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Geometry and properties of generalized ridge regression in
high dimensions

Hemant Ishwaran and J. Sunil Rao

Abstract. Hoerl and Kennard proposed generalized ridge regression (GRR)
over forty years ago as a means to overcome deficiencies in least squares in mul-
ticollinear problems. Because high-dimensional regression naturally involves

correlated predictors, in part due to the nature of the data and in part due
to artifact of the dimensionality, it is reasonable to consider GRR for such
problems. We study GRR when the number of predictors p exceeds the sam-
ple size n. A novel geometric interpretation for GRR is described in terms of
a uniquely defined least squares estimator and lends insight into its proper-
ties. It is shown that GRR possesses a shrinkage property useful in correlated
settings and that in sparse high-dimensional settings it can have excellent per-
formance but no such guarantees hold in non-sparse settings. We describe a
computationally efficient representation for GRR requiring only a linear num-
ber of operations in p, thus making GRR computationally applicable to high
dimensions.

1. Introduction

Let Y = (Y1, . . . , Yn)
T ∈ Rn be a response vector and X = (X(1), . . . ,X(p)) an

n× p design matrix, where X(k) = (xk,1, . . . , xk,n)
T denotes the kth column of X.

It is assumed that

(1.1) Y = Xβ + ε,

where ε = (ε1, . . . , εn)
T is such that E(εi) = 0 and E(ε2i ) = σ2

0 > 0. The true value
for the coefficient vector β = (β1, . . . , βp)

T ∈ Rp is unknown and is denoted by
β0 = (β0,1, . . . , β0,p)

T . In this paper, we focus on linear regression models (1.1) in
high-dimensional scenarios where p > n.

The so-called “big-p small-n problem” poses unique obstacles for estimation of
β0. One significant concern is multicollinearity. With very large p, the sample cor-
relation between variables can become sizeable as a pure artifact of the dimension-
ality. Groups of variables become highly correlated with other groups of variables
sporadically. These effects can even occur when the population design matrix is
orthogonal, i.e., E(XT

(k)X(j)) = 0 if k �= j (see [1,3] for a discussion of these points).

Multicollinearity is further compounded as variables collected in high-dimensional
applications are often naturally correlated because of the underlying technology
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or science: for example, gene expression values obtained from DNA microarrays,
or genotype data collected using SNP arrays in Genome Wide Association Studies
(GWAS).

Over 40 years ago, Hoerl and Kennard [6, 7] proposed generalized ridge re-
gression (GRR), a method specifically designed for correlated and ill-conditioned
settings. Although it is unlikely they envisioned using GRR in problems where p
could be orders of magnitudes larger than n, it is natural to wonder if it can be
applied effectively in such contexts.

We recall the definition of GRR. Let Λ = diag{λk}pk=1 be a p × p diagonal
matrix with diagonal entries λk > 0. The GRR estimator with ridge matrix Λ is

β̂G = (Q+Λ)−1XTY,

where Q = XTX. An important property of GRR is that β̂G is well defined

even when Q is non-invertible. An alternative representation for β̂G is in terms of
�2-penalization:

(1.2) β̂G = argmin
β∈Rp

{
‖Y −Xβ‖2 +

p∑
k=1

λkβ
2
k

}
,

where ‖·‖ is the �2-norm. Setting Λ = λIp, where Ip is the p × p identity matrix,

yields the ridge estimator β̂R = (Q+λIp)
−1XTY as a special case. The parameter

λ > 0 is referred to as the ridge parameter. Setting λ = 0 and assuming that Q is

invertible yields the OLS (ordinary least squares) estimator β̂OLS = Q−1XTY.
Much of the recent effort to address high-dimensional problems has focused

on �1-penalization (lasso) methods [15]. Some of these are similar to GRR in
that they allow a unique regularization parameter for each coefficient, although
the penalization is in an �1-sense. Examples include the adaptive lasso for p < n
problems [16] and for the diverging parameters problem, the recent extension by [8].
As well, [18] recently introduced the adaptive elastic net, which imposes both an
adaptive lasso and a ridge penalty. Similar to the original elastic net [17], the
additional ridge penalty encourages a grouping effect that can help select groups of
correlated variables and stabilizes model predictions.

Unlike lasso-based estimators, GRR imposes parameterwise adaptation using
�2-regularization, which may have benefits in high-dimensional correlated settings.
In the classic setting when n > p, it is well known that the ridge estimator uniformly
shrinks the OLS, thus reducing its squared-length relative to the OLS [6]. This
variance reduction enables the ridge estimator to outperform the OLS in correlated
settings. However, the ridge estimator shrinks all coefficients uniformly to zero,
which is effective only when all coefficients are small. On the other hand, GRR
generalizes ridge estimation by using a unique parameter λk for each coefficient
βk, which allows GRR to achieve non-uniform shrinkage, thus making it feasible
to selectively shrink coefficients to zero, similar to the lasso. In the classic settiing
n > p, it has been shown that GRR estimators can achieve oracle properties [10].

We take a geometric approach to study the properties of GRR (Section 2).
Because OLS is not uniquely defined when p > n, these arguments make use of the
minimum least squares (MLS) estimator, which is the uniquely defined least squares
estimator with minimum squared-length (see Definition 2.3). Using a modified MLS
estimator, a novel geometric interpretation for GRR is described that lends insight
into its properties. Section 3 lists implications of these findings for GRR in high
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dimensions. Analogous to ridge estimation in n > p settings, it is shown that
the GRR estimator is shrunk relative to MLS in correlated settings and that the
GRR predictor has the tendency to shrink towards zero in unfavorable directions
in the X-column space. This can lead to both improved estimation and prediction
over MLS. However, unlike the classic setting, GRR is constrained to lie in a low-
dimensional subspace containing the modified MLS estimator. This implies that
for accurate estimation the true parameter vector should be sparse. In non-sparse
situations, accurate estimation cannot be guaranteed. Section 4 summarizes our
findings and presents an empirical example.

2. Geometry and properties of the GRR estimator when p ≥ n

Here we present a novel geometric interpretation of the GRR estimator when
p ≥ n and list some of its key properties. The following lemma plays a key role.

Lemma 2.1. Let p ≥ n and let X = UDVT be the singular value decomposi-
tion (SVD) of X where U(n× n) and V(p× n) are column orthonormal matrices
(UUT = UTU = VTV = In) and D(n × n) is a diagonal matrix with entries
d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 (the singular values of X). Let A = VT (Q + λIp). Then
for any λ > 0

(2.1) A+ = VS−1
λ ,

where Sλ = diag{d2i + λ}ni=1 is an n × n diagonal matrix and A+ denotes the
Moore–Penrose [13] generalized inverse of A. Furthermore, AA+ = In.

Lemma 2.1 will enable us to re-express β̂G in a manner more conducive to

studying its properties. First we observe that β̂G can be recast as a rescaled ridge

estimator. Let X∗ = XΛ−1/2 and Q∗ = XT
∗ X∗ (hereafter “∗” will be used to

indicate a term mapped under the transformation XΛ−1/2). Then

(2.2) β̂G = Λ−1/2(Q∗ + Ip)
−1XT

∗ Y = Λ−1/2β̂
∗
R,

where β̂
∗
R = (Q∗ + Ip)

−1XT
∗ Y is the ridge estimator for the design matrix X∗ with

ridge parameter λ = 1. Let X∗ = U∗D∗V
T
∗ be the SVD for X∗. Let d1,∗ ≥ · · · ≥

dn,∗ ≥ 0 denote the diagonal elements of D∗. Lemma 2.1 implies the following
result.

Theorem 2.2. If p ≥ n and λk > 0 for k = 1, . . . , p, then

(2.3) β̂G = Λ−1/2V∗S
−1
∗1 R

T
∗ Y,

where S∗1 = diag{d2i,∗ + 1}ni=1 and R∗ = U∗D∗. Moreover, (2.3) can be calculated

in O(pn2) operations.

2.1. Geometry. We now describe a novel geometric interpretation for β̂G.
The MLS estimator will play a key role in this description and is formally defined
below. For this, and all other results, we hereafter assume that p ≥ n, λk > 0 for
k = 1, . . . , p, and λ > 0, unless otherwise stated.

Definition 2.3. Call any vector β ∈ Rp a least squares solution if ‖Y−Xβ‖2 ≤
‖Y−Xz‖2 for all z ∈ Rp. A vector β is called a MLS solution if β is a least squares
solution and ‖β‖2 < ‖z‖2 for all other least squares solutions z.
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A celebrated result, due to [14], is that the MLS estimator exists and is the
unique estimator

β̂MLS = X+Y = lim
λ→0

β̂R = VS+
0 R

TY,

where R = UD and S+
0 = diag{s+0i}ni=1 is the Moore–Penrose generalized inverse

of S0 defined by

s+0i =

{
1/d2i if di > 0

0 otherwise.

Our geometric result uses a slightly modified MLS estimator obtained using the
transformed design matrix X∗. The modified MLS estimator is defined as

(2.4) β̂
∗
MLS = Λ−1/2X+

∗ Y = Λ−1/2V∗S
+
∗0R

T
∗ Y.

Note that in the special case Λ = λIp we obtain β̂
∗
MLS = β̂MLS. Consider the

following geometric interpretation for GRR.

Theorem 2.4. β̂G is the solution to the following optimization problem:

(2.5) minimize
β∈Rp

Q(β, β̂
∗
MLS) subject to βTΛβ ≤ L,

for some L > 0, where

Q(β, β̂
∗
MLS) =

(
β − β̂

∗
MLS

)T (
Λ1/2Q∗Λ

1/2
)(
β − β̂

∗
MLS

)
defines an ellipsoid with contours Σ(c) = {β : Q(β, β̂

∗
MLS) = c2} centered at β̂

∗
MLS.

Theorem 2.4 shows that the GRR estimator is the solution to a constrained
optimization problem involving the contours of an ellipsoid centered at the modified
MLS estimator. This generalizes the classic setting n > p from an optimization
problem involving OLS to one involving MLS. The constraint region is generalized
as well. For GRR, the constraint region is an ellipsoid that depends uponΛ, whereas
in the classic setting the constraint region is spherical. Another key difference is

that the dimension of the subspace that β̂G lies in depends upon n, and not p (see
Theorem 2.5 below). Figure 1 provides an illustration of Theorem 2.4.

2.2. Properties. The following theorem summarizes key properties of GRR.

It also gives an explicit representation for the linear predictor μ̂G = Xβ̂G. In the
following, let vi,∗ be the ith column vector of V∗ and ui,∗ be the ith column of U∗.

Theorem 2.5. β̂G = Λ−1/2 ∑d

i=1 di,∗ηi,∗vi,∗, where ηi,∗ = (d2i,∗ + 1)−1uT
i,∗Y.

That is, β̂G lies in the d-dimensional subspace Λ−1/2(V∗) = {Λ−1/2v : v ∈
V∗}, where d = rank(X) ≤ n and V∗ is the span of {v1,∗, . . . ,vd,∗}; i.e., V∗ is
the span of the eigenvectors of Q∗. The linear predictor is expressible as μ̂G =∑d

i=1 d
2
i,∗ηi,∗ui,∗.

Remark 2.6. Using (2.4) and similar arguments as in the proof of Theorem 2.5

the modified MLS is expressible as β̂
∗
MLS = Λ−1/2 ∑d

i=1 d
−1
i,∗ (u

T
i,∗Y)vi,∗ and its lin-

ear predictor can be written as μ̂∗
MLS =

∑d

i=1(u
T
i,∗Y)ui,∗. These facts will become

handy later in Section 3.

3. Implications for GRR when p ≥ n

We now list several interesting facts that follow from our previous results.
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Figure 1. Illustration of GRR geometry. Top figure corresponds
to a simulation where p = 100, n = 25, and β0,k = 0 for k ≥ 3 and

λk = ∞ for k ≥ 4. Only the first 3 coordinates of β̂G are nonzero,
and these equal the point where the ellipsoid first touches the ellip-
tical constraint region centered at zero. Bottom figure is λk = ∞
for k ≥ 3. Now only the first two coordinates of β̂G are nonzero
(the point touching the elliptical constraint region constrained to
the x, y-plane and centered at zero).

3.1. Efficient calculation. In itself, Theorem 2.2 has immediate practical
value as it permits efficient calculation of GRR in a linear number of operations in
p; thus making GRR computationally feasible in p 	 n settings. Note that as a
special case of (2.3) the following representation for the ridge estimator holds

(3.1) β̂R = VS−1
λ RTY.

Similar to (2.3), this shows that the ridge estimator can be computed in a linear
number of operations. See [4] for related work.
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3.2. Shrinkage. The expression for μ̂G in Theorem 2.5 shows that the GRR
predictor applies the greatest amount of shrinkage to those columns of U∗ with
smallest singular values. Thus, GRR is attempting to shrink the predictor in un-
favorable directions relative to the column space of X∗. This is a generalization of
a well-known property of ridge regression (see, for example, [5, Chapter 3]). We
can demonstrate the effect of this shrinkage by comparing the GRR predictor to
the modified MLS predictor (we could compare GRR to MLS, but this is not as
straightforward, and this extra effort may be unnecessary as the modified MLS es-
timator has been reported to have similar empirical behavior to the MLS; see [12]).
By Remark 2.6 and Theorem 2.5, we have

μ̂∗
MLS =

d∑
i=1

(uT
i,∗Y)ui,∗(3.2)

μ̂G =
d∑

i=1

δi,∗
δi,∗ + 1

(uT
i,∗Y)ui,∗,(3.3)

where δi,∗ = d2i,∗. Notice how μ̂G is shrunk in ui,∗-directions corresponding to
small singular values. Expressions (3.2) and (3.3) also show that the length of
μ̂∗

MLS is always larger than μ̂G. Indeed, taking expectations, μ̂∗
MLS is always larger

on average, because

E‖μ̂∗
MLS‖2 = E‖μ̂G‖2 +

d∑
i=1

2δi,∗ + 1

(δi,∗ + 1)2
(μ2

i,∗ + σ2
0),

where μi,∗ = uT
i,∗μ.

Theorem 2.5 also generalizes the well known property of GRR as a shrinkage
estimator. By Remark 2.6, the modified MLS estimator is expressible as

(3.4) β̂
∗
MLS = Λ−1/2

d∑
i=1

(di,∗ + d−1
i,∗ )ηi,∗vi,∗.

Comparing this to β̂G, we see that each term in the summation of β̂
∗
MLS is larger

than that of β̂G by an amount d−1
i,∗ . Multiplying Λ1/2 throughout both expressions,

‖Λ1/2β̂
∗
MLS‖2 = ‖Λ1/2β̂G‖2 +

d∑
i=1

(2 + δ−1
i,∗ )η

2
i,∗.

Thus, under a Λ1/2 rescaling, the squared-length of β̂G is always smaller than

β̂
∗
MLS. In particular, β̂

∗
MLS becomes elongated in the presence of small singular

values. This is a generalization of the classic n > p setting. There, it is well
known that the ridge regression uniformly shrinks the OLS toward zero, so that its
squared-length is always smaller than that of the OLS [6].

3.3. Sparsity. Theorem 2.5 shows that β̂G lies within the subspaceΛ−1/2(V∗)

containing the modified MLS estimator: this forces β̂G to lie in a low d-dimensional
subspace which may degrade its performance in high dimensional non-sparse set-
tings. To see why, consider the distance between the scaled GRR estimator,

Λ1/2β̂G, and the scaled regression parameter, β∗
0 = Λ1/2β0. We decompose β∗

0 into

its projection onto V∗ and the orthogonal subspace V ⊥
∗ . Because Λ1/2β̂G ∈ V∗,
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the distance between Λ1/2β̂G and β∗
0 can be bounded below by the projection of

β∗
0 onto V ⊥

∗ . Consequently∥∥Λ1/2(β̂G − β0)
∥∥2

2
≥

∥∥(
Ip −V∗D∗(V∗D∗)

+
)
β∗
0

∥∥2
.

If β0 lies in a high-dimensional subspace, then it may not be possible to find a
Λ to make this distance zero. On the other hand, if β0 sits in a low-dimensional
subspace of dimension no larger than d, then there always exists a ridge matrix
making the right-hand side zero. The dimensionality of β0 is a sparsity condition.
Because d ≤ n, accurate estimation is guaranteed only when the sparsity condition
p0 ≤ n is met, where p0 equals the number of nonzero coefficients of β0. But in
non-sparse conditions, where p0 > n, no such guarantee holds.

3.4. Prediction. It is reasonable to expect that GRR will outperform tradi-
tional least squares (i.e., MLS) in high dimensions. To formally investigate this we
consider the difference in prediction performance of the GRR to the modified MLS
(as we have remarked, working directly with the MLS is difficult, thus we instead
work with the modified MLS which serves as a reasonable proxy). In the following,
let μ = E(Xβ0) be the true predicted value.

Theorem 3.1.

(3.5) E‖μ̂∗
MLS − μ‖2 = E‖μ̂G − μ‖2 +

d∑
i=1

(2δi,∗ + 1)σ2
0 − μ2

i,∗
(δi,∗ + 1)2

.

Theorem 3.1 gives the mean-squared error for the modified MLS relative to
GRR and hence provides insight into the risk behavior for the MLS relative to GRR.
Interestingly, (3.5) identifies scenarios where the risk for μ̂∗

MLS may be smaller than
μ̂G. One example is a noiseless system in which σ2

0 = 0. Then the second term on
the right of (3.5) is negative and μ̂∗

MLS will have smaller risk than μ̂G. In general,
however, the risk for μ̂∗

MLS will be larger than μ̂G if σ2
0 is nonzero and δi,∗ is large

— the latter occurs if the singular values are large. Thus, outside of low noise, high
signal systems, the risk for μ̂G is expected to be smaller.

3.5. Estimation. In a similar fashion we can compare the MSE performance
of GRR to the modified MLS estimator. Consider the following MSE decomposi-
tion.

Theorem 3.2. Let αi = (Λ1/2β0)
Tvi,∗. Then

(3.6) E‖Λ1/2(β̂
∗
MLS − β0)‖2

= E‖Λ1/2(β̂G − β0)‖2 +
d∑

i=1

(2δi,∗ + 1)(μ2
i,∗ + σ2

0)− 2αiδ
1/2
i,∗ (δi,∗ + 1)μi,∗

δi,∗(δi,∗ + 1)2
.

Interpreting (3.6) is not as straightforward as (3.5). However, one interesting
conclusion is that unlike the prediction scenario, a noiseless system with σ2

0 = 0

does not necessarily confer a MSE advantage for β̂
∗
MLS. Also, from the second term

in (3.6), we see that small singular values will inflate the MSE for β̂
∗
MLS and that

this inflation is further enhanced by the presence of μ2
i,∗ (and the term σ2

0). These
results are consistent with our earlier comments that small singular values create

instability in β̂
∗
MLS. Thus we expect β̂

∗
MLS (and consequently β̂MLS) to have poor

MSE performance in high-dimensional correlated scenarios.
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4. Discussion

The p bigger than n setting presents an ill-conditioned scenario where spu-
rious correlations between variables can make estimation and prediction difficult.
This paper studied how GRR estimators would perform in this setting given their
stabilizing effects seen in n > p situations.

Using geometric arguments, it was shown that the properties of GRR when p >
n shared similar features to the solution in the classic n > p setting but also differed
in several important ways. Like the classic setting, shrinkage plays a role which
can lead to both improved estimation and prediction over MLS (least squares).
However, an important difference in high dimensions is that the GRR solution is
constrained to lie in a subspace containing the MLS estimator of dimension at most
n (as opposed to a subspace of dimension p in the classic setting). This implies
that for accurate estimation the true parameter vector should be sparse in the sense
that p0 ≤ n. In non-sparse situations, accurate estimation cannot be guaranteed.

The high-dimensional sparse setting has attracted a considerable amount of
research interest with a large focus on lasso and lasso-type regularization. Our
results suggest that GRR can also have excellent performance in such settings
if the ridge matrix is selected appropriately. One way to proceed would be to
use a Bayesian approach which naturally lend themselves to ridge estimation. In
particular, let Γ = diag{γk}pk=1 be a p × p diagonal matrix with diagonal entries
γk > 0. Consider the following Bayesian normal-normal hierarchy:

(4.1)
(Y | X,β, σ2) ∼ N(Xβ, σ2In)

(β | Γ) ∼ N(0,Γ).

Conjugacy ensures that the posterior distribution for β is multivariate normal. By
standard calculations, the posterior distribution of β is

(β | Y,Γ, σ2) ∼ N(μΓ, σ
2ΣΓ)

where μΓ = ΣΓX
TY is the posterior mean of β and ΣΓ = (Q+σ2Γ−1)−1. Observe

that μΓ is a GRR estimator.
Model (4.1) is a “plain vanilla” Bayesian hierarchy that assumes a fixed ridge

matrix. However, in practice a more sophisticated hierarchy using a prior for Γ
is a preferred way to estimate β. This reduces the risk of poor estimation if Γ
is misspecified. In particular, a non-generate prior for Γ results in a posterior
mean that is no longer a GRR estimator but instead is a weighted (averaged) GRR
estimator (WGRR). Such estimators are closely tied to mixed GRR estimators
which are known to have a minimax property [12]. An example of such a hierarchy
is the rescaled spike and slab model used in [11] which utilizes a continuous bimodal
prior for Γ that allows γk to be adaptively determined.

We illustrate this method using the diabetes data of [2]; a popular benchmark
dataset used in regression. The data consists of n = 442 patients in which the
response is a quantitative measure of disease progression for a patient. The original
data included 10 baseline measurements for each patient, age, sex, body mass
index, average blood pressure and six blood serum measurements, in addition to
45 interactions formed by all pairwise interactions of the 10 baseline variables and
9 quadratic terms for the 9 baselines measurements that were continuous. To this
we added 1000 “noise” variables, each sampled independently from a multivariate
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Figure 2. Standardized coefficient estimates for diabetes data
with q = 1000 correlated noise variables (n = 442, p = 1064). Co-
efficient estimates obtained using a WGRR estimator. Top figure
displays all p = 1064 coefficient estimates. Bottom figure displays
the original 64 variables with right most estimate labeled “noise”
equaling the mean absolute coefficient value of the q = 1000 noise
variables.

normal distribution with mean zero and equicorrelation matrix with correlation
ρ = 0.5. In total our modified data contained p = 1064 variables.

The standardized posterior coefficient values are displayed in Figure 2. The
results were obtained using the R-package “spikeslab” [9] which fits a rescaled and
slab model. All variables were standardized to have a sample mean of zero and
sample variance of one. This yields standardized posterior coefficient values that
can be compared against one another. The top figure displays all p = 1064 variables
while the bottom figure displays the coefficient estimates for the original 64 vari-
ables. The right most estimate labeled “noise” is the averaged value of the absolute
posterior coefficient estimates for the 1000 noise variables. Even in the presence
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of high correlation, the posterior estimates are shrunk towards zero for nearly all
noise variables (average of.009) and only a subset of the original 64 variables appear
informative. For technical details and further empirical illustrations the interested
reader should consult [11].

Appendix A. Proofs

Proof of Lemma 2.1. We first show that AA+ = In. Using VTV = In,
Q = VD2VT , and VS−1

λ = V(D2 + λIn)
−1, deduce that

AA+ = (D2VT + λVT )
[
V(D2 + λIn)

−1
]

= (D2 + λIn)(D
2 + λIn)

−1

= In.

From this it immediately follows that: (i) AA+A = A; (ii) A+AA+ = A+; and
(iii) (AA+)T = AA+. Furthermore,

A+A = V(D2 + λIn)
−1(D2VT + λVT ) = VVT .

Therefore: (iv) (A+A)T = VVT = A+A. Properties (i)–(iv) are the four criteria
required for a Moore–Penrose generalized inverse. �

Proof of Theorem 2.2. By (2.2), the GRR estimator can be expressed as a
ridge estimator scaled by a diagonal matrix. Therefore, it suffices to prove that (3.1)
holds and that the number of operations required to calculate (3.1) is of order
O(pn2). Set Λ = λIp. Taking the derivative with respect to β in (1.2), setting this

to zero, and multiplying right and left-hand sides by VT , it follows that β̂R must
satisfy

Aβ̂R = VTXTY.

The solution must be β̂R = A+VTXTY because upon substituting this into the
left-hand side we obtain

Aβ̂R = AA+VTXTY = VTXTY,

where we have used the fact that AA+ = In from Lemma 2.1. Now substituting
the right-hand side of (2.1) for A+, yields

β̂R = VS−1
λ VTXTY = VS−1

λ RTY.

To determine the number of operations required to compute β̂R, note that the
SVD for X requires O(pn2) operations. Once the SVD is obtained, inverting S−1

λ

requires O(n) operations. Multiplying this (of size n × n) by V(p × n) requires
O(pn2) operations (note that because S−1

λ is diagonal, this can be reduced further
to O(pn) operations, but this level of refinement is not essential). Multiplying by
RTY requires a total of O(pn) operations. The total number of operations equals

O(pn2) +O(n) +O(pn2) +O(pn) = O(pn2). �

Proof of Theorem 2.4. By (2.2), β̂G = Λ−1/2β̂
∗
R where β̂

∗
R is the ridge

estimator under X∗ with ridge parameter λ = 1. We show that Λ−1/2β̂
∗
R is the

solution to (2.5). As a Lagrangian problem, (2.5) can be written as

minimize
(β,�)∈Rp×R+

{
Q(β, β̂

∗
MLS) + �(βTΛβ − L)

}
,
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where � is the Lagrangian multiplier. Because L is arbitrary we can assume that
� = 1 without loss of generality. Taking the derivative with respect to β, the
solution is

2Λβ + 2Λ1/2Q∗Λ
1/2(β − β̂

∗
MLS) = 0.

Multiplying throughout by Λ−1/2, β must satisfy

(Q∗ + Ip)Λ
1/2β = Q∗Λ

1/2β̂
∗
MLS

= V∗D
2
∗V

T
∗ V∗S

+
∗0R

T
∗ Y

= V∗D
2
∗S

+
∗0D∗U

T
∗ Y

= V∗D∗U
T
∗ Y

= XT
∗ Y.

Therefore, β = Λ−1/2β̂
∗
R; thus verifying that (2.5) is the optimization problem for

β̂G. �

Proof of Theorem 2.5. By (2.3), we can write β̂G = Λ−1/2V∗S
−1
∗1 D∗U

T
∗ Y.

The stated representation for β̂G follows with some simple rearrangement. From

this it is clear that β̂G lies in the subspace V∗ (and hence Λ−1/2(V∗)). To see that V∗
can be interpreted as the span of the eigenvectors of Q∗, note that Q∗ = V∗D

2
∗V

T
∗ .

Thus, Q∗vi,∗ = d2i,∗vi,∗, and hence vi,∗ is an eigenvector of Q∗ under the condition

that d2i,∗ > 0. Finally, to prove the claim for μ̂G = Xβ̂G, using X∗ = XΛ−1/2 and

the representation for β̂G, we have

μ̂G = X∗V∗S
−1
∗1 D∗U

T
∗ Y

= U∗D∗V
T
∗ V∗S

−1
∗1 D∗U

T
∗ Y

= U∗(D∗S
−1
∗1 D∗)U

T
∗ Y.

It is easily checked that this corresponds to the stated expression for μ̂G. �

Proof of Theorem 3.1. We can write μ in terms of the orthonormal basis
(ui,∗)

n
i=1. We have μ =

∑n
i=1 μi,∗ui,∗. Therefore, by (3.2) and (3.3),

μ̂∗
MLS − μ =

d∑
i=1

(
δi,∗

δi,∗ + 1
− μi,∗

uT
i,∗Y

)
(uT

i,∗Y)ui,∗

+

d∑
i=1

(
1− δi,∗

δi,∗ + 1

)
(uT

i,∗Y)ui,∗

= (μ̂G − μ) +

d∑
i=1

(
1

δi,∗ + 1

)
(uT

i,∗Y)ui,∗.

Squaring and collecting terms, deduce that

(A.1) ‖μ̂∗
MLS − μ‖2

= ‖μ̂G − μ‖2 +
d∑

i=1

(2δi,∗ + 1)(uT
i,∗Y)2 − 2μi,∗(δi,∗ + 1)(uT

i,∗Y)

(δi,∗ + 1)2
.
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One can easily verify that

(A.2) E[(2δi,∗ + 1)(uT
i,∗Y)2 − 2μi,∗(δi,∗ + 1)(uT

i,∗Y)]

= (2δi,∗ + 1)(μ2
i,∗ + σ2

0)− 2μi,∗(δi,∗ + 1)μi,∗

= (2δi,∗ + 1)σ2
0 − μ2

i,∗.

The theorem is proved by using this, and taking expecations in (A.1). �

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1. Note

that (vi,∗)
d
i=1 is an orthonormal basis for V∗. Let β∗

0 = Λ1/2β0 and write V ⊥
∗

for the orthogonal subspace to V∗. Then, β∗
0 =

∑n
i=1 αivi,∗ + Δ∗, where Δ∗ is

the projection of β∗
0 onto V ⊥

∗ . Using the representation (3.4) for β̂
∗
MLS and the

representation for β̂G given in Theorem 2.5, we have

Λ1/2(β̂
∗
MLS − β0) =

d∑
i=1

(
di,∗

δi,∗ + 1
− αi

uT
i,∗Y

)
(uT

i,∗Y)vi,∗ −Δ∗

+
d∑

i=1

(
di,∗ + d−1

i,∗
δi,∗ + 1

− di,∗
δi,∗ + 1

)
(uT

i,∗Y)vi,∗

= Λ1/2(β̂G − β0) +

d∑
i=1

(
d−1
i,∗

δi,∗ + 1

)
(uT

i,∗Y)vi,∗.

Squaring, collecting terms, and taking expectations, deduce that

E‖Λ1/2(β̂
∗
MLS − β0)‖2

= E‖Λ1/2(β̂G − β0)‖2 + E

[
d∑

i=1

(2δi,∗ + 1)(uT
i,∗Y)2 − 2αidi,∗(δi,∗ + 1)(uT

i,∗Y)

δi,∗(δi,∗ + 1)2

]
.

The result follows by taking the expectation inside the sum and using E(uT
i,∗Y)2 =

μ2
i,∗ + σ2

0 and E(uT
i,∗Y) = μi,∗. �
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