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a b s t r a c t

Spike and slabmodels are a popular and attractive variable selection approach in regression
settings. Applications for these models have blossomed over the last decade and they are
increasingly being used in challenging problems. At the same time, theory for spike and
slabmodels has not kept pacewith the applications. There aremany gaps inwhat we know
about their theoretical properties. An important property known to hold in these models
is selective shrinkage: a unique property whereby the posterior mean is shrunk toward
zero for non-informative variables only. This property has been shown to hold under
orthogonality for continuous priors under the modified class of rescaled spike and slab
models. In this paper, we extend this result to the general case and prove an oracle property
for the posterior mean under a discrete two-component prior. An immediate consequence
is that a strong selective shrinkage property holds. Interestingly, the conditions needed for
our result to hold in the non-orthogonal setting are more stringent than in the orthogonal
case and amount to a type of enforced sparsity condition that must be met by the prior.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Spike and slab regression was introduced by Lempers (1971) and Mitchell and Beauchamp (1988) who adopted a
Bayesian approach to subset selection in linear regression models. The expression ‘‘spike and slab’’, coined by Mitchell and
Beauchamp (1988), referred to the prior for the regression coefficients used in their Bayesian hierarchy. This prior was
chosen such that the regression parameters were mutually independent with a two-point mixture distribution made up of
a uniform flat distribution (the slab) and a degenerate distribution at zero (the spike). Later, George and McCulloch (1993)
suggested a different approach. Instead of directly modeling the regression parameters, they advocated using a normal
hierarchywith a two-componentmixing distribution for the variance. This yields conditional distributions for all parameters
from elementary distributions, making it possible to efficiently sample the posterior by Gibbs sampling. This important
computational feature made spike and slab regression feasible in large scale problems and greatly enhanced its popularity
(Geweke and Meese, 1981; Chipman, 1996; Clyde et al., 1996; Kuo and Mallick, 1998; Brown et al., 1998; Seo et al., 2007;
Park and Casella, 2008).

As discussed in Ishwaran and Rao (2005a), normal hierarchies subject to a normal-variance mixture prior for the
regression parameter, such as those used in George and McCulloch (1993), constitute a wide class of models termed spike
and slab models. Spike and slab models were modified to the class of rescaled spike and slab models (Ishwaran and Rao,
2005a). These new models rescale the response by the square root of the sample size divided by some suitable estimate
of the population standard deviation. Rescaling was shown to induce a non-vanishing penalization effect, and ensures a
selective shrinkage property in orthogonal models when used in tandem with a continuous bimodal prior (Ishwaran and
Rao, 2005a). This property allows the posterior mean for the coefficients to shrink toward zero for truly zero coefficients,
while for non-zero coefficients, posterior estimates are similar to the ordinary least squares (OLS) estimator. Ishwaran and
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Rao (2005b) used rescaled spike and slab models to analyze multigroup microarray data (an extension of previous work of
Ishwaran and Rao, 2003) and showed that selective shrinkagewas a sufficient condition for oracle like totalmisclassification.

These results, however, all presuppose an orthogonal design matrix. The main goal of this manuscript is to extend this
work by showing that selective shrinkage can hold in both orthogonal and non-orthogonal settings for certain classes of
rescaled spike and slab models. In fact, we establish a stronger result by showing under certain conditions that the so-
called ‘‘oracle property’’ holds (Fan and Li, 2001). An estimator is said to have the Fan–Li oracle property if it is sparse and
asymptotically normal and possesses the same limiting distribution as the OLS constrained to the true nonzero coefficients.
In establishing these results, we focus on two-component priors. These discrete priors have only two components: an atom
near zerowhich constitutes the spike and a large atom away from zerowhich constitutes the slab. Our reason for using these
priors is that their simple constructionmake them an excellent theoretical tool for studying selective shrinkage. At the same
time, our results are highly suggestive of the conditions needed for other types of priors, including continuous ones.

Our main result (Theorem 1 of Section 3) shows that for the oracle property to hold in non-orthogonal settings, the spike
in the two-component prior must converge to zero at O(n−1) rate and the slab must converge to ∞ at a O(n) rate. However,
in the orthogonal case, although the slab must continue to satisfy a rate condition, no such condition is needed for the spike.
This latter finding is consistent with previous work. In particular, Ishwaran and Rao (2005a), who considered orthogonal
models, showed that a prior with continuous right tail and a near-zero spike was sufficient for selective shrinkage to hold. A
continuous right tail functions like a slab converging to∞ by ensuring that the variance can be arbitrarily largewith positive
probability. The spike near zero ensures that the variance can take a small value with positive probability—however, no
stringent conditions for the spike were required for selective shrinkage to hold. Thus, our results for the two-component
prior match what has been observed for continuous priors in the orthogonal case. At the same time, it is natural to speculate
that our findings for the non-orthogonal case for the two-component prior should also apply to continuous priors. If so, this
would suggest that such priors must satisfy a type of enforced sparsity. Theorem 1 provides guidance for the regularization
required.

The paper is organized as follows. Section 2 provides background on spike and slab models and the selective shrinkage
property. The oracle result for the posterior mean of the regression coefficients is given in Theorem 1 of Section 3. This
result follows from Lemma 1 which proves a key fact about the frequentist property of the ridge matrix associated with
the posterior mean. Section 3 discusses implications of Theorem 1. Finally, we conclude in Section 4 with a summary and
discussion of our results.

2. Spike and slab regression

Webegin by introducing notation thatwill be used throughout the paper. Following this we provide background on spike
and slab and rescaled spike and slab models.

Our results apply to linear regression models. Specifically, it will be assumed that the underlying true (data) model is of
the form:

yi = β1,0xi,1 + · · · + βp,0xi,p + εi, i = 1, . . . , n, (1)

where (εi)1≤i≤n are independent random variables such that E(εi) = 0 and E(ε2
i ) = σ 2

0 > 0. Write X for the n × p design
matrix corresponding to (1) and β0 = (β0,1, . . . , β0,p)

T for the true regression parameter. The variables xi = (xi,1, . . . , xi,p)T

and the response-vector y = (y1, . . . , yn)T are assumed to be standardized such that

n
i=1

xi,k = 0,
n

i=1

x2i,k = n,
n

i=1

yi = 0. (2)

Note that the last constraint is satisfied by centering (yi)1≤i≤n by themean. Because y is assumed centered, no intercept term
is included in (1).

2.1. Spike and slab models

We now review some background material on spike and slab models. Ishwaran and Rao (2005a) characterized a spike
and slab model as being any model with a Bayesian hierarchy specified as follows:

(y|X, β, σ 2) ∼ N(Xβ, σ 2In)
(β|γ ) ∼ N(0, Γ )

γ := (γ1, . . . , γp)
T

∼ π(·)

σ 2
∼ µ(·). (3)

Here β = (β1, . . . , βp)
T is the regression vector and Γ = diag{γk}1≤k≤p is its p × p diagonal hypervariance matrix.

The prior π for the hypervariance γ plays a critical role in how effective (3) is for variable selection. A successful and
popular choice for π are priors that make use of mixture distributions involving a spike near zero. As discussed earlier, the
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prototype for such priors was discussed in George and McCulloch (1993). There, the prior for γk was assumed to have a
two-component distribution of the form

(γk|τk, ck, ϖk)
ind
∼ (1 − ϖk)δτk(·) + ϖkδckτk(·), k = 1, . . . , p. (4)

The value for τk > 0 (the spike) is chosen to be some small value, where ‘‘small’’ is typically specified based on the data at
hand,while ck > 0, also data-specific, is chosen so that ckτk (the slab) is sufficiently large. Selecting the two hyperparameters
in this way allows γk to be either small or large, and this in turn enables the posterior of βk to shrink toward zero or be some
nonzero value. The values (ϖk)

p
k=1 are complexity parameters that influence the likelihood of a coefficient being shrunk

toward zero. In principle, each variable can have a unique complexity value, but a common practice is to set ϖk = 1/2 for
each k, in which case (4) is referred to as an indifference prior.

2.2. Rescaled spike and slab models

To improve variable selection properties of spike and slab models, Ishwaran and Rao (2005a) introduced a slightly
different class of models referred to as rescaled spike and slab models. The results presented in this manuscript focus only
on this class of models. Rescaled spike and slab models are models of the form

(y∗
|X, β, σ 2) ∼ N(Xβ, nσ 2In), y∗

= n1/2y
(β|γ ) ∼ N(0, Γ )

γ ∼ π(·)

σ 2
∼ µ(·). (5)

Observe that (5) differs slightly from (3) in that it uses amodified response y∗ in place of y. Another difference is the rescaled
variance appearing in the first level of (5) (scaled by a factor of n). Although these differences may appear cosmetic, the
effects of rescaling are crucial to variable selection performance (Ishwaran and Rao, 2005a). Without the correct scaling
(of size n), penalization vanishes asymptotically and the limiting distribution for the posterior mean of β equals that of
the OLS. In contrast, rescaling ensures a different limit than the OLS, with rescaling acting as a penalization parameter.
Variable selection improves because the posterior mean acquires a selective shrinkage property. For this paper, we adopt
the following strong definition of selective shrinkage.

Definition 1. Let β̂∗ be the posterior mean under a rescaled spike and slab model. Then, β̂∗ is said to possess the strong
selective shrinkage property if n−1/2β̂∗

= Op(1) and n−1/2β̂∗

k
p

→ 0 if and only if β0,k = 0.

3. Strong selective shrinkage and the oracle property for the posterior mean

Under orthogonality, a sufficient condition for selective shrinkage is thatπ should have: (i) a right tail that is continuous;
and (ii) a spike near zero (see Ishwaran and Rao, 2005a, Theorem 6). The continuity of the right tail allows nonzero
coefficients to be minimally penalized, and thus little or no shrinkage of the posterior mean occurs for such coefficients,
whereas the spike near zero induces sparsity by shrinking the posterior mean of zero coefficients.

Here we prove that selective shrinkage (of the strong type) holds in general. Interestingly, we find that the conditions
needed for consistency in the non-orthogonal case involve more stringent constraints on the behavior of the prior at zero
than in the orthogonal case. To establish this result, we shall prove the stronger assertion that the posterior mean possesses
the oracle property. Because the oracle property is difficult to prove in general, we will adopt the following simplification.
Our proof will be based on the slightly modified rescaled spike and slab model:

(ỹ|X, β) ∼ N(Xβ, nIn), ỹ = σ̂−1n1/2y

(β|γ ) ∼ N(0, Γ ). (6)

This model differs from (5) because we have replaced y∗ by ỹ, where ỹ is scaled by the additional factor σ̂−1 (here σ̂ 2 is an
estimator for σ 2

0 satisfying certain properties; we say more about this shortly). Rescaling by σ̂−1 allows us to remove the
prior for σ 2, which simplifies our arguments.

Our results will be based on a two-component prior for γ . We assume γk takes either a small value w > 0 (the spike) or
a large valueW > 0 (the slab) specified according to

(γk|ϖ)
ind
∼ (1 − ϖ)δw(·) + ϖδW (·), k = 1, . . . , p

ϖ ∼ Uniform[0, 1]. (7)

Notice that (7) is similar to (4), except that we have extended the hierarchy to include a prior for the complexity parameter
ϖ . Here we assume ϖ has a uniform density on [0, 1]. Theorem 1 will show why this is a reasonable choice.
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3.1. Conditions

Here we state the conditions needed for our proof. We will need the following additional notation to describe these.
Map each γ to the model comprising those coefficients for which γk = W (i.e., these are the promising variables not shrunk
toward zero). Thus, each γ is uniquely identifiedwith amodel comprising those regression coefficients with indices in some
set α ⊆ {1, . . . , p}. We think of α and the model corresponding to γ as being interchangeable.

Write α0 for the true model and let p0 = #α0 be its cardinality. For our results, we make use of the following regularity
conditions:

σ̂ 2 p
→ s20, where 0 < s20 < ∞. (8)

α0 ≠ ∅ and α0 ≠ {1, . . . , p}. (9)

Cn = n−1XTX > 0 and lim
n→∞

Cn = C > 0. (10)

Condition (8) is mild and requires only that σ̂ 2 converges to a positive, finite value; a consistent estimator for σ 2
0 is not

necessary (see Remarks 1 and 2 for some practical examples of how to select σ̂ 2). Condition (9) is purely a technical
requirement: selective shrinkage is notwell defined if all coefficients are zero, or if the truemodel is the fullmodel. However,
our results continue to hold even if (9) does not. Condition (10) assumes positive definiteness of Cn and is a standard
assumption for the design matrix.

Remark 1. One simple way to select σ̂ 2 is to use the unbiased estimator for σ 2
0 obtained from least-squares. Let ŷOLS denote

the predictor for y based on the OLS estimator. Define

σ̂ 2
=

1
n − p

∥y − ŷOLS∥2.

If we strengthen our assumption for (εi)
n
i=1 to include a bounded fourth moment, so that (εi)

n
i=1 are independent such that

E(εi) = 0 andE(ε2
i ) = σ 2

0 andE(ε4
i ) ≤ M < ∞, then σ̂ 2 is consistent. To seewhy, first note that σ̂ 2

= (εTε−εTHε)/(n−p),
where H = X(XTX)−1X and ε = (ε1, . . . , εn)

T . Observe that H is well defined by (10). The first term εTε/(n− p) has a finite
mean nσ 2

0 /(n − p) converging to σ 2
0 and a variance of order O(n−1). Therefore, εTε/(n − p)

p
→ σ 2

0 . For the second term,
using Markov’s inequality, for each δ > 0,

P

εTHε ≥ (n − p)δ


≤

E(εTHε)

(n − p)δ
=

trace(HE(εεT ))

(n − p)δ
=

pσ 2
0

(n − p)δ
→ 0.

Deduce that σ̂ 2 p
→ σ 2

0 .

Remark 2. Herewedescribe amore general σ̂ 2 estimator. Thismethod canbeusedwith bothparametric andnonparametric
methods but works best with procedures known to yield low test-set mean-squared-error (MSE). For example, we
recommend using a machine learning method such as Random Forests (Breiman, 2001). Although we do not provide a
rigorous proof, we outline why our proposed estimator should satisfy (8). Let f̂ denote the predictor for y. Let ynew be an
N-dimensional vector of new test-set observations and let f̂new be the predictor of ynew. Let fnew = E(ynew). Taking
expectations over εnew (independent error terms associated with the test data):

N−1E∥ynew − f̂new∥
2

= N−1E∥fnew + εnew − f̂new∥
2

= N−1E∥f̂new − fnew∥
2
+ N−1E∥εnew∥

2

= N−1E∥f̂new − fnew∥
2
+ σ 2

0 .

The first term on the right is the test-set MSE. If this value is small (which we would expect with an accurate predictor),
then N−1E∥ynew − f̂new∥

2 will nearly equal σ 2
0 . Thus, not only will this estimator satisfy (8), but it also provides a means for

estimating σ 2
0 . In practice, to calculate N−1E∥ynew − f̂new∥

2, one could average N−1
∥ynew − f̂new∥

2 over different test-sets
(in our experience we have found using out-of-bag MSE estimates from Random Forests to be quite good). Finally, note that
even if f̂new is not perfectly accurate, we always obtain an upper bound to σ 2

0 :

N−1E∥ynew − f̂new∥
2

≥ σ 2
0 .

Thus it remains bounded away from zero.
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3.2. The oracle result

To prove the oracle result, we first state a key lemma. Let β̂ = σ̂n−1/2β̂∗, where β̂∗ is the posterior mean from (6)–(7).
Then

β̂ = n−1E(Σ |ỹ)XTy, (11)

where Σ = (Cn + Γ −1)−1. This shows that the effects of shrinkage are captured exclusively by the posterior mean of the
ridge matrix Σ . The following result describes frequentist properties of Σ under rate conditions on w and W and will be
fundamental to proving the oracle property.

Lemma 1. Assume (1) is the true model, the data has been standardized as in (2), and that regularity conditions (8)–(10) hold.
Under the rescaled spike and slab model (6)with prior (7), if W → ∞ and w → 0 such that W = O(n) and w = O(n−1), then

E(Σ |ỹ)
p

→ C−1
[α0]

,

where C−1
[α0]

is the p × p symmetric matrix equal to zero everywhere except along the coordinates corresponding to α0 where it
equals (C(α0))

−1, where the subscript (α) indicates a term including only those indices in α.

To understand how Lemma 1 implies the oracle property, it is instructive to consider the orthogonal setting, Cn = Ip.
Define Jk = (0, . . . , 0, 1, 0, . . . , 0)T to be the p-dimensional vector with the value of 1 in the kth coordinate and 0’s
elsewhere. Under the asserted conditions, it follows that

E(Σ |ỹ)
p

→


k∈α0

JkJT
k .

Moreover, because n−1/2XTy = n1/2β0 + Op(1), this implies from (11) that

n1/2


β̂ − (1 + op(1))


k∈α0

β0,kJk


d
❀ σ0


k∈α0

JkJT
k


Z,

for some random vector Z ∈ Rp. Notice that the limiting covariance for β̂ is zero if β0,k = 0. Furthermore, by slightly
tightening our assumptions regarding (εi)

n
i=1, we can assert asymptotic normality for Z , from which the oracle property

follows.
Lemma 1 allows us to extend this argument to arbitrary X-designs. This yields our main result, Theorem 1, stated next.

Some remarks helpful for interpreting the theorem are given following this.

Theorem 1. Assume that the conditions of Lemma 1 hold and that (εi)
n
i=1 are i.i.d. and n−1 maxni=1 ∥xi∥2

2 → 0, where xi is the
ith row of X. Then:

(i) β̂(αc
0)

= op(1).

(ii) n1/2

β̂(α0) − (1 + op(1))β0,(α0)


d
❀ N(0, σ 2

0 (C(α0))
−1).

Thus, the rescaled posterior mean, β̂ , has the Fan–Li oracle property.

Remark 3. Clearly (i) and (ii) imply that n−1/2β̂∗ shrinks to zero in probability for the truly zero coefficients and is
stochastically bounded otherwise. Thus, Theorem1 immediately implies that the posteriormean, β̂∗, has the strong selective
shrinkage property.

Remark 4. The rate conditions for the prior can be considerably weakened in the orthogonal case. One can show that for
the slab, any sequence satisfying n − logW → ∞ is permitted, whereas for the spike there is no imposed constraint on w
at all. Interestingly, this shows that the growth rate for W and the shrinkage rate for w are considerably more stringent in
correlated settings.

Remark 5. In the orthogonal case, the posterior has correct asymptotic complexity recovery. Under a Beta(a, a) prior
for ϖ ,

E(ϖ |ỹ)
p

→ (p0 + a)/(p + 2a).

If p is large, this will be close to the true complexity p0/p, for any reasonably selected a. As one example, the value a = 1,
corresponding to a uniform prior, would be appropriate.
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4. Discussion

In this article we established an oracle property for rescaled spike and slab models under general X-design scenarios.
One immediate consequence is that the posterior mean for our class of models has the strong selective shrinkage property.
In order to prove our result, we made use of a simplified two-component prior. The simple construction of this prior made
it an excellent tool for studying selective shrinkage. In practical settings, however, discrete priors are difficult to use and
instead continuous priors are often advocated. Nevertheless, we believe our results are applicable to more general priors
andmoreover should prove useful for developing regularization strategies for them.We believe this to be the case for several
reasons. First, we found that our results matched up with what has been found for continuous priors in orthogonal settings:
namely, that the right tail behavior of the prior is crucial for selective shrinkage to hold. Secondly, we suspect that having
a small spike at zero, as we do for our two-component prior, is an essential ingredient to successful variable selection in
non-orthogonal settings, regardless of whether the prior is discrete or not. We conjecture that for strong selective shrinkage
and oracle-like properties to hold, the prior must satisfy an enforced sparsity property. Theorem 1 suggests that the prior
must have a spike near zero on order O(n−1).
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Appendix. Proofs

Proof of Lemma 1. Throughout the proof we use a subscript of α to indicate dependence upon γ whenever this distinction
is necessary. For example, Σα refers to (Cn +Γ −1

α )−1, where Γα is the diagonal matrix comprised of hypervariances defined
by α. Subscripts of the form (α) are used to indicate a term containing only those coordinates corresponding to α. Thus X(α)

is the X matrix constrained to those columns containing α. Also, the notation O(·) and o(·), and their stochastic counterparts
Op(·) and op(·), are used not only for random variables but also vectors and matrices. In the latter two cases, this is taken to
mean convergence under the metric


k A

2
k

1/2 for vectors and


j,k A
2
j,k

1/2 for matrices, which corresponds to uniform
pointwise convergence as the dimension of all vectors and matrices are finite and because the cardinality of α is finite and
fixed. Finally, throughout the proof we implicitly assume that condition (9) holds, but the proof can be suitably modified if
the condition does not hold.

The posterior for (γ , ϖ) equals

π(γ , ϖ |ỹ) =


Rp

π(β, γ ,ϖ |ỹ) dβ.

To be able to work this out, we first need to derive π(β, γ ,ϖ |ỹ). Define Zn = n−1/2XTy and recall that Σ = (Cn + Γ −1)−1

where Cn = n−1XTX . By (6) and (7), deduce that

π(β, γ ,ϖ |ỹ) ∝ π(γ |ϖ)π(β|γ ) exp


−
1
2n

∥ỹ − Xβ∥
2


∝ π(γ |ϖ)|2πΓ |
−1/2 exp


−

1
2
βTΓ −1β + σ̂−1ZT

n β −
1
2
βTCnβ


∝ π(γ |ϖ)|Γ Σ−1

|
−1/2 exp


1

2σ̂ 2
ZT
n ΣZn


×


|2πΣ |

−1/2 exp


−
1
2
(β − σ̂−1ΣZn)TΣ−1(β − σ̂−1ΣZn)


.

The term in square brackets on the right-hand side is a multivariate normal distribution in β . Integrating over β , it follows
that

π(γ , ϖ |ỹ) ∝ π(γ |ϖ)|Γ Σ−1
|
−1/2 exp


1

2σ̂ 2
ZT
n ΣZn


.

The prior probability for α, denoted by Pr(α), is uniquely determined by γ . By the definition of the two-component prior
(7), one can easily see that

Pr(α) =

 1

0


γk=W

ϖ


γk=w

(1 − ϖ) dϖ

=

 1

0
ϖ pα (1 − ϖ)p−pα dϖ,
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where pα equals the number of coordinates of γ equal to W ; i.e., pα is the cardinality of α. Mapping each γ to its model α
and integrating over ϖ , deduce that

E(Σ |ỹ) =


α

Pr(α)Σα|ΓαΣ−1
α |

−1/2 exp


1
2σ̂ 2 ZT

n ΣαZn



α

Pr(α)|ΓαΣ−1
α |−1/2 exp


1

2σ̂ 2 ZT
n ΣαZn

 . (12)

Let Pα be a p×p orthogonal matrix that rotates the coordinate axes so that the first pα coordinates correspond to α. Partition
PαΣαPT

α as follows:

PαΣαPT
α =


PαCnPT

α + PαΓ −1
α PT

α

−1
=


A1,1 A1,2

AT
1,2 w−1A2,2

−1

,

where

A1,1 = n−1XT
(α)X(α) + W−1I(α)

A1,2 = n−1XT
(α)X(αc )

A2,2 = n−1wXT
(αc )X(αc ) + I(αc ).

By standard matrix algebra,

PαΣαPT
α =


B1,1 B1,2

BT
1,2 B2,2


where

B1,1 =

A1,1 − wA1,2A−1

2,2A
T
1,2

−1

B1,2 = −A−1
1,1A1,2B2,2

B2,2 = w

A2,2 − wAT

1,2A
−1
1,1A1,2

−1
.

By assumption (10), A1,1, A−1
1,1, A2,2, A−1

2,2, and A1,2 are all well defined, and all have well defined limits. By the rates imposed
onW and w, one can show that

Σα = PT
α


(Cn,(α))

−1 0
0 0


Pα + O(n−1)

= C−1
n,[α]

+ O(n−1). (13)

Now observe that ΓαΣ−1
α = ΓαCn + I . Therefore,

PαΓαΣ−1
α PT

α =

PαΓαPT

α

 
PαCnPT

α


+ I =


WA1,1 WA1,2

wAT
1,2 A2,2


.

The determinant of the left-hand side equals |ΓαΣ−1
α |. Hence, using standard properties for determinants, we have

|ΓαΣ−1
α | = W pα |A1,1| |A2,2 − wAT

1,2A
−1
1,1A1,2|.

Observe that A1,1 → C(α), A2,2 → I(αc ), and wAT
1,2A

−1
1,1A1,2 → 0. Deduce that

W pα/2
|ΓαΣ−1

α |
−1/2

→ |C(α)|
−1/2, as n → ∞. (14)

Now multiply the numerator and denominator of (12) by the value

W p0/2 exp


−
1

2σ̂ 2
ZT
n Σα0Zn


.

Recalling our assumption (2), n−1/2XTε = Op(1) because

n−1E


n

i=1

xi,kεi

2

= σ 2
0 n

−1
n

i=1

x2i,k = σ 2
0 , 1 ≤ k ≤ p.

Hence, by (13),

ZT
n ΣαZn − ZT

n Σα0Zn = ZT
n


C−1
n,[α]

− C−1
n,[α0]


Zn + Op(1). (15)
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The Op(1) term on the right-hand side of (15) holds because ZT
n Zn = Op(n) due to

Zn = n−1/2XTXβ0 + n−1/2XTε = n1/2Cnβ0 + Op(1).

By (14) and (15), the dominating term asymptotically for each term in the sum of the numerator (or the denominator) of
(12) is

W (p0−pα)/2 exp


1

2σ̂ 2


ZT
n


C−1
n,[α]

− C−1
n,[α0]


Zn + Op(1)


. (16)

Consider the term inside the exponent of (16). By (8), σ̂ 2 remains bounded away from zero and is finite, thus the key term is

ZT
n


C−1
n,[α]

− C−1
n,[α0]


Zn.

Let β̂OLS,(α) = (XT
(α)X(α))

−1XT
(α)y denote the constrained OLS estimator for α. With rearrangement one can show

ZT
n C

−1
n,[α]

Zn = n−1yTX(α)(Cn,(α))
−1XT

(α)y

=

X(α)β̂OLS,(α)

T 
X(α)β̂OLS,(α)


.

The right-hand side is the squared ℓ2-length of the projection of y onto Xα .
For each α, let ν1, . . . , νn be an orthonormal basis for Rn such that the first pα vectors span the column space of X(α) and

the first pα0 vectors span the column space of X(α0). It is clear that such an orthonormal basis can always be constructed for
α if either α ⊆ α0 or α0 ⊂ α. We assume that this is the case for now. Let θk = yTνk. Then by the definition of the OLS,
X(α)β̂OLS,(α) =


k≤pα

θkνk and

ZT
n C

−1
n,[α]

Zn =

pα
k=1

θ2
k .

Consequently if α ⊆ α0,

ZT
n


C−1
n,[α]

− C−1
n,[α0]


Zn = −

pα0
k=pα+1

θ2
k .

Because θ2
k = Op(n) if k ≤ pα0 , the exponent in (16) becomes the dominant term and converges to zero in probability

(the only exception being when α = α0; then the exponent is exactly zero). On the other hand if α0 ⊂ α, then pα > p0
and W (p0−pα)/2

→ 0. Furthermore, θ2
k = Op(1) for k > pα0 (this follows from yTνk = εTνk and E(εTνk)

2
= σ 2

0 , because
∥νk∥

2
2 = 1). Thus when pα > p0, the polynomialW (p0−pα)/2 becomes the dominating term and once again (16) converges to

zero. Consequently, if α is a model such that either α ⊆ α0 or α0 ⊂ α, then the only α with a nonzero limiting contribution
to either the numerator or denominator of (12) is α0.

Now we consider the scenario when α ⊈ α0 and α0 ⊈ α. Now construct an orthonormal basis so that the first P ′
= pα′

vectors span the column space of X(α′), the first P ′′
= pα′ + pα′′ vectors span the column space of (X(α′), X(α′′)), and the

first P ′′′
= pα′ + pα′′ + pα′′′ vectors span the column space of (X(α′), X(α′′), X(α′′′)), where α′

= α ∩ αc
0, α

′′
= α ∩ α0,

and α′′′
= αc

∩ α0. Because the squared-length of the projection of y onto {νj}
P ′′′

j=P ′+1 is less than the squared-length of the
projection of y onto X(α0), we have

ZT
n C

−1
n,[α0]

Zn ≥

P ′′′
k=P ′+1

θ2
k ,

and therefore

ZT
n


C−1
n,[α]

− C−1
n,[α0]


Zn ≤

P ′′
k=1

θ2
k −

P ′′′
k=P ′+1

θ2
k =

P ′
k=1

θ2
k −

P ′′′
k=P ′′+1

θ2
k .

The first sum on the right is Op(1) while the second sum is Op(n). Thus, the right-hand side converges to −∞ in probability.
Because of this, even though pα may be larger than pα0 , the dominating term in (16) is the exponent and hence α has a
vanishing contribution in (12).

Combining these results with (13) deduce that E(Σ |ỹ)
p

→ C−1
[α0]

. �



Author's personal copy

1928 H. Ishwaran, J. Sunil Rao / Statistics and Probability Letters 81 (2011) 1920–1928

Proof of Theorem 1. Using Lemma 1, deduce that

n1/2β̂ = n−1/2E(Σ |ỹ)XTy
= n−1/2E(Σ |ỹ)XT (Xβ0 + ε)

= n1/2E(Σ |ỹ)Cnβ0 +


C−1

[α0]
+ op(1)


n−1/2XTε.

Invoking a standard triangular central limit theorem (Srivastava, 1967, Corollary B1) for n−1/2XTε, deduce that
C−1

[α0]
+ op(1)


n−1/2XTε

d
❀ C−1

[α0]
N(0, σ 2

0 C).

Therefore,

n1/2

β̂ −


C−1

[α0]
+ op(1)


Cnβ0


d
❀ N(0, σ 2

0 C
−1
[α0]

),

and (i) and (ii) now follow. �
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