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Hybrid versions of independent and identically distributed weighted Chinese restaurant (WCR) algorithms are developed for inference in
semiparametric linear mixed models under minimal assumptions for the random-effects distributions. The WCR method of working with
the posterior partition structure leads to Rao–Blackwell estimates for higher-order moments of random effects, such as skewness and
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KEY WORDS: Dirichlet process; Moment; Random effect; Rao–Blackwellization, Restricted maximum likelihood; Sequential impor-
tance sampling; Weighted Chinese restaurant.

1. INTRODUCTION

This article introduces a new class of independent and iden-
tically distributed (iid) Monte Carlo algorithms which can
be used for inference in semiparametric linear mixed mod-
els under minimal assumptions for the random-effects distribu-
tion. An important feature of our algorithms is that they com-
bine frequentist parametric estimates with Bayesian nonpara-
metric techniques and as such seek to exploit the strengths
of both approaches in producing an overall more flexible and
efficient method for inference. Our iid algorithms are exten-
sions of the weighted Chinese restaurant (WCR) algorithms dis-
cussed by Ishwaran, James, and Lo (2001) for fitting semipara-
metric models. Lo, Brunner, and Chan (1996) have provided
general methodology related to iid WCR algorithms, and Ish-
waran and James (2000) and Ishwaran, James, and Sun (2001)
have given extensions to generalized Chinese restaurant pro-
cesses and algorithms. Related work on sequential importance
sampling (SIS) has been done by MacEachern, Clyde, and
Liu (1999), Quintana (1998), and Quintana and Newton (2000).
One of the primary focuses of the article is the widely used

linear mixed model for continuous longitudinal data, where
models include fixed-effects terms for population parameters
and random-effects terms for subject-specific variation (Laird
and Ware 1982). However, here we relax the usual paramet-
ric assumption of normal random effects to focus on more
general inference for the random-effects distribution, such as
estimation of higher-order moments and detection of skew-
ness and multimodality. Although estimation for the fixed-
effects parameters is relatively robust to misspecification of
the random effects, for example, by empirical best linear unbi-
ased estimators (EBLUE) obtained from restricted maximum
likelihood (REML) estimation (see Butler and Louis 1992
for some empirical evidence and Jiang 1998 for theoretical
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results), it is becoming widely recognized that inference for
random effects can be misleading when normal distributional
assumptions do not hold (Verbeke and Lesaffre 1996). More-
over, even though certain features for random-effects distri-
butions, such as variances, can be estimated accurately even
when the assumption of normality is violated (Richardson and
Welsh 1994; Jiang 1996), detecting higher-order properties of
distributions such as skewness and multimodality necessitates
dispensing with normality assumptions. Identifying such devi-
ations from normality can be important, sometimes leading to
critical insight into the data. For example, Zhang and Davidian
(2002) used a semiparametric approach to identify population
differences in cholesterol levels by detecting skewness in ran-
dom intercept terms, while Greene (2001) was able to identify
clinical differences in the progression of renal kidney disease
by identifying skewed and thick-tailed random-slope distri-
butions. (We return later in more detail to this last example
as one illustration of our approach.) For other non-Bayesian
semiparametric approaches to linear mixed models see Ver-
beke and Lesaffre (1996) and Aitkin (1999) who used a finite-
mixture approach with implementation by the EM algorithm.
Although the longitudinal problem is a key application, our

methods also apply to single-measurement data when only
one observation is recorded per subject; for example, when
it is anticipated that subject variation is larger than can be
explained by measurement error. If error distributions are
unknown, then such data can be viewed more generally as
arising from a semiparametric regression model and cannot
always be fit properly using standard methods such as REML.
The assumption throughout, for both single and repeated mea-
surements, is that random-effects distributions are unknown.
Our approach, discussed in detail in Section 2, is to use a
Bayesian nonparametric framework in which random effects
are modeled using a Ferguson Dirichlet process.
The article is organized as follows. Section 2 provides the

necessary background material on the iid WCR procedure and
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provides an overview of our approach. Connections with this
work to the Bayesian nonparametric literature are discussed.
Section 3 characterizes the posterior of Dirichlet process mix-
ture models in terms of the partition structure, and thus pro-
vides the blueprint for estimating random effects. In particular,
Rao–Blackwell estimates for higher-order moments for ran-
dom effects, such as the skewness and kurtosis, estimates for
standard errors, and methods for density estimation are dis-
cussed. Sections 4 and 5 discuss the WCR procedures for the
single-measurement case. The methods developed in these sec-
tions are then extended to the longitudinal setting of Section
6, which describes how to combine REML estimates with
the iid WCR algorithms for inference in Laird–Ware random-
effects models. Section 7 discusses the extensive testing of the
method by simulation and then illustrates its application to a
study involving chronic renal disease. Section 8 summarizes
key computational features.

2. SEMIPARAMETRIC HIERARCHICAL MODELS:
OVERVIEW OF METHODS

For ease of presentation, it is simpler for us to first consider
the single-measurement case, and later extend the methods for
longitudinal data in Section 6. With single-measurement data,
inference for the fixed-effects parameter � (p-dimensional)
and random-effects parameters �i (s-dimensional) are based
on data Y= �Y1� � � � � Yn	, where

Yi = X′
i�+Z′

i�i + 
i� i = 1� � � � � n� (1)

Thus we observe one random-effects parameter �i per
subject i. In (1), the Xi are the p-dimensional fixed-effects
covariates, Zi are the s-dimensional random-effects covari-
ates, and 
i are iid normal random variables (the measurement
errors) with mean 0 and variance �2. We assume that �i are
iid from an unknown distribution Q0; thus (1) can be viewed
generally as a semiparametric regression model. For example,
if s = 1 and Zi = 1, then

Yi = X′
i�+�i� i = 1� � � � � n�

where �i = �i + 
i are iid measurement errors with unknown
distribution.
An illustrative example in Section 5 we look at is what

we call the “two-slope” problem, which can be described
as follows. In group 1, the data are assumed to follow a
slope–intercept model with a fixed-effects term for the slope
and a random-effects term for the intercept, whereas in group
2, both slopes and intercepts are assumed to be random. For
convenience, assuming that group 1 corresponds to obser-
vations 1� � � � �m, and group 2 corresponds to observations
m+1� � � � � n, the model is

Yi = �i�0+Xi�1+ 
i� i = 1� � � � �m� (2)

and

Yi = �i�0+Xi�i�1+ 
i� i =m+1� � � � � n� (3)

It is clear this can be written as (1).
Consider the simulation presented in Figure 1 based on

n= 1�000 observations (with data evenly distributed between
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Figure 1. Simulated Data for Two-Slope Problems. Lines corre-
spond to predicted values using least squares. (——- group 1,
· · · · · · · group 2). Values for group 2 indicated by +.

the two groups). In group 2, random slopes �i�1 were simu-
lated from a skewed distribution with mean chosen to coin-
cide with the fixed-effects slope �1 of group 1, whereas ran-
dom intercepts �i�0 were drawn from a discrete two-point
mixture distribution. Analysis of this data will be challeng-
ing to methods that do not relax assumptions of normality.
For example, if intercept distributions are assumed normal,
then it becomes theoretically impossible to separate the vari-
ance of intercepts from the variance �2 for the measurement
error. Thus a method such as REML will be inconsistent here
(see Sec. 5 for simulation results). Conventional methods will
also have difficulty estimating the nonnormal random-effects
distributions. For example, random effects typically estimated
by empirical best linear unbiased prediction (EBLUP) will
have poor performance here. Consider Figure 2, which plots
the EBLUP estimates obtained from REML. It is clear that
EBLUP cannot pick up on the discreteness of the intercept dis-
tribution, whereas the slope distribution, although skewed, still
looks somewhat normal. Compare this to the WCR posterior
estimates E��i�0�Y� and E��i�1�Y� plotted in Figure 3, which
clearly identify the bimodal and skewed shape of the random
effects. We return to this example in more detail in Section 5.
Later, in Section 6, we consider more complex models for
longitudinal data.

2.1 Hierarchical Models

Our approach to the linear mixed model uses a Bayesian
nonparametric technique of modeling an unknown distribution
by a nonparametric prior. In the mixed model, this works by
modeling Q0 using a random measure P with some prior � .
The method is best conceptualized by reexpressing (1) in a
semiparametric hierarchical framework. Under the prior � , the
Bayesian semiparametric model for (1) is (conditioning on
fixed effects and the measurement error variance)

�Yi��i����
2	

ind∼ N��i��
2	� i = 1� � � � � n�

��i�P	 iid∼ P� (4)

P ∼ ��
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Figure 2. Estimated Random Effects Using EBLUP. (a) Intercept; (b) slope.

where �i = X′
i�+Z′

i�i. Inference for Q0 is thus based on the
posterior for P from (4). The WCR methods discussed later can
be applied to general discrete random measures � (Ishwaran
and James 2000), although here we illustrate its use applied to
the Ferguson (1973, 1974) Dirichlet process. Thus throughout,
we write � to refer to DP�a0H	, the Ferguson Dirichlet pro-
cess with finite measure a0H�·	, where a0 > 0 is some constant
and H�·	 is a probability measure over �s . The measure H�·	
can be thought of as the guess of the distribution of the random
effects, and a0 as a measure of the strength of this belief. In our
applications, it is convenient to take H�·	 to be a normal distri-
bution. These details are spelled out later in the article.
Hierarchical models subject to the Dirichlet process, sim-

ilar in nature to (4), are now increasingly used for infer-
ence in nonparametric and semiparametric problems (see
West, Müller, and Escobar 1994; Escobar and West 1998
for background and examples). Applications of such models
specifically to linear mixed models have been considered in
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Figure 3. Estimated Random Effects From the Hybrid WCR. (a) Intercept; (b) slope.

various contexts; for example, Bush and MacEachern (1996)
considered a semiparametric randomized block design, and
Kleinman and Ibrahim (1998) looked at mixed models for lon-
gitudinal data. Such approaches typically rely on the use of
Markov chain Monte Carlo for model fitting, typically using a
Pólya urn Gibbs sampler, a general Gibbs sampling technique
for fitting Dirichlet process mixture models (Escobar 1988,
1994). (See, however, Tao, Palta, Yandell, and Newton 1999
for a predictive recursive algorithm for fitting models.) But
little work has been done along the lines of fitting linear mixed
models based on iid sampling, or on methods that rely on the
partition structure. Here we consider such an approach, the
iid WCR algorithm, an SIS technique based on the partition
structure for the Dirichlet process (Lo et al. 1996; Brunner,
Chan, James, and Lo 2001). As we discuss later (Sec. 3), such
a technique can be used to produce stable Rao–Blackwell esti-
mates for functionals of the random effects, such as estimates
for moments and density estimates.
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2.2 Random Partitions and Clustering

A key to the numerical stability of the WCR algorithm
comes from its use of the partition distribution of the Dirichlet
process. Let p = �C1� � � � �Cn�p	� be a partition of size n�p	
for the set �1� � � � � n�, where each set Cj contains ej elements.
Due to the discrete nature of the Dirichlet process (Blackwell
and MacQueen 1973), each realization from the prior induces
a clustering of the random effects �= ��1� � � � ��n	 by some
partition p such that the observations �Yi ! i ∈Cj� share a com-
mon �i value uj for j = 1� � � � � n�p	. Note that � can be
equivalently represented as �u�p	, where u= �u1� � � � �un�p		.
The partition distribution induced by the prior in turn induces
a posterior that can be characterized in terms of p (see Sec.
3), and it is this structure that is sampled by the WCR
algorithm. Although one can apply SIS techniques based on
working with a posterior characterized by � by, for exam-
ple, extending the methods discussed by Kong, Liu, and
Wong (1994) and Liu (1996), working with a posterior char-
acterized by the minimal information of the partition leads
to improved numerical stability due to Rao–Blackwellization.
Lo et al. (1996) and Ishwaran and James (2000) provided
general discussions on this point. MacEachern et al. (1999)
presented a partition-based SIS technique for beta-binomial
Dirichlet process mixture models (what they call their “S2
algorithm”). Extensions to the S2 algorithm were given by
Quintana (1998), who considered multinomial data models,
and by Quintana and Newton (2000), who extended the beta-
binomial models of MacEachern et al. (1999) to allow for
nonexchangeability.
Observe that p contains the minimal amount of information

for reducing our nonparametric problem parametrically. That
is, for a given p, the likelihood for (1) equals

Lik�u����2�p	=
n�p	∏
j=1

∏
i∈Cj

"
(
Yi���Z′

iuj � �
2
)
�

where Yi�� = Yi−X′
i� and "�·�#�$2	 denotes a normal density

with mean # and variance $2. Thus p tells us how the data are
clustered, reducing the problem to a collection of conditionally
independent normal parametric models, from which inference
should now be straightforward.

2.3 WCR Draws

The key is to be able to draw p from its posterior, which
for a fixed value for � and �2 equals

%�p�Y	= f �Y�p	%�p	∑
p f �Y�p	%�p	

�

where %�p	 is the prior probability for p, the previous sum is
over all partitions p and

f �Y�p	=
n�p	∏
j=1

∫
�s

∏
i∈Cj

"
(
Yi���Z′

iuj � �
2
)
H�duj	�

However, a direct draw from %�p�Y	 is not feasible. Instead,
we draw p from the WCR density q�p	, where

)�p	q�p	= f �Y�p	%�p	�

In SIS parlance, q�p	 is typically referred to as the importance
density (see Lo et al. 1996 for discussion of why this is an
appropriate choice), whereas )�p	 are its importance weights.
Now observe that

%�p�Y	= )�p	q�p	∑
p)�p	q�p	

�

from which one can now easily devise a Monte Carlo method
for estimating functionals. Thus, for example, to estimate
E�g�p	�Y� for some function g, draw B iid values from q�p	
and use the approximation

E�g�p	�Y�≈
∑B

b=1 g�p
�b		)�p�b		∑B

b=1)�p�b		
�

This is the essential idea of the WCR procedure.

2.4 External Estimates

Of course, in practice we do not know the value for � or �2.
One method for handling these values is to extend the hierar-
chy (4) to include priors for these parameters and then estimate
their values from the posterior. This technique can be accom-
modated within the WCR method; however, it will make draw-
ing p from the WCR density more difficult, because we now
need to further integrate over the �p+ 1	-dimensional space
for ����2	 when devising q�p	; see Section 4 for details.
Moreover, it adds another layer of hyperparameters that must
be supplied by the user. On the other hand, reliable and easily
computed estimates for � are available that are

√
n consistent

under minimal assumptions for the random-effects distribu-
tions. For example, with single measurements we can use ordi-
nary least squares (OLS) to estimate � (see Sec. 5 for more
details), whereas in the longitudinal data setting (see Sec. 6),
�, as well as �2, can be consistently estimated using REML.
(Unlike in single measurement problems such as the two-slope
example, REML is typically consistent with repeated measure-
ments; see Jiang 1996 for details.)
Thus, instead, we follow a general approach discussed by

Ishwaran et al. (2001) by incorporating parametric estimates
within the WCR algorithm. For single-measurement data, we
rely on external estimates for �, and in the longitudinal setting
of Section 6 we also rely on estimates for �2 as well as other
parametric components, such as hyperparameters used in the
specification of the nonparametric prior � . Not all parame-
ters can be estimated using external techniques, however. For
example, with single measurements it is not clear in general
how to obtain reliable estimates for �2. Our approach is to
update this value sequentially within the WCR algorithm using
an idea discussed by Ishwaran et al. (2001), building up the
value for �2 as the partition structure evolves. This idea can
be applied generally to other parameters; see Section 5 for
details. Of course, the technique of using external estimates
means that our algorithms are really “hybrid” or approximate
WCR procedures, and by specifying priors based on such
estimates, we are applying a form of empirical Bayes. Even
though this is nonstandard, there is growing evidence that the
use of data-dependent priors can lead to accurate posterior
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inference and in some cases higher-order accuracy than is pos-
sible with non–data-driven priors (Wasserman 2000). We pro-
vide some empirical evidence of the stability and accuracy of
the approach by way of simulations in Sections 5 and 6.

3. POSTERIOR CHARACTERIZATIONS
FOR DIRICHLET PROCESS MIXTURE MODELS

Although our interest in moments and density estimates is
for the random effects in linear mixed models, it is easier
notationally to outline the techniques in a simplified setting
involving hidden variables without covariates. Thus consider
the setting in which data Y= �Y1� � � � � Yn	 are derived from a
standard Dirichlet process mixture model,

�Yi�Vi	
ind∼ f0�Yi�Vi	� i = 1� � � � � n

�Vi�P	 iid∼ P� (5)

P ∼ � = DP�a0H	�

where f0 is some given density. Model (5) can be thought
of as a missing-data model, where Vi are the missing
data that are assumed to be drawn from a Dirichlet pro-
cess over a Borel space � (for our applications, � = �s).
Ferguson (1973) has provided a general discussion of the
Dirichlet process, Lo (1984) has given posterior characteri-
zations of Dirichlet process mixture models, and Ferguson,
Phadia, and Tiwari (1992) have published a survey paper dis-
cussing key properties for the Dirichlet process as well as
some of its applications.
Now to go about estimating moments and so forth, we first

need to characterize the posterior for (5). Consider an arbitrary
functional -�P	 of a measure P. Then the posterior for P
from (5) can be characterized as (Lo et al. 1996)∫

-�P	��dP�Y	

= ∑
p

[∫
�n�p	

∫
-�P	��dP�u�p	

n�p	∏
j=1

%�duj �Cj	

]
%�p�Y	

= ∑
p

[∫
�n�p	

∫
-�P	��dP�u�p	

n�p	∏
j=1

%�duj �Cj	

]

× )�p	q�p	∑
p)�p	q�p	

� (6)

where u = �u1� � � � �un�p		 is the entire set of n�p	 unique
values for v1� � � � �vn, q�p	 is the WCR density for (5) with
importance weight )�p	, and %�duj �Cj	 are the laws for
the conditionally independent unique values uj . The measure
��dP�u�p	 is the law for a Dirichlet process with finite mea-
sure a0H�·	+∑n�p	

j=1 ej.uj
�·	, where ej is the cardinality of Cj .

3.1 Rao–Blackwellization: Moments
and Density Estimation

Now suppose that we want to estimate �k = E�
∫
vk

P�dv	�Y�, the kth moment of the mean of the posterior ran-
dom measure from (5). From the previous decomposition, with

rearrangement by Fubini, we have

�k =
∫∫

vk P�dv	��dP�Y	

=∑
p

[
a0

a0+n

∫
vk H�dv	+

n�p	∑
j=1

ej

a0+n
E�Uk

j �Cj�

]
%�p�Y	

=∑
p

gk�p	%�p�Y	�

Now reexpressing this in terms of the WCR density, we have

�k =
∑

p gk�p	)�p	q�p	∑
p)�p	q�p	

�

which automatically suggests a Rao–Blackwell estimator for
�k. Draw B iid values p from the WCR density, computing
gk�p	 and )�p	 for each of these values. Estimate �k with

�̂k =
∑B

b=1 gk�p
�b		)�p�b		∑B

b=1)�p�b		
�

We apply this method in Sections 5, 6, and 7 to estimate
higher-order moments for random effects, such as skewness
and kurtosis.
The same technique can also be used to derive a den-

sity estimate. This method allows for both smoothed and
unsmoothed estimates, although here we focus on unsmoothed
versions corresponding to discrete density estimates. Now sup-
pose that � = �s . To estimate the posterior mean cumulative
distribution function, let -t�l�P	 = P�Ul ≤ t� be the cumula-
tive distribution function for the lth marginal of P evaluated
at some t ∈ �. By the previous decomposition, we have

E�-t�l�P	�Y�

=∑
p

[
a0

a0+n
H�Ul≤ t�+

n�p	∑
j=1

ej

a0+n
%��Ul≤ t��Cj	

]
%�p�Y	

=∑
p

ht�l�p	%�p�Y	�

Hence, for a Rao–Blackwell estimate for E�-t�l�P	�Y�, we use

̂-t� l�P	=
∑B

b=1 ht� l�p
�b		)�p�b		∑B

b=1)�p�b		
�

Now choosing a grid of values t1 < · · ·< tN , we obtain a Rao–
Blackwell estimate for the marginal cumulative distribution
function, � ̂-t1�l

�P	� � � � � ̂-tN �l�P		. This can be converted to a
discrete density estimator or it can be smoothed using standard
smoothing techniques; see Section 7 for an illustration.

Remark 1. So far we have only considered estimating
functions of p. However, (6) also points the way to estimat-
ing more general functions, such as those that can depend on
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both p and u. We further elaborate this point in the following
section.

3.2 Standard Errors

The Rao–Blackwell technique of integrating over the pos-
terior gives stable Monte Carlo estimates for posterior mean
values of functionals of P, such as for the mean posterior
moments �k = �#k�1� � � � �#k�s	; however, the technique does
not provide estimates for the variability of such estimators.
One method for obtaining such estimates is to expand the pos-
terior so as to sample values from the posterior random mea-
sure. For an estimator of a univariate functional, the estimates
of variability derived in this way is what we call its “standard
error.” This use of terminology is, of course, not technically
exact, but it is helpful in facilitating comparison to frequen-
tist standard errors, such as those derived from REML that we
explore later in this article.
We focus specifically on estimates for the standard error of

the moment estimator #̂k� l, for l= 1� � � � � s, but the ideas can
be generalized. A little thought shows that the standard error
for #̂k� l can be estimated by the square root of the lth diago-
nal element of the posterior variance-covariance matrix of the
functional

∫
vk P�dv	, which in turn can be estimated using

Monte Carlo if we can draw P from the posterior. The poste-
rior characterization (6) shows how to do this. To draw P, we
first draw p followed by a draw for u given p. Finally, we draw
P by conditioning on u and p. The draw for P can now be
used to produce a sampled value for our functional

∫
vk P�dv	.

Thus, providing estimates for standard errors requires the fol-
lowing steps:

1. Draw p from the WCR density. Given p, draw u =
�u1� � � � �un�p		 from

%�du�p	=
n�p	∏
j=1

%�duj �Cj	∝
n�p	∏
j=1

H�duj	
∏
i∈Cj

f0�Yi�uj	�

and then draw P from ��·�u�p	. The draw for u follows
straightforwardly from parametric arguments, whereas the
draw for P is facilitated by noting that (Ishwaran and James
2001)

��·�u�p	 �=
n�p	∑
j=1

pj .uj
�·	+pn�p	+1��·	�

where �p1� � � � � pn�p	� pn�p	+1	∼ Dirichlet�e1� � � � � en�p	� a0	 is
independent of � , which is a DP�a0H	 process. Although it
is not possible to draw from � exactly, one can instead draw
from a finite-dimensional approximation �̂ , which can be cho-
sen to be arbitrarily accurate (Ishwaran and Zarepour 2002).
Thus for a draw P, use

∑n�p	
j=1 pj .uj

�·	+pn�p	+1�̂�·	. Compute
�̃k =

∫
vk P�dv	, the kth moment of P.

2. Repeat B times independently. Now estimate the stan-
dard error of #̂k� l, for l = 1� � � � � s, by√√√√∑B

b=1 �#̃
�b	
k� l	

2
)�p�b		∑B

b=1)�p�b		
−
(∑B

b=1 #̃
�b	
k� l)�p�b		∑B

b=1)�p�b		

)2

�

4. THE WEIGHTED CHINESE RESTAURANT
ALGORITHM FOR DRAWING p

In this section we describe how to draw p from the WCR
density under priors for � and �2. This serves as motivation
for Section 5, in which we discuss a hybrid version involv-
ing external estimates for � and sequential updating for �2.
In essence, the WCR method is a sequential method for gen-
erating a partition p of the set of integers �1� � � � � n�, where
the draw is designed in such a way to ensure that p has the
WCR density q�p	. Specifically, the method works by creat-
ing a sequence of increasing partitions p1�p2� � � � �pn formed
by assigning �1� � � � � n� sequentially into sets using a random
posterior partition rule. For r > 1, let pr = �C1�r � � � � �Cn�pr 	�r

�
denote a partition of �1� � � � � r�, where Cj�r denotes the current
jth set containing ej�r of the labels from �1� � � � � r�. Applied
to the linear mixed model (4), assuming priors for ����2	, the
sequential draw for p is as follows:

Step 1: Assign p1 = �1�. Let 7�1	 = ∫∫
"�Y1���Z′

1u1��
2	

H�du1	%�d��d�2	.
Step r : Given pr−1, form pr by assigning label r to a new

set with probability

a0

�a0+ r−1	7�r	
×
∫∫

"�Yr���Z′
rur � �

2	

× H�dur 	%�d��d�2�pr−1� Y1� � � � � Yr−1	� (7)

or to an existing set Cj� r−1 with probability ej� r−1/��a0 +
r−1	7�r	� multiplied by

∫∫
"�Yr���Z′

ruj� r−1��
2	%�duj� r−1�Cj� r−1����

2	

× %�d��d�2�pr−1� Y1� � � � � Yr−1	� (8)

where 7�r	 is the appropriate normalizing constant.
Draw for p: Run step 1 followed by step r for r =

2� � � � � n. This gives a draw p = �C1� � � � �Cn�p	�, which is a
random partition of �1� � � � � n� with WCR density q�p	 from
the posterior of (4), assuming priors for ����2	. Its impor-
tance weight is )�p	= 7�1	×· · ·×7�n	.

In general, the integrals (7) and (8) in the update rules may
be computed in closed form if H and ����2	 are jointly con-
jugate. Relying on conjugacy thus allows for explicit update
rules, which in turn provides a tractable method for full pos-
terior inference for both fixed and random effects. However,
in Section 5, we take a different approach by applying an
approximation technique that uses a “plug-in” estimator, �̂,
for �. This simplifies computations and frees us from using
conjugate priors and the tricky problem of choosing their
hyperparameters. Of course, when using a plug-in method,
we need to assess accuracy. This is studied in the simulations
of Section 5.2 and also in the simulations of Section 6.2, in
which we consider longitudinal data. What we find overall is
that the hybrid WCR method is quite accurate in recovering
moments for normal and nonnormal random effects and also
provides robust estimates for standard errors. Section 6 illus-
trates another advantage of using external estimates, that they
can be used to automate selection for hyperparameters for H
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to further encourage accurate inference for random effects.
Although one seeming disadvantage of a plug-in approach is
that it does not allow for full posterior inference for fixed
effects, this is a desirable trade-off in our view, because reli-
able and robust inference for � is readily available through
frequentist estimates (see Sec. 5.2 and comment 3 in Sec. 6.2).

5. FAST APPROXIMATE WEIGHTED CHINESE
RESTAURANT ALGORITHMS

In the plug-in approach, the measure %�d��d�2�pr−1,
Y1� � � � � Yr−1	 appearing in the update rule is replaced with
some form of approximation. Our approach is to replace �
throughout by the OLS estimate �̂ and to work with residuals
Ŷi = Yi−X′

i�̂ in place of Yi. Reliable estimates for �2 are not
always available, and so we instead present a novel estimation
scheme in which �2 is sequentially estimated within the algo-
rithm. That is, at step r we compute a point estimate �2

r−1,
now replacing %�d��d�2�pr−1� Y1� � � � � Yr−1	 with ��̂��2

r−1	.
Thus (7) is replaced with

a0

�a0+ r−1	7�r	
×
∫
�s

"
(
Ŷr �Z′

rur � �
2
r−1

)
H�dur 	�

whereas (8) now becomes

ej� r−1

�a0+ r−1	7�r	
×
∫
�s

"
(
Ŷr �Z′

ruj� r−1��
2
r−1

)
×%

(
duj� r−1�Cj� r−1� �̂��

2
r−1

)
�

Assuming a N����	 distribution for H , it is now straightfor-
ward to compute the update rules in closed form. Appendix
A provides the details of the approximate WCR algorithm, as
well as the details for computing �̂ and the r-step estimate
�2

r−1 for �2.

5.1 WCR Estimates for Parameters

As a method for estimating the posterior mean for a func-
tion t����	 from (4), run the following steps:

1. Use the approximate WCR algorithm (see App. A) to
generate a partition p= �C1� � � � �Cn�p	�. This is a draw
from the approximate WCR density q�p	 from the pos-
terior of (4). Compute its importance weight, )�p	.

2. Given the current draw p, compute �2
n (see App. A)

using all of the data. Draw u= �u1� � � � �un�p		 from

n�p	∏
j=1

%
(
duj �Cj� �̂��

2
n

)∝ n�p	∏
j=1

H�duj	
∏
i∈Cj

"
(
Ŷi�Z′

iuj � �
2
n

)
�

In particular, if H is a N����	 distribution, then the uj

are conditionally independent N�mj �Sj	 normal random
vectors, where Sj = ��−1+∑i∈Cj

ZiZ
′
i/�

2
n 	

−1 and mj =
Sj�
∑

i∈Cj
ŶiZi/�

2
n +�−1�	.

3. The importance draw for �2 is �2
n , whereas the impor-

tance draw for � is defined by the u = �u1� � � � �un�p		
and p just drawn. That is, �i = uj if and only if i ∈ Cj .

4. Run steps 1–3 independently B times, getting draws
�u�b	�p�b	���b	

n 	 and importance weights )�p�b		. Com-
pute ��b	 from �u�b	�p�b		. To estimate E�t����	�Y�, use∑B

b=1 t��
�b	���b	

n 	)�p�b		∑B
b=1)�p�b		

�

Remark 2. For example, to estimate moments of random
effects, one could use the Rao–Blackwell estimator discussed
in Section 3. Thus, to compute E�

∫
vkP�dv	�Y�, use

t����n	=
a0

a0+n

∫
�s
vk H�dv	+

n�p	∑
j=1

ej

a0+n
E
[
Uk

j �Cj��
2
n

]
�

where E�Uk
j �Cj��

2
n � is the kth moment of a N�mj �Sj	 distri-

bution.

5.2 Two-Slope Problem

We return to the two-slope problem introduced earlier in
Section 2 [see (2) and (3)]. To test our algorithm, we simu-
lated data from this model using a format similar to that used
in Figure 1. Here group sizes were randomly generated with
m, the size of group 1, selected from a binomial�n�1/2	 distri-
bution where n= 1�000. The covariates Xi were drawn from
a uniform distribution on �−3�3�. Random intercepts were
drawn from a uniform two-point mixture distribution with val-
ues �−5�2/3�2�5�2/3�, whereas random slopes were drawn
from an exponential distribution with a mean of 2. The value
for �1 was then set at 2 to coincide with this mean. We set
�2 = 1, which produces a separation in the modes of the dis-
tribution for �0�i + 
i (a two-point normal mixture).

For the fixed-effects estimator, we used the OLS with
random effects centered by their means. As discussed in
Appendix A, this gives us a consistent estimator �̂ for �, as
well as a consistent estimator �̂0 for the random-effects means
�0 = E��i	. Following our general strategy, the WCR algo-
rithm was applied to the residuals Ŷi computed from �̂. The
simulations were repeated independently a total of 100 times.
In each simulation, the WCR algorithm was applied with
B = 2�500 iterations. In all examples, we used a DP�a0H	
prior where a0 = 1 and H is a bivariate N�0�AI	 distribution
with A= 10. The initial value for �2

0 was drawn from a uni-
form distribution on �0�3� (see App. A).
Table 1 records the results of the simulations. Values

recorded for the mean, variance, and skewness for random

Table 1. Parameter Estimates From the Two-Slope Problem

WCR OLS REML
Parameter True mean±std dev mean±std dev mean±std dev

�i�0 � −�42 −�40± �07 −�41± �10 −�40± �07
var 1�56 1�75± �22 2�06± �39
�3 0 �01± �25

�i�1 � 2 1�91± �13 2�03± �13 2�02± �12
var 4 3�41± �55 4�08± �69
�3 2 1�74± �33

�i �2 1 1�02± �19 �47± �34

NOTE: Parameters ��var, and �3 are mean, variance, and skewness for random effects.
Skewness is defined to equal 0 for normal distributions.
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effects were obtained using Rao–Blackwell estimates for pos-
terior means of moments. Various estimates based on OLS
and REML were also computed. The entries for the mean and
standard deviation for a specific estimator are determined by
taking the mean and standard deviation of estimated values
over the 100 independent Monte Carlo experiments.
Table 1 shows that WCR estimates for the means are rea-

sonably close to values from OLS and REML, although the
latter two are somewhat more accurate. This suggests that we
can improve estimation for means by substituting the OLS
estimates �̂0 (which are simpler to compute than the REML
estimates) for � in the N����	 distribution for H . We apply
an extension of this technique when we consider longitudinal
data in the following section. As expected, variance compo-
nents for intercepts and measurement errors under REML are
not estimated consistently. The variance for the slope is esti-
mated well. For the WCR, we find that variance and skewness
estimates are reasonably accurate. It identifies the symmetry
in the two-point mixture distribution for intercepts and the
positive skewness in the exponential slope distribution. The
variance �2 for measurement error is well estimated.

6. LINEAR MIXED MODELS
FOR LONGITUDINAL DATA

The WCR algorithm and our methods for the single mea-
surement case extend naturally to linear mixed models subject
to repeated measurements. A key extension applies to longi-
tudinal data

Yi� t = X′
i� t�+Z′

i� t�i + 
i� t� i = 1� � � � � n� t = 1� � � � �m�
(9)

where 
i� t are iid N�0��2	, Xi� t are p-dimensional time-
varying fixed-effects covariates, and Zi� t are s-dimensional
time-varying random-effects covariates. There are now m
observations for each random-effects term �i. (In what fol-
lows, m can be allowed to depend on i with straightforward
modification.)
Let �i��	 = �X′

i�1�� � � � �X
′
i�m�	

′ and �i��i	 =
�Z′

i�1�i� � � � �Z
′
i�m�i	

′. Then (9) can be written as

Yi = �i��	+�i��i	+�i� i = 1� � � � � n� (10)

where Yi = �Yi�1� � � � � Yi�m	
′ and �i = �
i�1� � � � � 
i�m	

′. Anal-
ogously to (4), the repeated-measurement model (10) is recast
as a Bayesian semiparametric hierarchical model,

�Yi��i����
2	

ind∼ N��i��	+�i��i	��
2I	� i = 1� � � � � n�

��i�P	 iid∼ P� (11)

P ∼ � = DP�a0H	�

It follows automatically that to estimate posterior quantities
from (11), we can simply apply the previous WCR algorithms
with responses Yi in place of Yi. As before, we apply a fast
approximate version, taking advantage of available external
point estimates for �. Thus, analogously, we replace Yi by
residuals Ŷi =Yi−�i��̂	 for some estimator �̂. Our strategy is

to use REML, rewriting (9) by subtracting by the mean for the
random effects �0 = E��i	, and then computing the REML
estimates for the fixed effects � and �0. Such estimates are
known to be

√
n consistent under minimal assumptions (Jiang

1998). We also computed REML estimates for the variance
components for the centered random effects �i −�0 and the
variance �2 for the measurement error. Learning from the ear-
lier simulations, we used the estimates for �0 and variances
of random effects to specify the mean and variance for the
N����	 distribution H (see Sec. 6.3 for further details). We
also used the REML estimate �̂2 for �2, although it is pos-
sible to estimate �2 within the WCR analogously to Section
5. Appendix B provides the details of the approximate WCR
algorithm.

6.1 WCR Estimates for Parameters

To estimate the posterior mean of a function t��	:

1. Use the approximate WCR algorithm (App. B) to gener-
ate a partition p = �C1� � � � �Cn�p	�. Compute its impor-
tance weight, )�p	.

2. Given the current draw p, draw uj for j = 1� � � � � n�p	
independently from a N�mj �Sj	 distribution, where Sj =
��−1 +∑

i∈Cj
MiM

′
i/�̂

2	−1, mj = Sj�
∑

i∈Cj
MiŶi/�̂

2 +
�−1�	, and Mi = �Zi�1� � � � �Zi�m�.

3. Run steps 1 and 2 independently B times, getting draws
�u�b	�p�b		 and importance weights )�p�b		. Compute
��b	 from �u�b	�p�b		. To estimate E�t��	�Y1� � � � �Yn�,
use ∑B

b=1 t��
�b		)�p�b		∑B

b=1)�p�b		
�

Remark 3. Although so far we have focused exclusively
on estimation for the random effects, an ad hoc approach can
also be used for inference for �. In the step 2 just discussed,
we could additionally add the following:

2∗. Given the draw p and u, calculate � and the residual
values Yi�� = Yi − �i��i	. Now estimate � from the linear
regression model

Yi�� = �i��	+�i� i = 1� � � � � n�

using OLS. This is our estimator for �.

6.2 Simulations for Longitudinal Data

To test our algorithm, we simulated data from the longitu-
dinal model

Yi� t = Xi�1�1+Xi�2�2+�i�1+ �t− �mi +1	/2	�i�2+ 
i� t�

i = 1� � � � � n� t = 1� � � � �mi�

where the number of repeated observations, mi, was drawn
randomly from �1� � � � �13� and n = 275. The sample
size and number of repeated observations were chosen
to roughly match the applied example of the following
section. Fixed-effects covariates Xi�1 and Xi�2 were inde-
pendently sampled from a uniform discrete distribution on
�−3�−2�−1�0�1�2�3� and a N(0,1) distribution. For random
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effects, intercept values �i�1 were drawn from a N�−1� $2	
distribution, and four different distributions for �i�2 were con-
sidered: (i) an exponential distribution with mean :, (ii) a
uniform distribution on [0, :], (iii) a normal distribution,
N�1� :2	, (iv) a mixture of two normals, .5N�−2:�:2	+
�5N�:�:2	. In all cases the value for : was selected so that
the variance for the random slope distribution was equal to
2�2, twice the variance for the errors 
i. This ensured that
the signal-to-noise ratio was equal to two. Similarly, we set
$2 = 2�2 for a signal-to-noise ratio of 2 for �i�1. For conve-
nience we chose �2 = 1.
We followed the same strategy as in Section 5, running the

WCR algorithm for B = 2�500 iterations. Means, variances,
skewness, and kurtosis values for random effects, along with
their standard errors, were computed using the methods out-
lined in Section 3. As before, we repeated the simulations
(this time 250 times), recording the means and standard devi-
ations of estimated values over the 250 experiments. In each
of the examples we used a DP�a0H	 prior, where a0 = 1 and
H was a bivariate N��̂0� �̂	 distribution with �̂0 taken to be
the REML estimate for �0 and �̂ a diagonal matrix with diag-
onal values equal to three times the REML estimate of stan-
dard error for the corresponding random effect. For brevity,
we report the results from only the simulations involving the
exponential and two-point mixture slope distributions, because
these are more difficult. Tables 2 and 3 record these values.
We make the following general observations:

1. Point estimates for means and variances from WCR and
REML are nearly identical in most cases. Standard errors

Table 2. Parameter Estimates Under an Exponential Random Slope
Distribution for Longitudinal Data With n= 275 and B= 2�500

Iterations; Simulations Repeated 250 Times

WCR REML
Parameter True mean±std dev mean±std dev

�i�1 � −1 −1�01± �11 −1�01± �11
var 2 1�82± �23 2�01± �23
�3 0 −�01± �22
�4 0 �29± �51
se��� .10 .11
se(var) .22 .27
se��3� .22
se��4� .53

�i�2 � 1�41 1�41± �08 1�41± �08
var 2 2�00± �32 2�01± �32
�3 2 1�91± �44
�4 6 5�29±4�03
se��� .08 .09
se(var) .30 .19
se��3� .25
se��4� 1.57

�i �2 1 �99± �04
se��2� .04

Fixed 1 1 1�00± �06 1�00± �06
effects 2 3 3�00± �11 3�00± �11

se�1� .05
se�2� .11

NOTE: Mean, variance, skewness and kurtosis are denoted by ��var� �3, and �4. Skew-
ness and kurtosis are defined to equal 0 for normal distributions. Variance estimate for �i are
obtained from REML. Standard errors are denoted by “se.”

Table 3. Parameter Estimates (similar to Table 2) Under a Two-Point
Normal Mixture Slope Distribution

WCR REML
Parameter True mean±std dev mean±std dev

�i�1 � −1 −�99± �12 −�99± �12
var 2 1�77± �23 1�98± �23
�3 0 −�01± �21
�4 0 �28± �46
se��� .10 .11
se(var) .21 .27
se��3� .22
se��4� .49

�i�2 � −�39 −�39± �09 −�38± �09
var 2 1�98± �13 1�99± �13
�3 0 −�01± �10
�4 −�95 −�88± �13
se��� .09 .09
se(var) .12 .19
se��3� .10
se��4� .14

�i �2 1 �99± �03
se��2) .04

Fixed 1 1 �99± �05 �99± �05
effects 2 3 3�00± �09 3�00± �09

se�1� .05
se�2� .11

for the mean were also similar, but standard errors for
the variance were more accurate from WCR for the non-
normal slope distributions (including the uniform slope
simulation, not shown).

2. Skewness and kurtosis were well estimated in all exam-
ples, including the two not shown. Corresponding stan-
dard errors were also good (agreeing quite closely with
the standard deviations from the 250 replications), with
only standard errors for kurtosis from the exponential
slope not well estimated.

3. REML estimates for � are quite accurate and agree
closely with the WCR ad hoc estimate. Standard errors
from REML for fixed effects are also accurate—a
decided advantage over the ad hoc method, which does
not provide standard errors. Thus it seems questionable
whether there can be any significant gain over using
REML for fixed effects. From a practical perspective, a
fully Bayesian inference for the fixed effects is not well
motivated.

7. CHRONIC RENAL DISEASE

Here we illustrate the WCR method applied to data col-
lected from the Modification of Diet in Renal Disease
(MDRD) study, a longitudinal study investigating the effects
of dietary protein restriction and strict blood pressure control
on the rate of renal disease progression (Klahr et al. 1994).
A key measurement in the study for evaluating renal disease
progression are sequential measurements of glomerular filtra-
tion rate (GFR). We consider data on GFR measurements col-
lected over 3.7 years starting from measurements collected
4 months after follow-up. The data that we considered con-
sisted of n= 571 patients, with the treatment group (i.e., those
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Table 4. Parameter Estimates From the Approximate WCR Algorithm Applied to the MDRD Data

� var �3 �4 se��� se(var) se��3� se��4�

Normal protein Intercept 42�20 156�75 �53 −�30 �79 13�60 �13 �32
Slope −�31 �15 −1�51 4�71 �03 �03 �38 1�85
�i 0 17�22 �68

Low protein Intercept 40�76 143�55 �55 �74 �67 15�87 �19 �64
Slope −�22 �07 −1�40 3�94 �02 �02 �05 2�42
�i 0 19�06 �77

NOTE: Estimates for �i are obtained from REML. GFR measurements are divided by 10 here.

subject to a protein-restricted diet) comprising 284 patients
(an average of 6.73 observations per subject) and the control
group (i.e., those subject to a normal protein diet) comprising
287 patients (an average of 6.84 observations per subject).
Analysis of the MDRD data conducted after the study com-

pletion indicated that the distribution of the GFR slopes devi-
ated from normality due to negative skewness and positive
kurtosis. Such a conclusion was shared by Greene (2001), who
analyzed the same data using a proportional-effects model. A
comprehensive discussion of the data and detailed analyses
can be found there. Here we consider a somewhat simpler sce-
nario, fitting separate random slope-intercept models for each
of the experimental groups. The results of the analysis are
presented in Table 4 and Figures 4 and 5. Estimates for each
experimental group are based on 10,000 sampled values from
the WCR algorithm using the same strategy for fitting used in
the previous section.
Table 4 confirms the negative skewness and positive kurto-

sis for the slope distributions. We find that the slope distribu-
tion for the treatment group is less skewed and has smaller
kurtosis, signifying a complex effect of treatment. This same
effect can also be seen in Figure 4 by comparing the left tails
of the posterior slope densities (with density estimates based
on the method of Sec. 3). Clearly the protein-restricted group
has a thinner left tail, confirming that a restricted diet slows
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Figure 4. Posterior Mean Densities for Slopes of Normal (——-) and
Low (- - - - -) Protein Groups (expressed in original measurements). Den-
sities were evaluated over 250 grid points.

disease progression overall, but the extreme left-tail behavior
also exhibits evidence of a substantial reduction in disease for
the “progressors,” that is, patients with large negative GFR
slope and hence with severe disease progression. (See also
the QQ plot in Figure 5, which clearly shows a difference
in left-tail behavior.) It is interesting to note that an analysis
based on only the first two moments, such as in a standard
REML approach, would miss this important complex inter-
action occurring for progressors. Based on only the first two
moments from Table 4, we could only conclude from the
smaller mean value for the slope that there is an overall treat-
ment effect due to diet.

Remark 4. To assess Monte Carlo efficiency of the WCR
method, one can use the importance weights )�p	 to estimate
the effective sample size, a measure of efficiency discussed by
Kong et al. (1994). A simple calculation reveals that the effec-
tive sample sizes here are B∗ = 8�938 for the control group
and B∗ = 9�088 for the treatment group (89% and 91% of the
total Monte Carlo sample size B = 10�000). This high effi-
ciency, reflected by the large effective sample sizes, means
that the importance weights must be fairly evenly distributed.
Some evidence of this can be seen in Figure 6, which plots
the density of the log of the renormalized weights for both
groups combined.
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8. COMPUTATIONAL FEATURES

We end by summarizing several key computational features
of our methods.

1. A key aspect forming the basis of the WCR’s numeri-
cal stability, is the use of the partition structure under-
lying our sampling schemes. This naturally leads to
lower Monte Carlo error due to a form of Rao–
Blackwellization (see Sec. 3), thus improving on usual
methods that work with hidden variables.

2. Sequential generation of a candidate partition in the
WCR algorithm is simple to program and also is com-
putationally efficient, because each step relies only on
the current partition structure, which can be summa-
rized in the form of simple linear and quadratic sufficient
statistics (see Remarks A.1 in Appendix A and B.1 in
Appendix B). This algorithm should be easy to imple-
ment in standard software packages, our model fitting
was done in S-PLUS.

3. The use of external plug-in estimates reduces computa-
tions and minimizes the need for specifying hyperparam-
eters, thus making programs fast and more easily auto-
mated. At the same time, their use leads to accurate and
flexible inference for random effects.

4. Another nice feature is the iid nature of our algorithms.
This avoids the obvious problem of convergence associ-
ated with MCMC methods (see Kleinman and Ibrahim
1998 for problems in linear mixed models) and also
some side effects, such as the need to reparameterize and
work with hierarchical centerings to improve Markov
chain mixing (Gilks and Roberts 1996), practices that
hinder overall automation.

5. The sequential and iid feature of our algorithms means
that they are “interruptible,” making it possible to easily
update models based on new data. If a new data value
Yn+1 arrives at some point in the future, then we simply
run an n+ 1 step for each of the current partitions—
where partition information is encoded using only simple
sufficient statistics—thus allowing models to be updated
without the need to rerun past data. Note that the number

of sufficient statistics for each partition is a linear func-
tion of its cardinality, which is typically a small fraction
of the sample size. Thus the notion of interruptibility can
be applied when n is large.

APPENDIX A: APPROXIMATE WEIGHTED CHINESE
RESTAURANT ALGORITHM FOR
SINGLE-MEASUREMENT DATA

Plug-In Estimates

Before presenting the approximate WCR algorithm for (4), we
first discuss how to compute our OLS plug-in estimator �̂ for �. We
also give the details for computing our estimator �2

r−1 for �2 used
in step r of the algorithm. To compute �̂, rewrite the linear mixed
model (1) as

Yi = X′
i�+Z′

i�0+�i� (A.1)

where �0 = E��i	 is the (unknown) mean for �i and �i = Z′
i��i −

�0	 + 
i are independent (but not identically distributed) errors
with mean 0. Now compute the OLS estimate ��̂� �̂0	 for ����0	
from (A.1). Both �̂ and �̂0 can be shown to be

√
n consistent under

mild assumptions for covariates by appealing to a triangular central
limit theorem.

Our estimator for �2
r−1 is also obtained using OLS. Recall that the

current partition pr−1 at step r identifies n�pr−1	 distinct random-
effects values over the first r−1 observations, Ŷ1� � � � � Ŷr−1. We esti-
mate these random effects using least squares and use the resulting
mean squared error for �2

r−1. Such an estimator can also be inter-
preted as a maximum likelihood estimator under diffuse priors. For
convenience, consider the case where r = n+ 1 (estimate based on
all of the data). Then

�2
n =

[ ∑
�j!ej>s�

�ej − s	

]−1 ∑
�j!ej>s�

[( ∑
�i!j∈Cj �

Ŷi

)2

− c′jB
−1
j cj

]
�

where cj =
∑

i∈Cj
ŶiZ

′
i and Bj =

∑
i∈Cj

ZiZ
′
i. Note the correction to

the degrees of freedom, because �2
n is based only on those clusters

with at least s+ 1 members. This handles numerical problems that
can arise for small clusters Cj .

Approximate WCR Algorithm

Assume a N����	 distribution for H . To get an approximate draw
for p from the WCR density for (4), run the following steps:

Step 1: Compute �̂ and let �2
0 be an initial estimate for �2. Assign

p1 = �1� and let

7�1	=
∫
�s

"�Ŷ1�Z′
1u1��

2
0 	H�du1	

= �s−1
0 ���1�−1/2

√
2%

× exp
[
− 1

2�2
0

Ŷ 2
1 +

1

2�2
0

�′
1�

−1
1 �1−

1
2
�′�−1�

]
�

where �1 = �2
0�

−1+Z1Z
′
1 and �1 = �2

0�
−1�+ Ŷ1Z1.

Step r : Compute �2
r−1 from Ŷ1� � � � � Ŷr−1 and pr−1. Create pr by

assigning label r to a new set with probability

a0

�a0+ r−1	7�r	
× �s−1

r−1 ���r �−1/2

√
2%

× exp
[
− 1

2�2
r−1

Ŷ 2
r +

1

2�2
r−1

�′
r�

−1
r �r −

1
2
�′�−1�

]
�
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where �r = �2
r−1�

−1+ZrZ
′
r and �r = �2

r−1�
−1�+ ŶrZr . Otherwise,

assign label r to an existing set Cj� r−1 with probability

ej�r−1

�a0+r−1	7�r	
× ��r�j �1/2

�r−1

√
2%��∗

r�j �1/2

×exp
[
− 1

2�2
r−1

(
Ŷ 2
r −��∗

r�j 	
′��∗

r�j 	
−1�∗

r�j+�′
r�j�

−1
r�j�r�j

)]
�

where

�r� j = �2
r−1�

−1+ ∑
i∈Cj� r−1

ZiZ
′
i

and
�r� j = �2

r−1�
−1�+ ∑

i∈Cj� r−1

ŶiZi�

whereas �∗
r� j =�r� j +ZrZ

′
r and �∗

r� j = �r� j + ŶrZr . As before, 7�r	
is the appropriate normalizing constant.

Approximate draw for p: Run step 1 followed by step r for r =
2� � � � � n. This gives a draw p= �C1� � � � �Cn�p	�, which is a random
partition of �1� � � � � n� with approximate WCR density q�p	 from the
posterior of (4). Its importance weight is )�p	= 7�1	×· · ·×7�n	.

Remark A.1. A key feature of the WCR algorithm is that it
depends only on simple linear and quadratic expressions of the data
such as

∑
i∈Cj� r−1

ŶiZi and
∑

i∈Cj� r−1
ZiZ

′
i. By building these values

up as the algorithm proceeds, we can considerably reduce overall
computations. Consider, for example, what happens at the end of
the r th iteration of the algorithm: We assign label r to either a new
set or a previous set Cj� r−1. In the second case, the cluster associ-
ated with Cj� r−1 (which now becomes Cj� r ) is expanded to include
the new value Ŷr and its covariate Zr . Thus, to move to step r + 1,
the only bookkeeping required is in updating the sufficient statis-
tics

∑
i∈Cj� r−1

ŶiZi and
∑

i∈Cj� r−1
ZiZ

′
i for this set. Similarly, if r is

assigned to a new set, then the only bookkeeping required is to intro-
duce a new set of sufficient statistics for the newly created cluster
corresponding to Ŷr and its covariate Zr .

Remark A.2. We recommend the use of a “shuffle” step. This
step is introduced at the start of the WCR algorithm and involves
permuting the data and covariates randomly. Thus, draw a random
permutation �i1� � � � � in	 of �1� � � � � n� and apply the algorithm to
the data Ŷi1

� � � � � Ŷin
and covariates Zi1

� � � � �Zin
in the order of the

permutation. This reduces the data order dependence of the WCR
algorithm.

APPENDIX B: APPROXIMATE WEIGHTED
CHINESE RESTAURANT ALGORITHM

FOR LONGITUDINAL DATA

Let "�·��i�ui	��
2	 denote a multivariate normal density with vari-

ance �2I and mean �i�ui	 = �Z′
i�1ui� � � � �Z

′
i�mui	

′. For an approxi-
mate draw for p from the WCR density for (11), run the following
steps:

Step 1: Compute �̂ and �̂2. Assign p1 = �1� and let

7�1	=
∫
�s

"
(
Ŷ1��1�u1	� �̂

2
)
H�du1	

= �̂ s−m���1�−1/2

�2%	m/2

× exp
[
− 1
2�̂2

Ŷ′
1Ŷ1+

1
2�̂2

�′
1�

−1
1 �1−

1
2
�′�−1�

]
�

where �1 = �̂2�−1 +M1M
′
1, �1 = �̂2�−1�+M1Ŷ1, and M1 =

�Z1�1� � � � �Z1�m� is the s×m matrix of random-effects covariates for
i = 1.

Step r : Create pr by assigning label r to a new set with proba-
bility

a0

�a0+ r−1	7�r	
×
∫
�s

"
(
Ŷr ��r �ur 	� �̂

2
)
H�dur 	

= a0

�a0+ r−1	7�r	
× �̂ s−m���r �−1/2

�2%	m/2

× exp
[
− 1
2�̂2

Ŷ′
r Ŷr +

1
2�̂2

�′
r�

−1
r �r −

1
2
�′�−1�

]
�

where �r = �̂2�−1 +MrM
′
r , �r = �̂2�−1�+Mr Ŷr , and Mr =

�Zr�1� � � � �Zr�m�. Alternatively, assign label r to a previous set Cj� r−1

with probability

ej� r−1

�a0+ r−1	7�r	

×
∫
�s

"
(
Ŷr ��r �uj� r−1	� �̂

2
)
%
(
duj� r−1�Cj� r−1� �̂

2
)

= ej� r−1

�a0+ r−1	7�r	
× ��r� j �1/2

�̂m�2%	m/2��∗
r� j �1/2

× exp
[
− 1
2�̂2

(
Ŷ′

r Ŷr − ��∗
r� j 	

′��∗
r� j 	

−1�∗
r� j

+�′
r� j�

−1
r� j�r� j

)]
�

where

�r� j = �̂2�−1+ ∑
i∈Cj� r−1

MiM
′
i�

�r� j = �̂2�−1�+ ∑
i∈Cj� r−1

MiŶi�

�∗
r� j =�r� j +MrM

′
r , and �∗

r� j =�r� j +Mr Ŷr . As before, 7�r	 is the
appropriate normalizing constant.

Approximate draw for p: Run step 1 followed by step r , for r =
2� � � � � n. This gives an approximate draw p= �C1� � � � �Cn�p	� from
the WCR density q�p	 for the posterior of (11). Its importance weight
is )�p	= 7�1	×· · ·×7�n	.

Remark B.1. Note again that the update rule is based on sim-
ple linear and quadratic expressions of the data. As before, we can
reduce overall computations considerably by keeping track of these
values. Here it suffices to update the values

∑
i∈Cj� r−1

MiM
′
i and∑

i∈Cj� r−1
MiŶi at the end of each iteration r for only the set Cj� r−1

corresponding to label r or, if a new set is created, doing the neces-
sary initial bookkeeping for it.

Remark B.2. A shuffle step similar to that in Remark A.2 can be
used to reduce data dependence.

[Received November 2001. Revised March 2002.]
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