical relative frequencies of the two classes as estimates

of the prior probabilities to shift the decision boundary to-

ward the Bayes optimal decision boundary. However, the

performance of NBSVM is kernel-dependent (as with stan-

dard SVM) and is poor when the minority class is compact

in comparison to the majority class. 
• Class Switching according to Nearest Enemy Dis-

tance [49] adapts a technique proposed by Breiman [50] to

highly imbalanced data by switching the labels of major-

ity class samples with a probability proportional to their

Euclidean distance to the closest minority class sample. 

3. An optimal quantile classifier for class imbalanced data 

Our approach falls under the class of algorithmic level proce-

dures. Following [33] , we define a quantile classifier ( q -classifier)
s 

q (x ) = 1 { p(x ) ≥q } , 
here 0 < q < 1 is a prespecified quantile threshold. If we have q

 1/2, which [33] term a median classifier , we obtain the familiar

ayes classifier: 

B (x ) = 1 { p(x ) ≥1 / 2 } . 
As noted in [33] , minimizing loss subject to unequal misclassi-

cation costs is equivalent to classification based on p ( x ) ≥ q using

hresholds q other than 1/2. This will be demonstrated presently

nd in so doing explain why imbalanced data is so challenging for

lassifiers. 

Define the risk for a classifier ˆ δ(x ) as 

( ̂  δ, � 0 , � 1 ) = E 

[ 
� 0 1 { ̂ δ(X )=1 ,Y =0 } + � 1 1 { ̂ δ(X )=0 ,Y =1 } 

] 
. (1)

ere � 0 , � 1 > 0 are fixed constants associated with the cost of mak-

ng one of the two classification errors: � 0 is the cost of misclas-

ifying a majority class instance; � 1 is the cost for misclassifying

 minority class instance. Assigning specific losses leads to the in-

erpretation of (1) as a cost-weighted risk function. Under uniform

eights � 0 = � 1 = 1 , the risk (1) simplifies to classification error,

 { ̂  δ(X ) 	 = Y } , which we denote as r( ̂  δ) . 

Under the cost-weighted risk (1) , the optimal classifier is the

ost-weighted Bayes rule, defined as 

WB (x ) = 1 { p(x ) ≥� 0 / (� 0 + � 1 ) } , (2)

hich we recognize as a quantile classifier with q = � 0 / (� 0 + � 1 ) .

he following well known result establishes the optimality of the

ost-weighted Bayes classifier [51] . For convenience we provide a

roof in Appendix A . 

heorem 1. The cost-weighted Bayes rule is optimal in that its risk

atisfies r(δWB , � 0 , � 1 ) ≤ r( ̂  δ, � 0 , � 1 ) for any classifier ˆ δ : X → { 0 , 1 } .
ts risk equals 

(δWB , � 0 , � 1 ) = E [ min { � 1 p(X ) , � 0 (1 − p(X )) } ] . (3)

hus, (3) is the smallest weighted risk achievable by a decision rule. 

Now consider what happens in imbalanced data if performance

s measured using classification error, � 0 = � 1 = 1 . In this case, the

ost-weighted Bayes classifier reduces to the (unweighted) Bayes

lassifier. Assuming marginal imbalance, i.e. p ( x ) � 0.5, the Bayes

ule is δB (x ) = 0 , thereby classifying all observations as majority

lass labels. Under classification error we know this must be the

ptimal rule. In particular by (3) , the Bayes error equals r(δB ) =
 [ min { p(X ) , 1 − p(X ) } ] = E [ p(X )] ≈ 0 which is essentially perfect. 

.1. A density-based approach 

We see that classification error provides a strong incentive for

earning algorithms to correctly classify majority class samples at

he expense of misclassifying minority class samples. This is obvi-

usly problematic and a better approach is to demand good per-

ormance from a classifier under both types of classification errors.

efine the TNR (true negative rate ) and TPR (true positive rate ) 

or a classifier ˆ δ as follows: 

NR ( ̂  δ) = P { ̂  δ(X ) = 0 | Y = 0 } , TPR ( ̂  δ) = P { ̂  δ(X ) = 1 | Y = 1 } . 
ur goal is to find a classifier that achieves both high TNR and TPR

alues in imbalance problems. The Bayes rule, δB , does not achieve

his goal because it has a TNR value of 1 but a TPR value of 0. 

efinition 5. A classifier ˆ δ : X → { 0 , 1 } is said to be TNR+TPR-

ptimal if it maximizes the sum of the rates, TNR + TPR. 

To achieve the goal of TNR+TPR optimality, we introduce the

ollowing classifier derived from a density-based approach. The



R. O’Brien and H. Ishwaran / Pattern Recognition 90 (2019) 232–249 235 

Table 1 

Notation used throughout the paper. 

ˆ δ(x ) Generic classifier 

� 0 , � 1 misclassification costs for majority and minority classes 

r( ̂ δ, � 0 , � 1 ) risk for ˆ δ(x ) 

π the marginal probability that Y = 1 , π = P { Y = 1 } 
ˆ π = N 1 /N relative frequency of minority class 

p ( x ) conditional class probability function, p(x ) = P { Y = 1 | X = x } 
f X ( x ) density for X 

δq ( x ) quantile classifier ( q -classifier) 

δB ( x ) Bayes classifier 

δWB ( x ) cost-weighted Bayes classifier 

δq ∗ (x ) q ∗-classifier (quantile classifier with q = π ) 
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t  
lassifier, denoted by δD ( x ), assigns an instance x to the minority

lass if its data density for minority class labels, f X | Y ( x |1), is larger

han the data density for majority class labels, f X | Y ( x |0): 

D (x ) = 1 { f X| Y (x | 1) ≥ f X| Y (x | 0) } . 
asing the classifier on the conditional density of the features, f X | Y ,

ather than the conditional density of the response, p ( x ), removes

he effect of the prevalence of the minority class labels. This is

ne way to see how δD is able to handle imbalancedness. More

irectly we can show that δD is TNR+TPR-optimal. Here is an in-

ormal argument showing this. First notice that for a classifier ˆ δ
o achieve TNR+TPR-optimality it should maximize the probabil-

ty of the events { ̂  δ(X ) = 0 | Y = 0 } and { ̂  δ(X ) = 1 | Y = 1 } ; this be-

ng equivalent to tracking the regions of the data space where

he respective conditional densities are maximized. The value of

NR + TPR conditional on L for the classifier ˆ δ equals 
 

ˆ δ(x )=0 

f X| Y (x | 0) dx + 

∫ 
ˆ δ(x )=1 

f X| Y (x | 1) dx 

≤
∫ 

f X| Y (x | 0) > f X| Y (x | 1) 
f X| Y (x | 0) dx + 

∫ 
f X| Y (x | 0) ≤ f X| Y (x | 1) 

f X| Y (x | 1) dx.

he right-hand side is the TNR + TPR value for δD , which shows

hat it is the optimal TNR+TPR-rule. A more formal proof of this

act is given shortly. 

Before proceeding, we introduce a table of notation that will be

articularly useful in this and subsequent sections (see Table 1 ). 

.2. The q ∗-classifier 

While it is convenient theoretically to describe the density-

ased classifier in terms of the conditional density of the data, in

ractice it will be difficult to implement the classifier as stated.

owever, we can rewrite δD ( x ) using the following identity: 

f X| Y (x | 1) 

f X| Y (x | 0) 
= 

f X,Y (x, 1) / P { Y = 1 } 
f X,Y (x, 0) / P { Y = 0 } = 

P { Y = 1 | X = x } f X (x ) / P { Y = 1 } 
P { Y = 0 | X = x } f X (x ) / P { Y = 0 } . 

Cancelling the common value f X ( x ) in the numerator and de-

ominator, and using the notation of Table 1 , we have 

D (x ) = 1 { �D (x ) ≥1 } , where �D (x ) = 

f X| Y (x | 1) 

f X| Y (x | 0) 
= 

p(x )(1 − π) 

(1 − p(x )) π
. 

(4) 

ith a little bit of rearrangement, we now see that (4) is a q -

lassifier with q = π (notice analogously for the Bayes classifier

hat δB (x ) = 1 { �B (x ) ≥1 } where �B 

(x ) = p(x ) / (1 − p(x )) , which is a q -

lassifier with q = 0 . 5 ). This leads to the following definition of the

roposed classifier. 

efinition 6. Call δq ∗ (x ) = 1 { p(x ) ≥π} the q ∗-classifier (and keep in

ind δq ∗ = δD ). 

Although [33] introduced the extremely useful concept of a

uantile classifier, they did not address how to select the optimal
 . In deriving the q ∗-classifier, we have informally argued that q

hould be π . In the following result, we formally justify our selec-

ion of q by showing that the q ∗-classifier is able to achieve a near

ero risk while jointly optimizing TNR and TPR. 

heorem 2. The q ∗-classifier is TNR+TPR-optimal. Furthermore, it is

he cost-weighted Bayes rule (2) under misclassification costs � 0 = π
nd � 1 = (1 − π) . 

Theorem 2 shows that the q ∗-classifier is not only TNR+TPR-

ptimal, but also weighted risk optimal under misclassifica-

ion costs � 0 = π and � 1 = (1 − π) . In particular, by (3) of

heorem 1 we have 

(δq 

∗ , π, 1 − π) = E [ min { (1 − π) p(X ) , π(1 − p(X )) } ] 
≤ E [ π(1 − p(X )) ] ≤ π. 

otice that the right-hand side will be nearly zero for both types of

mbalanced data: marginally and conditionally imbalanced. More-

ver, unlike the Bayes rule, which also achieves a near zero risk,

heorem 2 shows the q ∗-classifier is able to do this while satisfy-

ng the requirement of a jointly optimized TNR and TPR. 

roof of Theorem 2. Maximizing TNR and TPR is equivalent to

inimizing FPR = 1 − TNR and FNR = 1 − TPR. For any classifier
ˆ , we have by definition 

PR ( ̂  δ) + FNR ( ̂  δ) 

= P { ̂  δ(X ) = 1 | Y = 0 } + P { ̂  δ(X ) = 0 | Y = 1 } 

= 

P { ̂  δ(X ) = 1 , Y = 0 } 
P { Y = 0 } + 

P { ̂  δ(X ) = 0 , Y = 1 } 
P { Y = 1 } 

= E 

[
1 { ̂ δ(X )=1 ,Y =0 } 

� 1 
+ 

1 { ̂ δ(X )=0 ,Y =1 } 
� 0 

]
. 

inimizing the above expression does not change if we multiply

y � 0 � 1 throughout. Therefore, minimizing the FPR and FNR rate is

quivalent to minimizing 

 

[ 
� 0 1 { ̂ δ(X )=1 ,Y =0 } + � 1 1 { ̂ δ(X )=0 ,Y =1 } 

] 
hich is the weighted risk r( ̂  δ, � 0 , � 1 ) where � 0 = π and � 1 = 1 −
. By Theorem 1 , this is minimized by the weighted Bayes rule (2) ,

hich equals the q ∗-classifier under the stated choices for � 0 and

 1 . �

.3. Response-based sampling: Balancing the data 

One common strategy to overcome the imbalance problem is to

ndersample the majority class to evenly balance the data. We can

escribe this process more formally by introducing auxiliary vari-

bles S i ∈ {0, 1} where values S i = 1 indicate subsampled cases. The

ubsampled learning data is defined as L S = { (X i , Y i ) : S i = 1 , i =
 , . . . , N} where data values are selected with probabilities that de-

end only on the value of Y and not X . This is called response-

ased sampling. In particular, 

 { S = 1 | Y } = 

{
πS (1) , if Y = 1 

πS (0) , otherwise, 
(5)

here 0 < π S ( Y ) < 1. 

By (5) , the probability a randomly selected Y from L S equals

 = 1 is 

S := P { Y = 1 | S = 1 } = 

P { S = 1 | Y = 1 } P { Y = 1 } 
P { S = 1 } = 

πS (1) π

P { S = 1 } . (6)

ikewise, 1 − π S = P { Y = 0 | S = 1 } = πS (0)(1 − π) / P { S = 1 } . In order

o have balanced labels we must have π S = 1 / 2 , or equivalently
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π S = 1 − π S , which implies by (6) 

πS (1) 

πS (0) 
= 

1 − π

π
. (7)

The factor (7) calls to mind the factor in (4) that modulates the

difference between δB and δD . This is not a coincidence as we now

show. In what follows, we expand upon the justification for under-

sampling provided by [33] , which can be inferred from [52] . Let δS 
B 

be the Bayes rule constructed using L S (call this the subsampled

Bayes rule). For a given x , 

δS 
B (x ) = 1 if 

p S (x ) 

(1 − p S (x )) 
≥ 1 , 

where by definition p S (x ) = P { Y = 1 | X = x, S = 1 } . By Bayes theo-

rem, 

p S (x ) = 

f S X,Y (x, 1) 

f S 
X 
(x ) 

, 1 − p S (x ) = 

f S X,Y (x, 0) 

f S 
X 
(x ) 

. 

Consequently, 

δS 
B (x ) = 1 if 

f S X,Y (x, 1) 

f S 
X,Y 

(x, 0) 
≥ 1 . 

By definition, 

f S X,Y (x, 1) = P { X = x, Y = 1 | S = 1 } = 

P { X = x, Y = 1 , S = 1 } 
P { S = 1 } . 

Noting that 

P { X = x, Y = 1 , S = 1 } = P { S = 1 | X = x, Y = 1 } P { X = x, Y = 1 } 
= P { S = 1 | Y = 1 } f X,Y (x, 1) 

= πS (1) p(x ) f X (x ) , 

we have 

f S X,Y (x, 1) = 

πS (1) p(x ) f X (x ) 

P { S = 1 } . 

Applying a similar argument to f S X,Y (x, 0) , and cancelling the com-

mon value f X ( x ) and P { S = 1 } , deduce that 

p S (x ) 

(1 − p S (x )) 
= 

f S X,Y (x, 1) 

f S 
X,Y 

(x, 0) 
= 

p(x ) πS (1) 

(1 − p(x )) πS (0) 
. (8)

Therefore, 

δS 
B (x ) = 1 if 

p(x ) 

(1 − p(x )) 
≥ πS (0) 

πS (1) 
. 

Under (7) , the right-hand side equals π/ (1 − π) . Hence, δS 
B (x ) =

δD (x ) under (7) . This implies that the subsampled Bayes rule is

TNR+TPR-optimal under (7) . 

Theorem 3. Under balanced subsampling (7) , the subsampled Bayes rule

δS 
B is TNR+TPR-optimal. 

3.4. The q ∗-classifier is invariant to response-based sampling 

In contrast, the q ∗-classifier is unaffected by response-based

sampling and retains its TNR+TPR-optimality no matter what the

target balance ratio is. Let δS 
q ∗ (x ) be the q ∗-classifier constructed

using L S . By definition, δS 
q ∗ (x ) = 1 { p S (x ) ≥πS } where π S = P { Y =

1 | S = 1 } . Equivalently, 

δS 
q 

∗ (x ) = 1 if 
p S (x )(1 − π S ) 

(1 − p S (x )) π S 
≥ 1 . 

Therefore, using (8) , 

δS 
q ∗ (x ) = 1 if 

p(x ) πS (1)(1 − π S ) 

(1 − p(x )) π (0) π S 
= 

p(x ) /π

(1 − p(x )) / (1 − π) 
≥ 1 , (9)
S w
here we have used the following identity which follows

rom (6) 

πS (1) /π S 

πS (0) / (1 − π S ) 
= 

P { S = 1 } /π
P { S = 1 } / (1 − π) 

. 

n other words, δS 
q ∗ = δq ∗ (compare (9) to (4) ). We can there-

ore conclude that δq ∗ remains TNR+TPR-optimal. Combined with

heorem 3 we have therefore established the following. 

heorem 4. Under response-based sampling of the form (5) , δS 
q ∗ = δq ∗ ,

nd therefore δS 
q ∗ is TNR+TPR-optimal. Moreover, under balanced sam-

ling (7) , all three methods are equivalent: 

S 
B = δS 

q ∗ = δq ∗ , 

nd all three methods are TNR+TPR-optimal. 

. Application to random forests 

In practice, the value of p ( x ) is unknown and therefore must

e estimated. In this scenario, when we refer to q ∗-classification

e mean classification using an estimated value for p ( x ) to

lassify observations using the quantile q = π . In general, we can

pply q -classification based on any specified 0 < q < 1. Here we in-

estigate the performance of q ∗-classification when applied with

andom forests. We refer to this procedure as RFQ. As a compar-

son procedure, we will use balanced random forests, which we

ontinue to refer to as BRF. We also use the standard random

orests algorithm as comparison and refer to this as RF. 

Algorithm 1 provides a description of the RF classification al-

lgorithm 1 Random Forest Classification (RF). 

nput: 

1: Learning data L = (X i , Y i ) 1 ≤i ≤N 

2: User specified values of ntree,nodesize,mtry 
earning Phase: 

3: procedure RF ( L ,ntree,nodesize,mtry ) 
4: for m = 1 , . . . , ntree do 

5: Select N values with replacement from L and grow a

treeusing this data as follows 

6: for all tree nodes do 

7: while observations in node > nodesize & impurity

present do 

8: Randomly select without replacement mtry fea-

tures for splitting 

9: Determine decrease in impurity for each selected

feature for splitting 

10: Split on the variable whose optimal split decreases

impurity the most 

11: end while 

12: end for 

13: Calculate ˆ p m 

(·) , the tree estimated value for p(·) 
14: end for 

15: Let ˆ p RF (·) = 

∑ ntree 
m =1 ˆ p m 

(·) / ntree be the RF ensemble estima-

tor for p(·) 
16: end procedure 

lassification Phase: 

17: Classify x using the ensemble classifier ˆ δRF (x ) = 1 { ̂ p RF (x ) ≥1 / 2 } 

orithm. The algorithm requires the following parameters: ntree
number of trees trained in the forest), nodesize (target terminal

ode size), and mtry (number of random features used to split a

ree node). RFQ and BRF apply Algorithm 1 exactly as RF does but

ith the following one line modifications: 
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Fig. 1. Summary of 143 benchmark imbalanced data sets. Top figures display dimension of feature space d , sample size N , and imbalance ratio IR. Bottom figure displays d 

versus N with symbol size displaying value of IR. This identifies several interesting data sets with large IR values, with some of these having larger d . 
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RFQ: Line 17 of Algorithm 1 is modified as follows. In place of

edian (Bayes) classification, ˆ δRF (x ) = 1 { ̂ p RF (x ) ≥1 / 2 } , RFQ applies

 

∗-classification, ˆ δRFQ 

(x ) = 1 { ̂ p RF (x ) ≥π} . 
BRF: Line 5 of Algorithm 1 is modified as follows. Rather than

electing a bootstrap sample of size N , a sample of size 2 N 1 is used,

here the probabilities for minority and majority class instances

o be selected for the bootstrap sample are π S (1) = ( N 0 / N 1 ) π S (0),

hus satisfying the balancing condition (7) . Keep in mind that BRF

ses the Bayes rule for classification; thus the classification rule

sed in Line 17 is the same for BRF. 

.1. Performance comparisons on benchmark imbalanced data 

In theory, both BRF and RFQ will possesses the TNR+TPR-

roperty: this is true for BRF by Theorem 3 because it satisfies the

alancing condition (7) , while for RFQ this holds by Theorem 2 be-

ause it applies q ∗-classification. However this is predicated on

nowledge of the true probability function p ( x ), which in practice

ust be estimated, and therefore performance in practice may be

ery different. In particular, an advantage of RFQ is that is uses a

uch larger sample size than BRF which should increase its effi-

iency in estimating p ( x ). 

To see how the two methods performed in practice we tested

hem using a diverse collection of 143 benchmark imbalanced data

ets (see Fig. 1 for summary statistics of the data sets; Supplemen-

ary Materials Appendix C provides background information on

he data). Analyses were performed in R [53] using the R-package

andomForestSRC [54] . Forests of size ntree = 10 0 0 were used

or each training data set. Default settings for random forests were

sed: trees were grown to purity ( nodesize = 1 ), and random fea-

ure selection was set at mtry = d/ 3 . Tree node splits (Lines 6–12

f Algorithm 1 ) were implemented using Gini splitting. The value

 

∗ = π required for RFQ was estimated using the empirical rela-

ive frequency of the minority class labels, ˆ π = N 1 / (N 0 + N 1 ) . In
ddition to BRF and RF, we also considered standard random

orests under Hellinger distance splitting [47] , and BRF with

ellinger splitting. 

.1.1. Performance metrics: The G -mean 

In assessing performance, we used TNR, TPR, and the G -mean.

he G -mean is the geometric mean of TNR and TPR, i.e., G -mean =
TNR × TPR) 1/2 and it is meant to replace misclassification rate in

mbalanced data settings, since an overall accuracy close to 1 can

e achieved by classifying all data points as majority class labels

or heavily imbalanced data as previously noted. By way of con-

rast, the G -mean is close to 1 only when both the true negative

nd true positive rates are close to 1 and the difference between

he two is small [46] . 

.1.2. The q ∗-classifier appears to optimize the G -mean 

Before discussing the results, it is worth noting that even

hough the q ∗-classifier was not specifically developed to maxi-

ize the G -mean, we observed that by applying random forests

 -classification under different values of q , that the maximum G -

ean is achieved when q is approximately ˆ π (i.e., the G -mean ap-

ears to be maximized by RFQ). This is illustrated in Fig. 2 us-

ng 8 selected benchmark data sets. This is strong evidence that

NR+TPR-optimality is a useful property for a classifier. 

.1.3. Results 

For the analysis of the 143 benchmark data sets, we used 10-

old cross-validation repeated 250 times. The G -mean for each

rocedure is reported in Fig. 3 . We observe that RFQ and BRF out-

erform all other methods. We also observe that using Hellinger

istance as the splitting criterion instead of the Gini index does

ot noticeably improve performance, and thus we did not include

t in further experiments. 
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Fig. 2. G -mean from random forests q -classification using various q for thresholding (including q = ˆ π ) for 8 different benchmark data sets. Notice that the maximum value 

is near ˆ π in all instances. 

Fig. 3. G -mean performance of different classifiers across 143 benchmark imbalanced data sets. (BRF = Balanced Random Forests; RF = Random Forests; RFQ = Random Forests 

q ∗-classifier). 
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Table 2 

Simulated data sets. 

N 

a Signal b Noise c IR d % Rare e 

Two Norm 

f 1250 20 500 49 99% 

Waveform 

g 1250 21 500 49 99% 

TwoClassSim 

h 1250 20 500 9 92% 

Friedman 1 i 1250 5 500 49 99% 

Friedman 2 i 1250 4 500 48 99% 

Friedman 3 i 1250 4 500 49 99% 

a The sample size for training data and test data. 
b The number of signal (true) variables. 
c The number of resampled noise variables. 
d As defined in Definition 1 . 
e As defined in Definition 2 . 
f Class 2 is randomly downsampled to 25 instances. 
g Classes 1 + 2 form the majority class; class 3 is randomly 

downsampled to 25 instances. 
h Intercept = - 16 and 100 of the 500 noise variables correlated 

with ρ = 0.7. 
i Where y ≥ y q =0 . 98 are classified as 1 and 0 otherwise. 
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. Analyzing performance differences between RFQ and BRF 

From Fig. 3 it appears that RFQ and BRF have roughly similar

erformance overall. However, upon further investigation ( Fig. 4 ),

e found that when the imbalance ratio is high, and when the

ercent of minority class examples of the rare type is high, and

hen d is high, RFQ outperformed BRF. We investigate this effect

urther in this section. 

.1. An explanation of why RFQ is better 

As we have noted previously, while RFQ and BRF both pos-

ess the TNR+TPR optimality property, in practice the difference

etween the two methods is that RFQ utilizes all N data points,

hereas BRF uses the smaller sample size of 2 N 1 , which it must in

rder to balance the data. 

We suggested that the reduced sample size of BRF reduces its

fficiency in estimating unknown model parameters. We now pro-

ide a more detailed explanation of how this affects BRF’s per-

ormance for the scenarios described above. We consider a sim-

le logistic regression setting where the true conditional class

robability function is 

p(x ) = 

1 

1 + exp (−α − βT x ) 
. 

y (4) , δq ∗ (x ) = 1 if log ( �D ( x )) ≥ 0. Hence x is classified as a mi-

ority class instance if 

og 

(
p(x ) 

1 − p(x ) 

)
≥ log 

(
π

1 − π

)
. 

nder the logistic model this simplifies to α + βT x ≥ γ , where γ =
og (π/ (1 − π)) (as comparison, the Bayes rule, δB ( x ), classifies x as

 minority class sample if log ( �B ( x )) ≥ 0, which simplifies to α +
T x ≥ 0 ). To gain more insight into δq ∗ (x ) , first note the following

dentity for π : 

= P { Y = 1 } = 

∫ 
f Y | X (1 | x ) f X (x ) dx = 

∫ 
p(x ) f X (x ) dx. 

ow in the setting of marginal imbalance, since p ( x ) ≈ 0, we must

ave α � 0, and therefore, 

= 

∫ [
1 

1 + exp (−α − βT x ) 

]
f X (x ) dx 

= exp (α) 

∫ [
1 

exp (α) + exp (−βT x ) 

]
f X ( x ) dx 

≈ exp (α) 

∫ 
exp (βT x ) f X (x ) dx. 

ombining this with π ≈ 0, deduce that 

= log 

(
π

1 − π

)
≈ log ( π) ≈ α + log 

[ ∫ 
exp (βT x ) f X (x ) dx 

] 
. 

he q ∗-classifier classifies x as a minority class instance if α +
T x ≥ γ . Hence, δq ∗ (x ) = 1 if 

T x ≥ log 

[ ∫ 
exp (βT x ) f X (x ) dx 

] 
. 

or example, if X ∼ N( μ, 	) 
 

exp (βT x ) f X (x ) dx = exp 

(
βT μ + 

1 

2 

βT 	β
)
. 

herefore, δq ∗ (x ) = 1 if βT x ≥ βT μ + (1 / 2) βT 	β . 

The above represents the theoretical boundary for achieving

NR+TPR optimality, but RFQ and BRF must classify the data ac-

ording to an estimated δq ∗ . Suppose the two procedures directly

stimate δq ∗ (x ) by estimating θ = (β, βT μ, βT 	β) (i.e., instead of
ndirectly estimating p ( x )). Then RFQ will have an advantage be-

ause estimating θ uses data across both classes and RFQ uses

ll N data points whereas BRF uses a sample size of 2 N 1 evenly

plit across the two classes. Furthermore, performance differences

ill become magnified as the imbalance ratio increases (since 2 N 1 

ecomes even smaller compared with N ) and when the dimen-

ion d increases (since estimation becomes more difficult). This

lso explains why RFQ is better in rare instance settings. Recall

rom Definition 2 that a minority class example x is rare if 4 to

 of its nearest neighbors are majority class examples. We can

magine a setting where rare instances are a by product of in-

istinguishable conditional densities. That is, for x ′ close to x we

ave f (x ′ | 1) = f (x ′ | 0) . If this region has positive measure, then

y the identification of finite mixtures of multivariate normals,

f (x | 1) = f (x | 0) = f (x ) almost everywhere. This shows data from

oth classes are important for estimating all components of θ , thus

urther favoring RFQ. 

.2. Performance comparisons on simulated data 

To provide further evidence for the above, we converted

ve simulations from the mlbench R-package [55] into imbal-

nced data in addition to simulating imbalanced data directly

sing the caret package [56] as detailed in Table 2 . We re-

eated each experiment 250 times with forests of 50 0 0 trees

rown on each training data set ( nodesize = 1, mtry = d /3). We

ompared the performance of RFQ to BRF and standard ran-

om forests (RF) and obtained the following results reported in

able 3 . The results are consistent with what we observed across

he 143 benchmark data sets. Clearly, RFQ outperforms BRF (as

ell as RF) with respect to the G -mean, across all of the six

imulated high-dimensional imbalanced data models (Wilcoxon 

igned rank test p -value = 0.03). This shows RFQ can offer

ignificant improvement for complex imbalanced data in high-

imensional settings. 

.3. Cognitive impairment data 

We chose the Alzheimers Disease CSF Data from the

ppliedPredictiveModeling R-package [57] to further ex- 

lore performance of RFQ in difficult settings. This data set is a

odified version of the data in [58] . There are N = 333 observa-

ions with d = 130 predictors; the outcome is presence/absence

f cognitive impairment with N 0 = 242 controls and N 1 = 91

mpaired, for an IR of 2.66. We explored the relationship among
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Fig. 4. A closer look at difference in G -mean performance of RFQ and BRF for benchmark data sets. Vertical axis plots difference in G -mean as a function of % rare minority 

class examples, feature dimension d , and imbalance ratio IR. There is an increasing trend upwards (thus favoring RFQ) as % rare minority class examples increases with 

increasing d and increasing IR. 
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Table 3 

Performance comparisons on simulated data sets. 

RFQ BRF RF 

TPR TNR G -mean TPR TNR G -mean TPR TNR G -mean 

Two Norm 86.71 58.88 71.34 13.55 100 35.37 1.96 100 14.00 

Waveform 91.58 56.04 71.56 53.98 94.29 70.87 1.96 100 14.00 

TwoClassSim 84.73 56.32 69.00 7.38 99.79 26.28 1.86 99.98 11.49 

Friedman 1 68.20 54.13 60.46 2.93 99.97 16.43 2.00 100 14.12 

Friedman 2 95.54 56.26 73.27 11.35 99.89 31.99 1.98 100 14.02 

Friedman 3 48.71 54.84 51.33 2.06 100 14.26 2.01 100 14.14 

Table 4 

Performance on cognitive impairment data. 

RFQ BRF RF 

TPR TNR G -mean TPR TNR G -mean TPR TNR G -mean 

Scenario 1 a 88.78 71.48 79.34 75.82 88.14 81.33 49.66 96.42 68.34 

Scenario 2 b 89.72 69.21 78.50 65.83 89.82 76.35 27.83 98.86 50.93 

Scenario 3 c 89.09 66.89 76.87 59.11 90.84 72.64 14.45 99.64 36.19 

Scenario 4 d 87.92 62.58 73.78 48.67 92.44 66.24 8.23 100 27.57 

Scenario 5 e 88.82 65.87 76.13 65.68 89.78 76.19 13.79 99.59 35.14 

Scenario 6 f 89.37 60.48 73.11 52.82 92.55 69.09 7.27 99.99 26.06 

Scenario 7 g 88.94 55.19 69.56 39.03 94.53 59.36 5.75 100 23.68 

Scenario 8 h 88.83 47.01 64.01 22.25 97.11 44.33 5.27 100 22.92 

Scenario 9 i 84.54 62.10 71.97 56.98 89.57 70.61 6.85 99.95 25.38 

Scenario 10 j 84.94 53.33 66.73 38.26 94.42 58.45 5.46 100 23.23 

Scenario 11 k 85.17 45.42 61.56 20.99 97.14 42.53 5.23 100 22.86 

Scenario 12 l 84.46 36.85 55.01 9.46 99.24 28.80 5.21 100 22.83 

Scenario 13 m 78.76 61.26 68.88 49.17 88.42 64.65 5.55 100 23.37 

Scenario 14 n 78.33 51.41 62.84 25.64 95.35 46.63 5.22 100 22.84 

Scenario 15 o 79.15 43.84 58.21 12.10 98.41 31.94 5.21 100 22.83 

Scenario 16 p 78.96 36.10 52.63 6.49 99.74 24.68 5.21 100 22.83 

a Original data 
b Original data + 200 noise variables 
c Original data + 500 noise variables 
d Original data + 10 0 0 noise variables 
e Subsampled data with 40 cases randomly selected and all controls 
f Subsampled data with 40 cases randomly selected and all controls + 200 noise variables 
g Subsampled data with 40 cases randomly selected and all controls + 500 noise variables 
h Subsampled data with 40 cases randomly selected and all controls + 10 0 0 noise variables 
i Subsampled data with 20 cases randomly selected and all controls 
j Subsampled data with 20 cases randomly selected and all controls + 200 noise variables 
k Subsampled data with 20 cases randomly selected and all controls + 500 noise variables 
l Subsampled data with 20 cases randomly selected and all controls + 10 0 0 noise variables 
m Subsampled data with 10 cases randomly selected and all controls 
n Subsampled data with 10 cases randomly selected and all controls + 200 noise variables 
o Subsampled data with 10 cases randomly selected and all controls + 500 noise variables 
p Subsampled data with 10 cases randomly selected and all controls + 10 0 0 noise variables 
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erformance, dimensionality, and IR by adding progressively more

oise variables (obtained by resampling the predictor variables)

nd by progressively subsampling the minority class, where each

maller subsample of the minority class was randomly sampled

rom the subsample of the previous iteration (i.e., nested sub-

amples). Table 4 contains the results of 10-fold cross-validation

epeated 250 times under the various scenarios with forests of

0 0 0 trees grown on each training data set with nodesize = 1,

try = d /3 for each scenario. 

Even though the unaltered cognitive impairment data features

 modest IR of 2.66, standard random forests (RF) only classifies

lightly less than half of the patients with cognitive impairment

orrectly and its performance rapidly deteriorates with the addi-

ion of noise and increasing IR through subsampling the minority

lass. While BRF tends to perform well on the unaltered data and

nder increasing IR, its performance rapidly deteriorates in higher

imensions (i.e., with increasing noise) to the point that its perfor-

ance is not much better than RF and significantly inferior to RFQ.

n contrast, RFQ outperforms BRF (and RF) with respect to the G -

ean under all scenarios considered except for the unaltered data
 t  
ith no noise and the data with 40 of the 91 cognitively impaired

atients randomly selected with no noise (Wilcoxon signed rank

est p -value < 0.001). Under all scenarios the performance of RFQ

ver the minority class remains constant and is superior to BRF

nd RF, although with the cost of an increased FPR with increasing

imensions. 

.4. Customer churn data 

As another example, we looked at the Customer Churn Data

rom the C50 R-package [59] . This is artificial customer churn data

odeled on real world data where the outcome is customer churn

es/no. The data is already split into training and test data, so no

ross-validation is required. In the training data there are N = 3333

bservations of which N 1 = 483 are instances of customer churn,

or an IR of 5.90. 

As with the cognitive impairment data, we progressively add

ore noise variables and progressively subsample the minority

lass. Table 5 contains the results of running the test data through

he forests under the various scenarios with forests of 50 0 0 trees



242 R. O’Brien and H. Ishwaran / Pattern Recognition 90 (2019) 232–249 

Table 5 

Performance on customer churn data. 

RFQ BRF RF 

TPR TNR G -mean TPR TNR G -mean TPR TNR G -mean 

Scenario 1 a 86.19 90.02 88.09 83.52 95.64 89.37 73.72 99.79 85.77 

Scenario 2 b 89.31 75.55 82.14 64.37 94.11 77.83 30.07 100 54.83 

Scenario 3 c 91.09 71.60 80.76 42.98 96.33 64.35 18.49 100 42.99 

Scenario 4 d 90.20 69.80 79.34 34.08 97.64 57.68 6.46 100 25.41 

Scenario 5 e 87.08 87.88 87.48 82.18 93.21 87.52 61.69 99.93 78.52 

Scenario 6 f 88.42 71.46 79.49 47.44 94.94 67.11 9.13 100 30.22 

Scenario 7 g 88.42 67.16 77.06 35.41 97.02 58.61 2.45 100 15.65 

Scenario 8 h 85.75 62.94 73.46 21.16 99.17 45.81 0.22 100 4.72 

Scenario 9 i 81.29 84.55 82.91 73.27 91.83 82.03 46.55 100 68.23 

Scenario 10 j 80.40 67.93 73.90 31.85 95.98 55.29 2.00 100 14.16 

Scenario 11 k 81.29 64.81 72.58 25.61 97.37 49.94 0.22 100 4.72 

Scenario 12 l 78.62 59.82 68.58 8.69 99.58 29.41 0.22 100 4.72 

Scenario 13 m 82.63 84.34 83.48 65.26 91.69 77.35 12.25 100 35.00 

Scenario 14 n 80.85 62.11 70.86 30.96 96.19 54.57 2.90 100 17.02 

Scenario 15 o 79.51 59.33 68.69 13.59 98.96 36.67 2.45 100 15.65 

Scenario 16 p 80.40 56.01 67.11 2.00 99.86 14.15 0.22 100 4.72 

a Original data 
b Original data + 200 noise variables 
c Original data + 500 noise variables 
d Original data + 10 0 0 noise variables 
e Subsampled data with 240 cases randomly selected and all controls 
f Subsampled data with 240 cases randomly selected and all controls + 200 noise variables 
g Subsampled data with 240 cases randomly selected and all controls + 500 noise variables 
h Subsampled data with 240 cases randomly selected and all controls + 10 0 0 noise variables 
i Subsampled data with 120 cases randomly selected and all controls 
j Subsampled data with 120 cases randomly selected and all controls + 200 noise variables 
k Subsampled data with 120 cases randomly selected and all controls + 500 noise variables 
l Subsampled data with 120 cases randomly selected and all controls + 10 0 0 noise variables 
m Subsampled data with 60 cases randomly selected and all controls 
n Subsampled data with 60 cases randomly selected and all controls + 200 noise variables 
o Subsampled data with 60 cases randomly selected and all controls + 500 noise variables 
p Subsampled data with 60 cases randomly selected and all controls + 10 0 0 noise variables 
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grown on each training data set with nodesize = 1, mtry = d /3 for

each scenario. 

We observe exactly the same pattern of performance with the

customer churn data as with the cognitive impairment data. As be-

fore, the performance of RF rapidly deteriorates with the addition

of noise and increasing IR; BRF performs decently on the unaltered

data and under increasing IR but its performance rapidly deterio-

rates in higher dimensions; RFQ outperforms BRF and RF with re-

spect to the G -mean under all scenarios except for the unaltered

data with no noise and the data with 240 of the 483 instances of

customer churn randomly selected with no noise (Wilcoxon signed

rank test p -value < 0.001). Under all scenarios the performance

of RFQ over the minority class remains constant and is superior to

BRF and RF but with increased FPR in higher dimensions. 

6. Variable importance 

We claim that the standard variable importance (VIMP) mea-

sure in random forests introduced by Breiman and Cutler [1,4] ,

called Breiman-Cutler importance [6] , is inappropriate for RFQ in

the presence of significantly imbalanced data due to the fact that

almost all nodes in an individual tree will contain 0 ′ s. We propose

instead to assess variable importance using the G -mean combined

with Ishwaran-Kogalur importance [15,54] , the latter being an en-

semble rather than tree-based measure. 

In Breiman-Cutler permutation importance, a variable’s OOB

(out-of-bag) data is permuted and run down the tree. The original

OOB prediction error is subtracted from the resulting OOB predic-

tion error, resulting in tree importance. Averaging this value over

the forest yields permutation importance. This type of importance,

which is tree-based, is appropriate for BRF because each tree is a
easonably good classifier, therefore making prediction error a rea-

onable way to assess a variable’s contribution to the model. 

For RFQ this will not be a good measure because RFQ’s good

rediction performance arises from converting a random forest en-

emble classifier into a random forest ensemble q -classifier. There-

ore, we will instead use Ishwaran-Kogalur importance [15,54] ,

n ensemble-based measure, defined as the prediction error

or the original ensemble subtracted from the prediction error

or the new ensemble obtained by permuting a variable’s data.

or RFQ, performance is measured by the G -mean. Thus, we ap-

ly Ishwaran-Kogalur importance using G -mean prediction error.

nsembles were defined in blocks of 20 trees. For BRF, we also

se G -mean for prediction error, but with Breiman-Cutler impor-

ance. We also compare results to standard random forests (RF) us-

ng Breiman-Cutler importance calculated using classification error

the standard approach). 

To assess performance of the proposed variable importance

easures, we used the twoClassSim function from the caret
ackage [56] : 2 factors, 15 linear variables, 3 non-linear variables,

nd 20 noise variables. Sample size was N = 10 0 0 with IR = 6

hich was induced by downsampling class 2. Results averaged

rom 10 0 0 runs are displayed in Fig. 5 . The results show RFQ out-

erforms BRF which, in turn, outperforms RF. 

. Multiclass imbalanced data 

In this section we explore the performance of RFQ, BRF and

F in the multiclass imbalanced data setting. We accomplish this

y decomposing the multiclass imbalanced data into K ( K -1)/2 two-

lass data sets, where K is the number of classes, obtaining clas-

ifiers on each and then taking a majority vote over the results.

he empirical results that follow are based on forests of 50 0 0 trees
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Fig. 5. Variable importance (VIMP) for RFQ, BRF and RF from 10 0 0 runs using simulated imbalanced data. There are 2 factors, 15 linear variables, 3 non-linear variables, and 

20 noise variables (no signal). Top panel displays signal variables, bottom panel are noisy variables. 
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Fig. 6. G -mean performance of boosting classifiers versus RFQ for Friedman low 

dimensional simulations. (Spline Boost, Tree Boost are boosted splines and boosted 

trees using binomial loss; Tree HBoost are boosted trees with Huber loss; RFQvsel 

is RFQ with variable selection filtering). 

 

 

 

 

 

 

Fig. 7. G -mean performance of boosting classifiers versus RFQ for Friedman high 

dimensional simulations. (Spline Boost, Tree Boost are boosted splines and boosted 

trees using binomial loss; Tree HBoost are boosted trees with Huber loss; RFQvsel 

is RFQ with variable selection filtering). 
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grown on each training data set with nodesize = 1, mtry = d /3

and 50 resampled noise variables. 

7.1. Waveform simulations 

As a preliminary exploration of the more challenging multiclass

imbalance data setting [60] , we chose the waveform data simu-

lation from the mlbench R-package [55] , which produces three

classes of (approximately) equal size. We generated N = 10 0 0 sam-

ples for the training (initially) and test data sets. To obtain multi-
lass imbalanced data, we subsampled the second and third classes

o obtain different class ratios. For each of the three class imbal-

nced data sets derived from the waveform simulation, we adopted

he approach of [61] and trained RFQ, BRF and RF on 

(
3 
2 

)
= 3 two-

lass data sets. The multiclass classifier was obtained by taking

 majority vote over the three predicted class labels for the test

ata. We compared the performance of the RFQ, BRF and RF mul-

iclass classifier using Friedman’s one-vs-one approach using the

rue positive rate for each of the three classes and the G -Mean.

his we did 250 times, averaging the results, which are listed in
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able B.1 of Appendix B , where the “true positive rates” (i.e., the

erformance metrics within each class) are denoted by TPR1, TPR2

nd TPR3, respectively. 

The (unweighted) G -mean is not necessarily the appropriate

etric for measuring classification performance in the multiclass

mbalanced data setting, especially in cases of extreme imbalance.

or the imbalanced data sets with the ratios 100:25:1, 100:10:1

nd 100:5:1 the G -means for RFQ and BRF are similar but TPR

or the third class with the fewest instances is in the range 85–

6 for RFQ whereas the range is 42–44 for BRF. Granted, TPR over

he first class with far more instances than the other classes is ap-

roximately 52–55 for RFQ whereas it is approximately 86–87 for

RF, but in real-world settings the cost associated with misclassify-

ng the class with the fewest instances is likely to be far higher, as

ith two class imbalanced data. To account for this, we also looked

t the G -means for two classes at a time, denoted as G -mean 

kk 
′ for

lasses k and k 
′ 
, as well as the weighted G -mean, which in the

hree class setting we define as 

eighted G -Mean = 

(
TPR 1 

β1 × TPR 2 

β2 × TPR 3 

β3 

)1 / (β1 + β2 + β3 ) 
. 

pecifically, in Table B.2 of Appendix B , we looked at the weighted

 -mean with β1 = 1/2 and β2 = β3 = 1, which is not necessarily

deal because it does not take into account the imbalance between

he second and third classes; nevertheless, it is sufficient to illus-

rate our point. 

In Table B.2 we see a pronounced difference in the weighted

 -mean with β1 = 1/2, β2 = 1, and β3 = 1 for the highly imbal-

nced data sets with the ratios 100:25:1, 100:10:1 and 100:5:1. To

ee why this is appropriate we look at the two class G -means. The

erformance of RFQ is superior to BRF with respect to G -mean 13 

nd G -mean 23 , whereas BRF is superior to RFQ only with respect

o G -mean 12 . Even though the performance of RFQ is superior with

espect to two of the three two class G -means and the difference

n G -mean 23 in favor of RFQ is approximately the same as the dif-

erence in G -mean 12 in favor of BRF, the unweighted G -mean is in-

ensitive to this. For this reason, we believe that the weighted G -

ean in especially appropriate in the multiclass imbalanced data

etting. 

.2. Cassini simulations 

As another example, we chose the cassini data simulation from

he mlbench R-package [55] , which produces three classes of in

he ratio 2:2:1. As with the waveform simulation, we generated N

 10 0 0 samples for the training (initially) and test data sets with

oise variables and then subsampled the second and third classes

o obtain different class ratios. 

The averaged results from 250 repetitions are listed in

able B.3 of Appendix B . In contrast to the waveform imbalanced

ata sets, for the cassini data sets with the most extreme class

mbalance, i.e., 100:50:1, 100:25:1, 100:10:1 and 100:5:1, RFQ is

learly superior to BRF with respect to the unweighted G -mean. 

We then looked at the weighted G -mean with β1 = 1/2 and

2 = β3 = 1. In Table B.4 of Appendix B , we see an even more

ronounced difference in performance between RFQ and BRF with

espect to the weighted G -mean with β1 = 1/2, β2 = 1, and β3 =
 for the extremely imbalanced data sets with the ratios 100:50:1,

00:25:1, 100:10:1 and 100:5:1 and essentially identical perfor-

ance over most of the other imbalanced data sets. 

It should be noted that these results are limited in that we only

onsidered three class imbalanced data, which is a special case in

hat the number of competent classifiers (i.e., classifiers trained

n a given class) outnumber non-competent classifiers (i.e., clas-

ifiers that were not trained on the class in question); for three

lass imbalanced data using one-vs-one there are exactly two com-
etent classifiers and one non-competent classifier, so classifica-

ion by majority vote works. However, the ratio of competent to

on-competent classifiers becomes 1:1 for data with four classes

nd monotonically decreases in favor of non-competent classifiers

s the number of classes increases. In these imbalanced multi-

lass settings, a more sophisticated approach using some form of

eighted voting should be used instead [60,62] . 

. Comparison to boosting 

Gradient boosting is another machine learning method known

o possess state of the art classification performance. Therefore we

ought to compare performance of RFQ to boosting. For boosting

rocedures, we used boosted parametric splines using binomial

oss (Spline Boost). For nonparametric boosting, we boosted trees

sing binomial loss (Tree Boost) and Huber loss (Tree Hboost).

arametric spline boosting was implemented using the R-package

boost [63] and tree boosting by the R-package gbm [64] . In both

ases, 10 0 0 trees were boosted with regularization parameter 0.1.

epth of trees was set to three interactions and spline bases were

et to default values used by mboost . 
As an enhancement to RFQ we also considered an extension

sing variable selection. Using a preliminary RF, we calculated

shwaran-Kogalur importance using G -mean prediction error as in

ection 6. Variables were then removed if they were deemed non-

ignificant at the 5% level, where level of significance was obtained

sing asymptotic confidence regions calculated using random for-

st variable importance subsampling [6] . Using the remaining non-

ltered variables, RFQ was then run as before. We call this method

FQvsel. 

We used the three Friedman simulations to test performance.

ample size was set to N = 1250 with G -mean performance as-

essed on a test set of the same size. Low dimensional simulations

ith 25 noise features and high dimensional simulations with 250

oise features were used. All experiments were repeated indepen-

ently 250 times. 

Figs. 6 and 7 display the test set G -mean performance values

or the low and high dimensional simulation scenarios, respec-

ively. Overall, the results are very encouraging for RFQ procedures

hich are overwhelmingly superior to boosting procedures. Inter-

stingly, the dimension reduction used by RFQvsel performed very

ell, especially in the high dimensional simulations. For example,

n the Friedman 1 simulation performance of RFQvsel is more ro-

ust to increasing dimension than RFQ. In terms of the boosting

rocedures there appears to be no overall consensus. Sometimes

uber loss for trees is better than binomial loss. There is also no

lear winner between parametric and nonparametric boosting. 

. Discussion 

We introduced a classifier based on the ratio of data den-

ities for learning imbalanced data and showed this resulted

n a q -classifier with the property that its threshold q = q ∗

ielded TNR+TPR-optimality. We called this the q ∗-classifier and

mplemented q ∗-classification using random forests. We coined this

ethod RFQ and showed RFQ to be highly competitive with the

urrent and widely used balanced random forests (BRF) method

f undersampling the majority class (used by the randomForest
-package for example). In our experiments with 143 imbalanced

enchmark data sets, we observed that while BRF significantly im-

roves classification with respect to the minority class, and un-

uestionably outperforms the standard random forests algorithm,

ts performance is roughly the same as RFQ on standard im-

alanced data sets, but generally inferior in the difficult setting

f high-complexity, high-imbalancedness, and high-dimensionality. 



246 R. O’Brien and H. Ishwaran / Pattern Recognition 90 (2019) 232–249 

Fig. 8. Computational times for RFQ and BRF for Friedman 1 simulation for different sample sizes N and feature dimension d . Top plot is relative CPU time for RFQ versus 

BRF. Bottom plot is log-relative CPU time. 
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his was further confirmed by in depth experiments on simu-

ated and real world data sets. Furthermore, we demonstrated that

FQ is better at selecting variables across imbalanced data using

 -mean as the performance criterion with Ishwaran-Kogalur im-

ortance than BRF with Breiman-Cutler importance (the standard

ethod used in random forest analyses). In the multiclass imbal-

nced setting, we showed that RFQ also outperforms BRF over ex-

remely imbalanced data sets. 

However one advantage of BRF is that it is computationally

aster due to the low sample size used to construct its trees. At the

ame time, this advantage does not appear to be large. Fig. 8 dis-

lays relative CPU times and log-relative CPU times for RFQ ver-

us BRF for the Friedman 1 simulation as N and d are varied. Even

hen d = 100 and N = 50 , 0 0 0 , the relative CPU time is only 14.

e also observe that as N increases, relative CPU times asymptote

hich suggests that in big data settings these differences may not

e insurmountable. In fact, Theorem 4 suggests subsampling could

e used as a simple remedy for RFQ in big N settings. Recall that

heorem 4 shows as long as the data is subsampled according to

 response based sampling scheme, RFQ will continue to maintain

ts TNR+TPR optimality property. Subsampling will greatly reduce

omputational time and importantly the sampling can be devised

o that the majority class label cardinality is much larger than the

alue of N 1 used by BRF, thereby also ensuring good classification

erformance. 
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ppendix A: Proof of Theorem 1 

Although Theorem 1 is well known we provide a proof here for

he convenience of the reader. 

roof. We will show that 

 

[ 

1 ∑ 

j=0 

� i 

(
1 { ̂ δ(X )=1 − j,Y = j} − 1 { δWB (X )=1 − j,Y = j} 

)] 

≥ 0 (A.1) 

hich implies that r( ̂  δ, l 0 , l 1 ) − r(δWB , l 0 , l 1 ) ≥ 0 . The first term in

he sum (A.1) when j = 0 equals 

 0 

[ 
1 { ̂ δ(X )=1 ,Y =0 } − 1 { δWB (X )=1 ,Y =0 } 

] 
= � 0 

[ 
1 { ̂ δ(X )=1 } − 1 { δWB (X )=1 } 

] 
1 { Y =0 } 

= � 0 

[ (
1 − 1 { ̂ δ(X )=0 } 

)
−

(
1 − 1 { δWB (X )=0 } 

)] [ 
1 − 1 { Y =1 } 

] 
= � 0 

[ 
1 { δWB (X )=0 } − 1 { ̂ δ(X )=0 } 

] [ 
1 − 1 { Y =1 } 

] 
. 
imilarly, the second term in the sum (A.1) when j = 1 is 

 1 

[ 
1 { ̂ δ(X )=0 ,Y =1 } − 1 { δWB (X )=0 ,Y =1 } 

] 
= � 1 

[ 
1 { ̂ δ(X )=0 } − 1 { δWB (X )=0 } 

] 
1 { Y =1 } 

= � 1 

[ (
1 − 1 { ̂ δ(X )=1 } 

)
−

(
1 − 1 { δWB (X )=1 } 

)] 
1 { Y =1 } 

= � 1 

[ 
1 { δWB (X )=1 } − 1 { ̂ δ(X )=1 } 

] 
1 { Y =1 } . 

aking the expectation of Y conditional on X and L of the sum

n (A.1) , yields 

 0 

[ 
1 { δWB (X )=0 } − 1 { ̂ δ(X )=0 } 

] 
[ 1 − p(X ) ] 

+ � 1 

[ 
1 { δWB (X )=1 } − 1 { ̂ δ(X )=1 } 

] 
p(X ) , 

here recall that p(X ) = P { Y = 1 | X} . We will show that the above

um is greater than or equal to zero. Taking the expectation over X

nd L completes the argument. 

When p(X ) ≥ � 0 / (� 0 + � 1 ) , we have 

 0 

[ 
0 − 1 { ̂ δ(X )=0 } 

] 
[ 1 − p(X ) ] + � 1 

[ 
1 − 1 { ̂ δ(X )=1 } 

] 
p(X ) . 

f ˆ δ(X ) = 1 , we have � 0 [ 0 − 0 ] [ 1 − p(X ) ] + � 1 [ 1 − 1 ] p(X ) = 0 . If
ˆ (X ) = 0 , we have (� 0 + � 1 ) p(X ) − � 0 ≥ 0 . 

When p(X ) < � 0 / (� 0 + � 1 ) , we have 

 0 

[ 
1 − 1 { ̂ δ(X )=0 } 

] 
[ 1 − p(X ) ] + � 1 

[ 
0 − 1 { ̂ δ(X )=1 } 

] 
p(X ) . 

f ˆ δ(X ) = 1 , we have � 0 − (� 0 + � 1 ) p(X ) ≥ 0 . If ˆ δ(X ) = 0 , we have

 0 [ 1 − 1 ] [ 1 − p(X ) ] + � 1 [ 0 − 0 ] p(X ) = 0 . 

This establishes (A.1) . To complete the proof, we have to show 

(δWB , � 0 , � 1 ) = E [ min { � 1 p(X ) , � 0 (1 − p(X )) } ] . 

he proof above reveals that r ( δWB , l 0 , l 1 ) is the expected value of 

 0 [ 1 − p(X ) ] 1 { δWB (X )=1 } + � 1 p(X ) 1 { δWB (X )=0 } 
= � 0 [ 1 − p(X ) ] 1 { p(X ) ≥� 0 / (� 0 + � 1 ) } + � 1 p(X ) 1 { p(X ) <� 0 / (� 0 + � 1 ) } 
= min { � 0 (1 − p(X )) , � 1 p(X ) } , 

here the last line follows because � 0 (1 − p(X )) ≤ � 1 p(X ) if and

nly if p(X ) ≥ � 0 / (� 0 + � 1 ) . �

ppendix B: Results from multiclass imbalanced data 

Section 7 explored the performance of RFQ, BRF, and RF in the

ulticlass imbalanced data setting. This was accomplished by de-

omposing the multiclass imbalanced data into 3 two-class data

ets, obtaining classifiers on each and then taking a majority vote

ver the results. Here we list the tables from the empirical anal-

sis which were based on forests of 50 0 0 trees grown on each

raining data set with nodesize = 1, mtry = d /3 and 50 resampled

oise variables. 

https://doi.org/10.13039/100000002
https://doi.org/10.1016/j.patcog.2019.01.036
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Table B.1 

Performance comparisons on simulated 3 class imbalanced data sets derived from waveform. 

RFQ BRF RF 

Class ratios TPR1 TPR2 TPR3 G -mean TPR1 TPR2 TPR3 G -mean TPR1 TPR2 TPR3 G -mean 

5:4:1 64.65 84.46 94.51 80.16 80.20 90.80 79.87 83.41 90.38 91.28 37.84 67.72 

10:5:1 60.12 83.86 94.18 77.94 82.52 88.44 77.46 82.61 96.10 81.83 19.46 53.18 

10:1:1 53.25 90.26 91.79 76.03 83.75 81.63 81.40 82.15 99.92 36.03 35.78 50.24 

20:5:1 55.12 83.26 92.48 75.05 83.65 87.11 74.10 81.32 99.26 64.88 6.71 33.47 

20:1:1 51.84 87.39 89.97 74.00 84.08 78.20 78.42 80.03 99.99 17.95 18.57 30.41 

50:25:1 57.77 76.55 87.45 72.72 83.74 89.53 59.34 76.05 95.98 82.10 0.02 0.68 

50:5:1 52.78 78.06 88.90 71.35 85.97 83.66 61.61 75.94 99.97 41.09 0.25 4.25 

100:25:1 54.74 71.80 85.38 69.28 86.25 87.99 43.94 68.54 99.27 65.01 0.00 0.00 

100:10:1 52.27 73.24 86.09 68.84 86.68 85.10 42.24 66.77 99.96 40.93 0.00 0.00 

100:5:1 51.63 74.82 84.82 68.67 86.98 81.04 43.05 66.16 99.99 20.46 0.00 0.00 

Table B.2 

Performance comparisons on simulated 3 class imbalanced data sets derived from waveform with respect to two class (un- 

weighted) G -means and the weighted G -mean with β1 = 1/2 and β2 = β3 = 1 (cf. Table B.1). 

RFQ BRF 

Class ratios G -mean 12 G -mean 13 G -mean 23 Wt. G -mean G -mean 12 G -mean 13 G -mean 23 Wt. G -mean 

5:4:1 73.84 78.13 89.32 86.22 85.29 79.98 85.13 86.55 

10:5:1 70.92 75.19 88.84 84.86 85.38 79.88 82.71 85.31 

10:1:1 69.25 69.83 90.97 84.48 82.60 82.49 81.45 84.64 

20:5:1 67.64 71.31 87.71 82.91 85.30 78.63 80.27 83.80 

20:1:1 67.19 68.18 88.59 82.61 80.97 81.07 78.19 82.40 

50:25:1 66.38 70.97 81.73 79.71 86.53 70.22 72.60 78.35 

50:5:1 64.01 68.34 83.21 79.43 84.71 72.49 71.53 77.91 

100:25:1 62.51 68.23 78.10 76.65 87.04 60.76 61.44 70.29 

100:10:1 61.66 66.95 79.22 76.75 85.77 59.53 59.00 68.42 

100:5:1 61.94 66.03 79.43 76.72 83.85 60.20 58.10 67.75 

Table B.3 

Performance comparisons on simulated 3 class imbalanced data sets derived from cassini. 

RFQ BRF RF 

Class ratios TPR1 TPR2 TPR3 G -mean TPR1 TPR2 TPR3 G -mean TPR1 TPR2 TPR3 G -mean 

10:5:1 90.66 97.41 97.55 95.13 98.58 100 94.76 97.73 99.52 100 92.93 97.40 

25:5:1 78.98 86.91 95.10 86.69 97.22 100 84.54 93.57 99.66 100 72.17 89.36 

50:25:1 73.67 73.41 91.15 78.87 96.49 100 55.95 80.82 99.50 100 1.41 17.62 

50:10:1 72.60 70.85 92.32 77.90 96.33 99.99 57.54 81.63 99.67 100 1.86 21.83 

50:5:1 68.59 74.98 91.48 77.62 95.92 99.95 58.45 81.95 99.81 100 2.28 22.64 

50:2:1 62.54 85.06 89.03 77.75 95.43 97.66 63.48 83.47 99.75 99.98 4.50 29.32 

100:50:1 70.67 70.17 86.59 75.23 95.49 99.61 24.06 59.22 99.52 100 0.00 0.00 

100:25:1 70.24 65.88 86.77 73.54 95.08 99.53 24.69 59.93 99.60 100 0.00 0.00 

100:10:1 66.12 60.27 86.95 69.93 94.56 99.12 24.54 59.40 99.76 100 0.00 0.00 

100:5:1 60.64 59.64 86.63 67.55 93.87 97.37 26.52 60.67 99.76 100 0.00 0.00 

Table B.4 

Performance comparisons on simulated 3 class imbalanced data sets derived from cassini with respect to two class (unweighted) 

G -means and the weighted G -mean with β1 = 1/2 and β2 = β3 = 1 (cf. Table B.3). 

RFQ BRF 

Class ratios G -mean 12 G -mean 13 G -mean 23 Wt. G -mean G -mean 12 G -mean 13 G -mean 23 Wt. G -mean 

10:5:1 93.97 94.03 97.46 96.70 99.28 96.63 97.33 97.97 

25:5:1 82.82 86.62 90.87 90.17 98.60 90.55 91.84 94.01 

50:25:1 73.51 81.81 81.68 83.00 98.23 72.86 74.20 81.31 

50:10:1 71.67 81.76 80.76 82.17 98.14 73.92 75.33 82.14 

50:5:1 71.64 79.10 82.66 82.66 97.91 74.37 75.94 82.53 

50:2:1 72.85 74.40 86.79 84.09 96.53 77.36 78.23 84.13 

100:50:1 70.39 78.00 77.71 79.71 97.52 46.21 47.28 59.71 

100:25:1 67.96 77.86 75.33 78.00 97.28 46.99 48.14 60.46 

100:10:1 63.02 75.58 72.03 74.92 96.81 46.53 47.71 59.97 

100:5:1 59.95 72.30 71.42 73.43 95.59 48.42 49.33 61.34 
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