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Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular heartbeat,
with or without perceivable symptoms. In clinical practice, the electrocardiogram (ECG) is often used
for diagnosis of AF. Since the AF often arrives as recurrent episodes of varying frequency and duration
and only the episodes that occur at the time of ECG can be detected, the AF is often underdiagnosed
when a limited number of repeated ECGs are used. In studies evaluating the efficacy of AF ablation
surgery, each patient undergoes multiple ECGs and the AF status at the time of ECG is recorded.
The objective of this paper is to estimate the marginal proportions of patients with or without AF
in a population, which are important measures of the efficacy of the treatment. The underdiagnosis
problem is addressed by a three-class mixture regression model in which a patient’s probability of
having no AF, paroxysmal AF, and permanent AF is modeled by auxiliary baseline covariates in a
nested logistic regression. A binomial regression model is specified conditional on a subject being in the
paroxysmal AF group. The model parameters are estimated by the Expectation-Maximization (EM)
algorithm. These parameters are themselves nuisance parameters for the purpose of this research, but
the estimators of the marginal proportions of interest can be expressed as functions of the data and
these nuisance parameters and their variances can be estimated by the sandwich method. We examine
the performance of the proposed methodology in simulations and two real data applications.

Keywords: Atrial fibrillation; Latent class model; Mixture model; Two-part model;
Zero-inflated binomial.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Modeling the atrial fibrillation

Atrial fibrillation (AF) affects approximately 2.2 million individuals in the United States (Fuster,
2006), particularly those with structural heart disease and the elderly. It is characterized by rapid and
irregular heart beat. Each AF episode may last between a few seconds to a few days, and the frequency
also varies with subjects. If the AF episodes occur intermittently, they are called paroxysmal AF;
if the patient is constantly in AF, this condition is called permanent AF. Most AF episodes occur
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without any symptoms, while some may be accompanied by perceived heart palpitations, weakness,
shortness of breath, or chest pain. AF patients may suffer from tachycardia, low cardiac output from
loss of atrial function, atrial and ventricular remodeling, and significantly elevated risk of stroke.
Accurately detecting the start and end of the AF episodes is difficult due to the possible intermittent
recurrence of the episodes. While devices such as the insertable cardiac monitors can record the AF
episodes continuously over a long period of time, these devices require a surgery to be implanted
on the patient, and another surgery to be extracted out at the end of the monitoring. Hence, they
are not suitable for use in the general at-risk population. In the current clinical practice, physicians
often rely on electrocardiogram (ECG) or Holter monitoring to capture the AF episodes. The ECG
is usually performed at inpatient visits and lasts for less than 15 minutes; the Holter monitoring
device may be carried at home by the patient and provides 24–72 hours of continuous monitoring.
Since the gap times between consecutive AF episodes may vary in length between a few minutes to
many days, in many situations such monitoring methods can be viewed as only providing a “snap-
shot” of the underlying continuous on-and-off process of AF. Consequently, the AF episodes are
easily missed in these snapshots, leading to underdiagnosis or false-negative diagnosis. It helps if the
monitoring frequency and duration are increased (Arya et al., 2007), for example, with the seven-
day ECG or daily telephonic ECG, but these options are not always feasible in the current clinical
practice.

In this paper, we investigate the diagnosis of AF under the following study design. Suppose n
patients, indexed by i = 1, 2, . . . , n, satisfy the inclusion criteria and are enrolled in a study on the risk
of AF after a surgical procedure such as the Cox-Maze, with the goal of evaluating whether the surgery
reduces or eliminates the AF (Gillinov et al., 2006). After the surgery, each patient is scheduled for
ni recurrent clinical visits; the presence or absence of AF at the j-th visit ( j = 1, 2, . . . , ni) is denoted
by Yi j . The patients may be free of AF, have paroxysmal AF with recurrent episodes of arrythmia, or
have permanent AF so that the heart is always in abnormal arrythmia. Within the time frame of the
study, a patient may be in one of three states, denoted by Ci, with Ci = 0 indicating no AF, Ci = 1/2
indicating paroxysmal AF, and Ci = 1 indicating permanent AF. Ci is not directly observable, but may
be inferred from the observed data Y i = (Yi1, . . . , yini

)T . The objective of this paper is to estimate the
marginal prevalence probabilities

p0 = Pr(Ci = 0), p1/2 = Pr(Ci = 1/2), p1 = Pr(Ci = 1). (1)

For a given patient population receiving AF treatments, these estimands quantifies the effectiveness
of the surgery in reducing or eliminating AF in that population. An effective procedure is expected
to increase the probability of no AF (p0) and decrease the probabilities of paroxysmal AF (p1/2)
and permanent AF (p1). If we can estimate p0, p1/2, and p1 for a single population, extension to
randomized clinical trial or propensity score matched observational studies with multiple treatment
groups is straightforward because these marginal prevalence probabilities can be estimated for each
group under comparison and the estimators and their estimated variances can be compared or used
to form a statistical test for group differences.

Let Mi = ∑ni
j=1 Yi j denote the number of positive ECG results. A simple method to estimate the

marginal prevalence is to claim that a patient is free of AF if Mi = 0, in permanent AF if Mi = ni, and
in paroxysmal AF if 0 < Mi < ni. The idea of this approach conforms to some clinical practice where
a patient is diagnosed with AF if the AF episodes are captured by the ECGs, and non-AF otherwise.
According to this approach, the estimated marginal prevalence probabilities are:

p̃0 = 1
n

n∑
i=1

1{Mi = 0}, p̃1/2 = 1
n

n∑
i=1

1{0 < Mi < ni}, p̃1 = 1
n

n∑
i=1

1{Mi = ni}. (2)

These prevalence estimates may be biased. By definition, if a patient is free of AF, Yi j ≡ 0 and
Mi = 0; if a patient is in permanent AF, Yi j ≡ 1 and Mi = ni; if a patient is in paroxysmal AF, Yi j may
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be 0 or 1 with nonzero probabilities. By chance, some paroxysmal AF patients may have all the Yi j ’s
being 0, which leads them to be incorrectly classified into the non-AF group. Similarly, by chance some
paroxysmal AF patients may have all the Yi j ’s being 1, which leads them to be incorrectly classified into
the permanent AF group. Mathematically, p0 ≤ p̃0, p1/2 ≥ p̃1/2, p1 ≤ p̃1. Unless ni is very large for

every subject, the equalities in these expressions are unlikely to hold even with large sample size n. This
analysis explains a widely observed phenomenon in AF research that AF detection depends on the
monitoring intensity: the more frequent the AF is monitored, the higher the estimated AF prevalence
becomes (Senatore et al., 2006; Arya et al., 2007; Gaillard et al., 2010).

The estimands of interest (1) cannot be identified without additional auxiliary information. There
are well-established prognosis risk factors of AF. In this paper, we consider exploiting their relationship
with Ci and Y i (i.e., Mi) to improve the estimation of these marginal prevalence probabilities. Let X i
be a vector of baseline prognostic factors. Suppose we can specify a hierarchical two-stage regression
model for the data,

Pr(Ci = c|X i; θ) and Pr(Mi|Ci = c, X i; θ),

where c = 0, 1/2, 1 and θ is a generic notation for all the unknown parameters in this model. For the
purpose of this research, θ are nuisance parameters, because the estimands of interest are p0, p1/2, p1.
We first estimate θ by maximizing the log-likelihood of the data {Mi, X i; i = 1, 2, . . . , n}:

L(θ) =
n∑

i=1

log Pr(Mi|X i) =
n∑

i=1

log

⎧⎨⎩ ∑
c∈{0,1/2,1}

Pr(Mi|Ci = c, X i)Pr(Ci = c|X i)

⎫⎬⎭ . (3)

Denote the maximum-likelihood estimator of θ by θ̂. Then we propose the following estimator for the
marginal prevalence probabilities p0, p1/2, p1:

p̂0 = P̂r(Ci = 0) = 1
n

n∑
i=1

Pr(Ci = 0|Mi, X i; θ̂)

p̂1/2 = P̂r(Ci = 1/2) = 1
n

n∑
i=1

Pr(Ci = 1/2|Mi, X i; θ̂)

p̂1 = P̂r(Ci = 1) = 1
n

n∑
i=1

Pr(Ci = 1|Mi, X i; θ̂).

(4)

These are the sample averages of each subject’s conditional probability of Ci given the observed data,
evaluated at θ = θ̂. We can prove that these estimators are unbiased for p0, p1/2, p1, using E{Pr(Ci =
c|Mi, X i; θ)} = E{1{Ci = c}} = Pr(Ci = c) and the consistency of θ̂ for the nuisance parameter θ.

In Section 2, we provide details on the model and estimation procedure. Section 3 presents the
simulation results. Section 4 includes two real data examples to illustrate the proposed method.
Discussion is in Section 5.
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2 Estimation

We first describe the estimation of the nuisance parameter θ through an EM algorithm, and then
discuss the point and variance estimation of the estimands of interest p0, p1/2, p1. Throughout this
paper, we use the following model for Pr(Ci|X i):

Pr(Ci = 0|X i) = 1

1 + exp(X T
i α)

Pr(Ci = 1/2|X i) = Pr(Ci = 1/2 or 1|X i) × Pr(Ci = 1/2|X i,Ci = 1/2 or 1) =

= exp(X T
i α)

1 + exp(X T
i α)

1

1 + exp(X T
i β)

Pr(Ci = 1|X i) = Pr(Ci = 1/2 or 1|X i) × Pr(Ci = 1|X i,Ci = 1/2 or 1) =

= exp(X T
i α)

1 + exp(X T
i α)

exp(X T
i β)

1 + exp(X T
i β)

.

This is a nested logistic regression model, in which we first model the probability of Ci = 0 versus
Ci = 1/2 or 1, and then model the probability ofCi = 1 givenCi = 1/2 or 1. For notational convenience,
we assume that the first element in X i is 1, corresponding to the intercept. With one more set of
parameters, the nested logistic regression model is in general more flexible than some widely used
models such as the proportional odds model, but is also less parsimonious and less transparent to
interpret. Since we are interested in the marginal probabilities, and all the regression parameters θ are
nuisance, we sacrifice some parsimony and interpretability to gain flexibility when making the model
choice.

The conditional distribution of Mi given Ci and X i may be specified as:

Pr(Mi|Ci = 0, X i) = 1{Mi = 0}
Pr(Mi|Ci = 1/2, X i) =

(
ni
Mi

)
p

Mi
i (1 − pi)

ni−Mi =

=
(

ni
Mi

)
exp

{
MiX

T
i γ − ni log

(
1 + eX T

i γ
)}

pi = exp(X T
i γ )

1 + exp(X T
i γ )

Pr(Mi|Ci = 1, X i) = 1{Mi = ni}. (5)

When the patient does not have AF (Ci = 0), Mi can only be 0; when the patient is in permanent AF
(Ci = 1), Mi can only be ni; when the patient is in paroxysmal AF (Ci = 1/2), Mi follows a binomial
distribution with probability pi, which depends on X i. An alternative way to model (5) is to specify the
conditional distribution ofYi givenCi = 1/2 and X i through a regression model for longitudinal binary
outcomes, incorporating the time effect and intrasubject correlation. Under that model specification,
the estimation of marginal prevalence probabilities via (4) is still valid. However, the purpose of this
article is to study the diagnosis of AF during a period of time when the patient’s AF status is stable.
For that purpose, the binomial model above is more parsimonious and interpretable.

The nuisance parameters θ = (αT,βT, γT )T can be estimated by maximizing the log-likelihood (3)
in an EM algorithm. We define the complete data set as {Ci, Mi, X i; i = 1, 2, . . . , n}, where Ci is
unobserved. There are only three possibilities in the complete data set: (1) Ci = 0, Mi = 0; (2) Ci = 1/2,
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0 ≤ Mi ≤ ni; (3)Ci = 1, Mi = ni; the case withCi = 0, Mi > 0, orCi = 1, Mi < ni does not exist. Hence,
the complete data log-likelihood is:

n∑
i=1

{
1{Ci = 0} log Pr(Ci = 0|X i) + 1{Ci = 1/2} log Pr(Ci = 1/2|X i)Pr(Mi|X i,Ci = 1/2)

}
+

+ 1{Ci = 1} log Pr(Ci = 1|X i)
}

=

=
n∑

i=1

{
1{Ci = 0}(−1) log

(
1 + eX T

i α
)

+ 1{Ci = 1/2}
[

log

(
eX T

i α

1 + eX T
i α

1

1 + eX T
i β

)
+

+ log
(

ni
Mi

)
+ MiX

T
i γ − ni log

(
1 + eX T

i γ
)]

+ 1{Ci = 1} log

(
eX T

i α

1 + eX T
i α

eX T
i β

1 + eX T
i β

)}
.

The following is the EM algorithm:

� (Initial step) Obtain initial values for θ. The initial value for α and β can be obtained by fitting a
nested logistic regression of 1{Mi = 0}, 1{0 < Mi < ni} and 1{Mi = ni} on X i. The initial values
for γ can be obtained by fitting a binomial regression of Mi on X i for the subset of data with
0 < Mi < ni.

� (E-step) Given the current value of θ(m), calculate the conditional expectation of the indicators in
the complete data log-likelihood given the observed data Mi and conditional on X i.

Pr(Ci = c|Mi, X i) = Pr(Mi|Ci = c, X i)Pr(Ci = c|X i)∑
c′ ∈{0,1/2,1} Pr(Mi|Ci = c′

, X i)Pr(Ci = c′ |X i)
, (c = 0, 1/2, 1).

Denote

p(m)

0i = Pr(Ci = 0|Mi, X i; θ(m))

p(m)

1/2,i = Pr(Ci = 1/2|Mi, X i; θ(m))

p(m)

1i = Pr(Ci = 2|Mi, X i; θ(m)).

(6)

� (M-step) Given p(m)

0i , p(m)

1/2,i, and p(m)

1i , we maximize the following expected log complete data
likelihood with respect to θ:

n∑
i=1

{
p(m)

0i (−1) log
(

1 + eX T
i α

)
+ p(m)

1/2,i

[
log

(
eX T

i α

1 + eX T
i α

1

1 + eX T
i β

)
+ log

(
ni
Mi

)
+

+ MiX
T
i γ − ni log

(
1 + eX T

i γ
)]

+ p(m)

1i log

(
eX T

i α

1 + eX T
i α

eX T
i β

1 + eX T
i β

)}
.

Since the terms involving α, β, and γ are linearly additive, we can maximize with respect to α,
β, and γ separately in three M-steps. Each step involves maximization of a concave function
with closed form first and second derivatives, and can be completed using the Newton–Raphson
method.

� Iterate between E-Step and M-Step until the following convergence criteria is satisfied:

arg max|θ(m) − θ(m−1)| < ε0.
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That is, we iterate till all the elements in the vector |θ(m) − θ(m−1)| be less than a prespecified small
positive number ε0. We set ε0 = 10−6 for the numerical study in this paper. If it converges at step
K, we denote the final point estimator as θ̂ = θ(K ).

Once the nuisance parameters θ̂ is obtained, we can estimate the marginal prevalence probabilities
(1) according to (4):

p̂0 = 1
n

n∑
i=1

p(K )

0i , p̂1/2 = 1
n

n∑
i=1

p(K )

1/2,i, p̂1 = 1
n

n∑
i=1

p(K )

1i ,

where the individual conditional probabilities p(K )

0i , p(K )

1i , and p(K )

2i can be obtained directly from the
last (the K-th) iteration of the EM algorithm.

The asymptotic variance matrix of θ̂ can be estimated by the inverse of the negative Hessian matrix,
obtained by numerically differentiating the log-likelihood (3). However, for the purpose of this research,
θ is nuisance parameter, and the estimands of interest are p0, p1/2, and p1. We use the following partial
M-estimation procedure (Stefanski and Boos, 2002) to estimate the variances of p̂0, p̂1/2, and p̂1. The

estimator p̂0 and θ̂ can be viewed as solutions to the following estimating equation for κ = (p0, θ
T )T :

0 =
n∑

i=1

φi(κ) =
n∑

i=1

⎡⎢⎣ Pr(Ci = 0|Mi, X i; θ) − p0
∂
∂θ

log
(∑

c∈{0,1/2,1} Pr(Mi|Ci = c, X i)Pr(Ci = c|X i)
)⎤⎥⎦ .

By the sandwich method, v̂ar( p̂0) is the first diagonal entry of the matrix v̂ar(κ̂) = n−1Â
−1
n B̂nÂ

−T
n , with

Ân = n−1 ∑n
i=1 ∂φi(κ)/∂κT |κ=κ̂ and B̂n = n−1 ∑n

i=1 φi(κ)φi(κ)T |κ=κ̂. The derivatives can be calculated
numerically. Variances of p̂1/2 and p̂1 are estimated in similar ways.

3 Simulation

We conducted simulations to study the performance of the proposed model and method. At each
simulation, we generated two standard Gaussian baseline covariates with a correlation coefficient
of 0.2. We consider a setting in which the three marginal prevalence probabilities, p0 = Pr(Ci = 0),
p1/2 = Pr(Ci = 1/2), and p1 = Pr(Ci = 1), are close to each other and a setting in which p0 and p1

are much smaller than p1/2. Under the first setting, α = (1.2,−1.0, 1.0)T , β = (−0.2, 0.6,−0.8)T ,
γ = (0.3, 1.2, 1)T ; under the second setting, α = (2.5,−1.0, 1.0)T , β = (−2.0, 0.6,−0.8)T , γ =
(0.3, 1.2, 1)T . We varied the sample size between n = 250 and 1000, and varied the median num-
ber of repeated measures (ni) between 5 (range 1–9 in a uniform distribution) and 10 (range 5–15).
Therefore, we had a total of eight simulation scenarios. One thousand simulations were run in each
setting. We compared the naive method, given by (2) and the proposed estimator (4).

The simulation results are summarized in Table 1. The naive method generally leads to biased
estimator of marginal prevalence probabilities and sometimes the bias is quite large, while the proposed
method is unbiased in all settings. The bias of the naive method decreases when there are more repeated
measures per subject, and increasing the sample size does not help reducing bias. When there is a large
number of diagnoses per subject, the chance that all these diagnosis fail to capture any AF episodes on
a paroxysmal AF patient is greatly reduced, and so is the chance that these diagnoses capture at least
one AF episode on the paroxysmal AF patient. The 95% confidence intervals are correct coverage
probabilities, though slight under coverage can be seen in small data sets with small sample size and
number of repeated measures per subject. The simulation also shows that the proposed estimators
of the nuisance parameters (α, β, γ) are nearly unbiased under all the simulation scenarios (result
omitted).
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The proposed mixture regression model is a working model to help identify the estimands in (1),
which are otherwise unidentified from the data. Hence, we conducted additional simulation to study
the proposed estimators when the working model is misspecified. The simulation was designed in a
similar setup as in Setting 1 of Table 1. The sample size is fixed at 500. The median number of repeated
measures is 5 (range 1–9), 10 (range 5–15), or 20 (range 10–30). We fit the correctly specified three-
part mixture model as well as an incorrectly specified model omitting X2. The result is visualized in
Fig. 1. The result reconfirms the finding in Table 1 that the correctly specified mixture model produces
unbiased estimators. When the model is misspecified, there is bias in the proposed estimator, but the
bias is much smaller than the naive estimator in all scenarios. When the number of repeated measures
per subject increases, the bias of the naive method decreases, and so does the bias of the proposed
method under misspecified model. A heuristical explanation is that when the monitoring frequency
increases, it is difficult for a paroxysmal AF patient to have Y i ≡ 0. In other words, there is less evidence
in the data for a paroxysmal AF patient to have a high probability of being in the other two groups,
even when there is some model misspecification. Hence the proposed estimator converges with the
naive estimator, whose bias decreases with increasing monitoring frequency. Therefore, based on this
result, we recommend the use of the proposed methodology in all scenarios in replacement of the naive
method, regardless of the monitoring frequency.

The simulations in this section were performed using functions written in R (R Core Team, 2014).
The R code is available for download at the publisher’s website. The initial values of the EM algorithm
were chosen using the simple method described in Section 2, and convergence was achieved for all the
simulation runs. Analyzing a typical simulated data set with n = 1000 took about 80 seconds on a PC
with 3.30 GHz CPU and 16 GB memory. The good convergence performance may be partly attributed
to the concavity of the target functions in the M-step of the EM algorithm. Previous literature suggests
that it is desirable to run the EM algorithm using different initial values to protect against convergence
to local, instead of global maximum (Biernachi et al., 2003). We intentionally let the initial values
deviate from the recommended values in Section 2. The algorithm always converged to the same
estimators, unless excessively large deviations were used that led to unreasonable initial values, in
which case the algorithm did not converge.

4 Applications

We illustrate the proposed methodology with two real data applications. The first application is from a
retrospective observational study on the effectiveness of three different surgical ablation procedures in
reducing AF: the Cox-Maze ablation procedure, which is a cut-and-sew procedure, considered as the
gold standard, but is more complicated and time consuming; the pulmonary vein isolation, which is the
simplest; pulmonary vein isolation alone with added lesions, which is between the other two procedures
in terms of complexity. Data on heart rhythm were collected from postoperative ECGs and extracted
from the electronic health records (Gillinov et al., 2006). The data set includes 413 patients with at
least one ECG diagnosis between six and 24 months. The ECG data within the first six months after
surgery have been excluded as patients’ heart rhythms may be affected by many other perioperative
risk factors and are not stable shortly after the open heart surgery. Of these patients, 169 had one ECG,
105 has two, 49 had 3, and the maximum number of ECGs is 14. The naive method estimated that
p̂0 = 0.564, p̂1/2 = 0.196, p̂1 = 0.240. The proposed method estimated that p̂0 = 0.379(0.0171), p̂1/2 =
0.481(0.0208), p̂1 = 0.140(0.00682) (the numbers in brackets are standard errors). The proportion of
permanent AF patients appears to be overestimated under the naive method. Table 2 shows the
estimated regression model parameters. These are nuisance for the purpose of estimating the marginal
prevalence probabilities, but can be informative for exploring the association between risk factors and
outcomes.

The second data application is from a prospective randomized study to determine if adding sur-
gical ablation to mitral valve surgery is more effective than surgery alone in reducing AF at six and
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Table 2 The estimated model parameters from the three-part mixture model applied to the first data
application.

Parameter Estimator Std Err p-Value

α0 −4.65 2.13 0.029
α1 −0.00329 0.0206 0.87
α2 0.207 0.176 0.24
α3 0.685 0.307 0.026
α4 0.546 0.543 0.31
α5 1.62 0.443 < 0.001
β0 −8.40 2.83 0.003
β1 0.0410 0.0279 0.14
β2 0.495 0.260 0.057
β3 0.312 0.289 0.28
β4 1.71 1.04 0.10
β5 0.521 0.706 0.460
γ0 −2.63 1.47 0.074
γ1 0.0299 0.0150 0.046
γ2 0.111 0.122 0.36
γ3 −0.00248 0.205 0.99
γ4 0.174 0.697 0.80
γ5 −0.324 0.308 0.29

Results are presented as the point estimator, standard error estimator, and p-value from a Wald-type test against the null
hypothesis of zero parameter. The subscripts of each parameter represent: 0: intercept, 1: patient age, 2: log of the average
duration of AF, 3: left atrial diameter (mm), 4: pulmonary vein isolation alone, 5: pulmonary vein isolation with added lesions.

12 months. In this study, patients underwent weekly transtelephonic monitoring (TTM) of their heart
rhythm after cardiac surgery. The TTM system functions in a similar way as the ECG in the physician’s
office, but it is smaller and more portable so that patients can use it to monitor their heart rhythm
at home. The device can be connected to the home telephone line to transmit the heart rhythm data
to the data center of the study. The patients were instructed to make at least one transmission each
week, though more frequent transmissions were permitted. There are n = 150 patients with weekly
TTM data between six and 12 months. The median number of repeated measures is 23, minimum 1,
and maximum 46. The naive method estimated that p̂0 = 0.38, p̂1/2 = 0.28, p̂1 = 0.34. The proposed
method estimated that p̂0 = 0.375(0.0168), p̂1/2 = 0.287(0.0128), p̂1 = 0.339(0.0152). Unlike the first
example, the results from the proposed method and the naive method are very similar. As shown in the
simulations, when the number of repeated measures per subject is large, the discrepancy between the
proposed and the naive methods diminishes. In other words, the naive method produces nearly unbi-
ased result with large number of repeated measures. From a clinical perspective, this finding highlights
the importance and usefulness of the modern technology such as the TTM system in the diagnosis and
monitoring of patients at risk of AF. Table 3 shows the estimated model parameters. As an additional
sensitivity analysis, we artificially reduced the number of diagnoses per subject in this data set by
randomly sampling a fraction of the repeated measures with a probability of retention ϕ, and plotted
the change in estimated marginal prevalence probabilities from the naive and the proposed methods
in Fig. 2. The estimated probabilities from the proposed method are less sensitive to the monitoring
frequency than those from the naive method.

5 Discussion

In this paper, we proposed a new statistical methodology to address one aspect of the widely recognized
diagnosis problem in AF research, that the estimated prevalence of AF increases with the monitoring
intensity (Senatore et al., 2006; Arya et al., 2007). This phenomenon arises because AF episodes occur
intermittently and may be easily missed when the monitoring frequency is not adequate. Estimating the
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Table 3 The estimated model parameters from the three-part mixture model applied to the second
data application.

Parameter Estimator Std Err p-Value

α0 −2.68 1.34 0.045
α1 0.0346 0.0196 0.077
α2 1.46 0.406 < 0.001
α3 1.14 0.626 0.070
α4 0.273 0.447 0.54
β0 0.0899 1.83 0.96
β1 −0.00474 0.0260 0.86
β2 0.0850 0.422 0.84
β3 0.0380 0.593 0.95
β4 0.436 0.552 0.43
γ0 −1.57 0.587 0.0076
γ1 0.0260 0.00883 0.0032
γ2 −0.801 0.153 < 0.001
γ3 1.07 0.217 < 0.001
γ4 −0.0465 0.193 0.81

Results are presented as the point estimator, standard error estimator, and p-value from a Wald-type test against the null
hypothesis of zero parameter. The subscripts of each parameter represent: 0: intercept, 1: patient age, 2: congestive heart failure,
3: history of cardiovascular disease, 4: hypertension.
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Figure 2 The estimated prevalence probabilities by the naive (dashed lines) and proposed (solid lines)
methods, as the probability of retention ω decreases, causing a reduction in the number of repeated
measures per subject from the original TTM data set (ω = 1). The estimated probabilities from the
proposed method are less sensitive to ω than those from the naive method. Red: probability of no AF
(p0); green: probability of paroxysmal AF (p1/2); blue: probability of permanent AF (p1).
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prevalence of people with no AF, paroxysmal AF and permanent AF in a given population is of scien-
tific interest in many contexts including the evaluation of the efficacy of AF ablation surgeries. If these
probabilities are estimated based on the observed proportions such as in the naive method, the results
will be biased unless a large number of repeated diagnoses are made, such as in the TTM data example.
Hence, the results of this article highlight the importance of using modern, high frequency monitoring
technology such as the TTM system. However, high frequent monitoring is not always available in clin-
ical practice. When the monitoring frequency is not large, we propose to use a model-based approach.
Our simulation shows that the proposed approach outperforms the naive approach and produces un-
biased result regardless of the monitoring frequency. Even when the model is moderately misspecified,
the proposed method can still achieve substantial bias reduction and outperforms the naive method.
Our real data applications show that when the monitoring frequency is high as in the second example,
the proposed method and the naive method give similar results; when the monitoring frequency is low
as in the first data example, there are considerable differences between the two methods but the pro-
posed method is better justified than the naive method. In addition, the result of the proposed method
is less sensitive to the monitoring frequency than the naive method, as demonstrated in the real data
experiment with the second data example (Fig. 2). Based on all the results above, we recommend the pro-
posed methodology in replacement of the naive method in all situations, regardless of the monitoring
frequency.

The marginal prevalence probabilities are not identifiable with only the AF outcome Y . They are
identifiable in our approach because of the use of the three-part mixture model. This is analogous
in a perspective to the cure model in survival analysis (Farewell, 1982), where the cured patients are
not expected to have the clinical event of interest and are indistinguishable from the censored patients
without additional modeling assumptions. The covariates X can be thought as auxiliary variables, and
we make use of them to recover the lost information in the missing data, that is, the group membership
C of each patients in the no AF, paroxysmal AF, and permanent AF groups. Among all the patients
with Y ≡ 0, some are expected to have higher risks than others according to their baseline variables
X . This information is exploited by the three-part mixture model and is reflected in its calculation
of the conditional probability of Ci given the observed data via Eq. (4), which leads to a correction
of the bias from the naive method. There are other examples in the statistical literature that use
auxiliary variables to recover information lost due to missing data. For example, Faucett et al. (2002)
used time-dependent covariates as auxiliary variables to impute the time to event data missing due to
censoring. There is some literature on zero-inflated binomial regression, which applies to counts data
with a binomial distribution with excessive zero counts (Hall, 2000; Hall and Zhang, 2004). While the
proposed methodology in this paper uses a similar EM algorithm to find the estimators, it differs from
the literature in the novel motivating application, a focus on the estimation of the marginal prevalence
instead of regression coefficients, and the use of three-class mixture model instead of two-part mixture
model.

6 Supporting Information

“code.zip” in the Supporting Information contains the code required to generate the simulation results
in this paper together with instructions for their use. Available at the publisher’s website.
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