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Orthogonalized smoothing for rescaled

spike and slab models

Hemant Ishwaran1,∗ and Ariadni Papana2

Cleveland Clinic and Case Western Reserve University

Abstract: Rescaled spike and slab models are a new Bayesian variable se-
lection method for linear regression models. In high dimensional orthogonal
settings such models have been shown to possess optimal model selection prop-
erties. We review background theory and discuss applications of rescaled spike
and slab models to prediction problems involving orthogonal polynomials. We
first consider global smoothing and discuss potential weaknesses. Some of these
deficiencies are remedied by using local regression. The local regression ap-
proach relies on an intimate connection between local weighted regression and
weighted generalized ridge regression. An important implication is that one
can trace the effective degrees of freedom of a curve as a way to visualize and
classify curvature. Several motivating examples are presented.
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1. Introduction

Rescaled spike and slab models were introduced in [1] as a Bayesian variable se-
lection method in linear regression models. Such models were shown to possess a
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selective shrinkage property in orthogonal models. This property allows the poste-
rior mean for the coefficients to shrink to zero for truly zero coefficients while for the
non-zero coefficients posterior estimates are similar to the ordinary least squares
(OLS) estimates. In [2], rescaled spike and slab models were used to analyze multi-
group microarray data (an extension of previous work [3]). Selective shrinkage was
shown to be a sufficient condition for oracle-like total misclassification. A finite
sample adaptive method for selecting variables using this principle was given.

In this manuscript we extend the application of rescaled spike and slab models
to smoothing problems. Given an outcome value Y related to a variable x through
an unknown function f(x), we would like accurate recovery of f(x). Smoothing
is a prediction problem, and an important contribution of the paper is advancing
applications of rescaled spike and slab models to prediction settings. However this
does not mean selective shrinkage, a core ingredient to model selection, is not at play
in a prediction paradigm. Indeed, as shown, selective shrinkage plays a crucial role
in adaptive selection of over-parameterized basis functions in response to curvature
of f(x).

We consider global smoothing via orthogonal polynomial regression as well as
local regression using orthogonal polynomials. Orthogonality is a key ingredient in
our approach. Not only does it allow us to exploit the selective shrinkage property
of rescaled spike and slab models, which follow as a consequence of orthogonality,
but it also greatly improves the computationally efficiency of our algorithms. While
much work has been done in the area of smoothing, we note there are novel features
in our approach potentially useful in applied settings. One important feature be-
ing that selective shrinkage allows for greater adaptivity to curvature and greater
robustness to misspecification of dimension of basis functions. Secondly, in local
regression settings, adaptivity via selective shrinkage can be interpreted in terms
of dimensionality and curvature. From this we provide an effective degrees of free-
dom plot for graphing estimated dimensionality of f(x) as a function of x. Such
plots provide a simple and powerful way to register curves. Several applications are
provided as illustration.

2. Rescaled spike and slab models

We begin by first reviewing background theory for rescaled spike and slab models.
The underlying setting is the linear regression model where Y1, . . . , Yn are indepen-
dent responses such that

(2.1) Yi = β1xi,1 + · · · + βdxi,d + εi = xt
iβββ + εi, i = 1, . . . , n.

Here x1, . . . ,xn are non-random (fixed design) d-dimensional covariates and βββ =
(β1, . . . , βd) is the unknown coefficient vector. The εi are independent random vari-
ables (but not necessarily identically distributed) such that E(εi) = 0, E(ε2

i ) = σ2
0

and E(ε4
i ) ≤ M for some M < ∞ (the last condition is needed to invoke a trian-

gular central limit theorem later, but is not crucial and can certainly be relaxed).
The variance σ2

0 > 0 is assumed to be unknown. Throughout we assume xi are
standardized so that

∑n
i=1 xi,k = 0 and

∑n
i=1 x2

i,k = n for k = 1, . . . , d (without
loss of generality we assume that there is no intercept term in (2.1)). We shall also
assume throughout that X, the n× d design matrix, is orthogonal, i.e., XtX = nI.
As mentioned in the Introduction, this will allow us to exploit certain elegant the-
ories for rescaled spike and slab methods, although, of course, the spike and slab
method works for general design matrices.
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Spike and slab methods first appeared in the works of [4] and [5] for subset
selection in linear regression models. The expression “spike and slab,” coined by
Mitchell and Beauchamp in [5], referred to the prior for the regression coefficients
used in their hierarchical formulation. This was chosen so that the coefficients were
mutually independent with a two-point mixture distribution made up of a uniform
flat distribution (the slab) and a degenerate distribution at zero (the spike). In [6]
a different type of prior was used. This involved a scale mixture of two normal
distributions. In particular, the use of a normal prior was highly advantageous
and led to a Gibbs sampling method that highly popularized the spike and slab
approach; see [7–11].

As pointed out in [1], priors involving a normal scale mixture distribution, of
which [6] is a special example, constitute a wide class of models termed “spike and
slab models.” A modified class of spike and slab models called “rescaled spike and
slab models” was introduced [1]. These new models differed in that the original Yi

values were replaced by new values scaled by the square root of the sample size and
divided by the square root of an estimate for σ2

0 . Rescaling was shown to induce a
non-vanishing penalization effect for the posterior mean, and when used in tandem
with a continuous bimodal prior, the resulting posterior mean was shown to possess
a selective shrinkage property in orthogonal models [1].

A rescaled spike and slab model was defined in [1] to denote a Bayesian hierar-
chical model specified as follows:

(Y ∗
i |xi, βββ) ind∼ N(xt

iβββ, n), i = 1, . . . , n,

(βββ|γ) ∼ N(0,Γ),
γ ∼ π(dγ).(2.2)

Here Y ∗
i are the rescaled Yi values defined by Y ∗

i = σ̂−1n1/2Yi, where σ̂2 = ||Y −
Xβ̂ββ0||2/(n−d) is the unbiased estimator for σ2

0 based on the full model, and β̂ββ0 is the
OLS estimate for βββ (other estimators for σ2

0 are also possible; these details, however,
play a minor role). The value of n used in the first level of the hierarchy in (2.2)
is a variance inflation factor introduced to compensate for the rescaling. Moreover,
inclusion of n in the hierarchy was shown in [1] to be necessary for selective shrinkage
to take place. Without rescaling, shrinkage for the posterior mean vanishes in the
limit due to the prior becoming swamped by the likelihood [1].

In (2.2), 0 denotes a d-dimensional zero vector, Γ = diag(γ1, . . . , γd) is a d ×
d diagonal matrix and π is the prior measure for γ = (γ1, . . . , γd)t. A Bayesian
parameter σ2 can also be introduced in (2.2) at the first level of the hierarchy.
However, we avoid this approach here and opt for the simpler set up ((2.2)). The
rationale for this is the following: (i) we have already removed the effect of σ2

0 when
rescaling Yi, and (ii) the simpler setup enforces a sparse solution for the posterior
mean in ill-determined settings when d is of the same size, or larger, than n. Point
(ii) is especially relevant as this is the setting we are interested in here.

2.1. Rescaling, the choice of π, and implications for shrinkage

In addition to rescaling the response, the prior for γk must satisfy certain require-
ments in order for selective shrinkage to occur. A sufficient condition requires the
prior to have a bimodal property such that the right tail of the distribution is con-
tinuous and such that there is a spike in the distribution near zero (see Theorem 6
of [1] for precise details). One such example is the continuous bimodal prior used
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Fig 1. Conditional density for γk given w: (a) w = 0.1, (b) w = 0.25. Observe that only the
densities height changes as w is varied. One can think of w as a complexity parameter controlling
model dimension. Prior based on hyperparameters a1 = 5, a2 = 50 and v0 = 0.005 as in [1–3].

in [1–3]. This prior is induced by a parameterization involving a binary variable
and a positive variable with an inverse-gamma distribution. More precisely, define
γk by γk = Ikτ2

k , where Ik and τ2
k are parameters with priors specified according to

(Ik|v0, w) iid∼ (1 − w) δv0(·) + w δ1(·), k = 1, . . . , d,

(τ−2
k |a1, a2)

iid∼ Gamma(a1, a2),
w ∼ Uniform[0, 1].(2.3)

The choice for v0 (a small positive value) and a1 and a2 (the shape and scale
parameters for a gamma density) are selected so that γk has a continuous bimodal
distribution with a spike at v0 and a right continuous tail (see Figure 1). Such a
prior allows the posterior to shrink a coefficient to zero depending upon the value
for γk. Small values heavily shrink a coefficient towards zero.

2.2. Selective shrinkage recast in terms of penalization

One can view the posterior mean as a solution to a constrained least squares op-
timization problem in which the hypervariances are related to penalty terms. This
provides us with another way to think about the effects of selective shrinkage. As
before, we consider the orthogonal setting where XtX = nI. Let Vk = E(νk|Y∗)
where νk = γk/(1 + γk). For our argument it will be easier to think of penalization
in terms of β̂ββ = σ̂n−1/2β̂ββ

∗
, where β̂ββ

∗
= E(βββ|Y∗) denotes the posterior mean for βββ

under our rescaled spike and slab model. It can be shown that

(2.4) β̂ββ = arg min
βββ

{
||Y − Xβββ||2 + n

d∑
k=1

1 − Vk

Vk
β2

k

}
.

Observe how each βk coefficient in (2.4) is penalized by a unique value (1−Vk)/Vk.
The closer Vk is to 1, the smaller the penalty and the less the shrinkage for βk,
while the closer Vk is to zero, the larger the penalty, and the more βk is shrunk
to zero. It is clear the more adaptive Vk is to the true coefficient value, the more
accurate variable selection becomes.

This argument can be formalized by studying the asymptotic behavior of Vk.
Using a similar argument as in [2], one can show that under the spike and slab
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Fig 2. Limiting density for νk conditioned on w = 0.1 and Z2
k under the null that βk is truly

zero. Values for Z2
k selected from the 25th, 50th, 75th, 90th, 95th and 99th percentiles of a χ2

1-

distribution. Mode on the left increases as Z2
k decreases, whereas mode on the right decreases.

model (2.2) with continuous bimodal prior (2.3) (specified in Figure 1), the following
holds:

Theorem 2.1. Assume that max1≤i≤n ||xi||/
√

n → 0. If (2.1) represents the true
data model, and the coefficient βk for variable k is truly non-zero, then

(2.5) Vk
d� 1.

Moreover, if βk is truly zero, then

(2.6) E(νk|w,Y∗) d�
∫ 1

0
ν exp

(
νZ2

k/2
)
(1 − ν)−3/2f

(
ν/(1 − ν)|w

)
dν∫ 1

0
exp

(
νZ2

k/2
)
(1 − ν)−3/2f

(
ν/(1 − ν)|w

)
dν

,

where f(·|w) = (1 − w)g0(·) + wg1(·) is the prior density for γk given w, where
g0(u) = v0u

−2g(v0u
−1), g1(u) = u−2g(u−1) and

g(u) =
aa1
2

(a1 − 1)!
ua1−1 exp(−a2u)

and Zk has a N(0, 1) distribution.

Result (2.5) of Theorem 2.1 shows that Vk approaches the value 1 in the case
where there is true signal, and hence the penalty for βk in (2.4) vanishes as the
sample size increases, and βk will not be shrunk, just as we’d expect and hope for.

Result (2.6) applies to the case when βk is really zero. The term Zk appearing
in (2.6) is the limit of the posterior mean β̂∗

k under the null, and thus Zk reflects the
effect of the data on the posterior under the null. In particular, unless β̂∗

k is unduly
large, the posterior mean for νk should be relatively close to the value under the
prior. This has implications for sparse settings. In such cases, the posterior value
for w will be small and the posterior for νk conditioned on w (which will look like
the prior given w) will be concentrated near zero. Thus, the left-hand side of (2.6)
should be small and the posterior mean penalized and shrunk towards zero. On the
other hand, if β̂∗

k is large, then the left-hand side of (2.6) will be large, and there
will be less penalization and less shrinkage for βk. A large value for β̂∗

k is unlikely
under the null and in fact is expected only when βk is really non-zero, which is
another way to see why (2.5) holds. Figure 2 illustrates how νk might depend upon
β̂∗

k in a sparse setting under the null that βk is truly zero.
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3. Orthogonal polynomials: first illustration

For our first illustration we consider a dataset related to spinal bone mineral density
(BMD) (see [12] for a more complete description of the data). The response is the
relative change in spinal BMD as a function of age in male and female adolescents.
Figure 3 plots the results of our analysis. Predicted values for Y based on the
posterior of the rescaled spike and slab model (2.2) are superimposed on the figure
as solid dark and dashed dark lines for men and women, respectively. The analysis
on the left side of the plot is based on an orthogonal polynomial design matrix with
d = 10 basis functions. Also superimposed are OLS estimates (gray lines).

While the left side of Figure 3 shows some difference between the methods,
discrepancies become more apparent if d is allowed to increase. We re-ran the same
analysis but using an overly parameterized design involving d = 25 basis functions.
The right side of Figure 3 records the result. Notice how badly OLS overfits, whereas
rescaled spike and slab predictors remain relatively unaffected.

3.1. Comparative analysis using effective kernels

A more formal comparison between the two approaches can be based on an effective
kernel analysis. Effective kernels were introduced in [13] (Chapter 2.8), as a way to
evaluate the differences between kernel smoothers. Suppose we have data (xi, Yi),
i = 1, . . . , n, where Yi are the response values. It is assumed that

(3.1) Yi = fi + εi, i = 1, . . . , n,

where fi = xt
iβββ are unknown mean values and xi ∈ R

d are the values of the pre-
chosen underlying d basis functions evaluated at xi. Call a smoother s(x) linear in
Y , if for each x0

s(x0) =
n∑

j=1

Sj(x0)Yj ,

where Sj(x0) depends only upon the x-values and not the responses. More generally,
let f = (f1, . . . , fn)t. If s(xi) is a linear smoother for fi, then

f̂ = SY

Fig 3. Left plot: Relative change in spinal BMD as a function of age. Solid dark and dashed dark
lines are spike and slab predicted curves for men and women using an orthogonal polynomial
design matrix with d = 10 basis functions. Gray solid and dashed lines are OLS estimates for
men and women. Right plot: Analysis similar as before, but now using an over parameterized
basis function, d = 25. Note the spiky behavior of the OLS.
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is a linear smoothed estimate of f , where S is the n×n smoother matrix, S = {si,j}
for si,j = Sj(xi). The value Si(xi) = si,i is often referred to as the effective kernel
at xi [13, 14]. The effective kernel measures the influence of xi on Yi. The set of
values {si,j : j = 1, . . . , n}, which is the ith row of S, is called the effective kernel
for Yi. Plotting the effective kernel is a way to compare different smoothers [13].

This idea can be adapted to our setting as follows. First we derive the effective
kernel for the OLS estimate. Consider the orthogonal regression setting in which
XtX = nI. Let x(k) denote the kth column of the design matrix X. It follows that
f̂ = SY, where

(3.2) S = X(XtX)−1Xt = n−1
d∑

k=1

x(k)xt
(k).

The effective kernel for Yi is n−1
∑d

k=1 xi,kxt
(k) and the effective kernel at xi is

si,i = n−1xt
ixi.

The notion of an effective kernel needs to be slightly modified to handle adaptive
penalization. We adopt the notion of an adaptive smoother matrix that allows the
effective kernel to depend upon both xi and Yi. Define the spike and slab predictor
as f̂∗ = Xβ̂ββ.

Theorem 3.1. Under othogonality, the spike and slab predictor for Yi in (3.1) can
be written as f̂∗ = S∗Y, where

(3.3) S∗ = n−1
d∑

k=1

Vkx(k)xt
(k).

One can conceptualize S∗ as an adaptive linear smoother matrix. Consequently, the
effective kernel for Yi is defined as n−1

∑d
k=1 Vkxi,kxt

(k), and the effective kernel at

xi is s∗i,i = n−1
∑d

k=1 Vkx2
i,k.

Figure 4 shows the effective kernels at xi for the OLS and rescaled spike and
slab predictors, where xi is age. The plots are based on the over-parameterized
orthogonal polynomial design involving d = 25 basis functions. The large number
of predictors helps to emphasize the non-robustness of the OLS estimate. Note
especially how the OLS estimate is affected by the points near the edges of the
plots. In contrast, note the robustness of the spike and slab approach.

Fig 4. Left plot: Effective kernels at xi, i = 1, . . . , n, for men using over-parameterized design,
d = 25 (rescaled spike and slab values depicted by thick line; OLS by dashed line). Right plot:
Effective kernels for women.
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3.2. Effective degrees of freedom

The smoother matrix provides information about the nature of a predicted curve.
Ideally, however, we would like a rigorous and systematic manner in which to sum-
marize this information as a way to register (classify) a curve. One way to rigorously
compare curves is to use the notion of the effective degrees of freedom [13]. For any
smoother matrix S, the effective degrees of freedom, Df , is defined as

Df (S) = tr(S) =
n∑

i=1

si,i.

For the OLS smoother matrix (3.2), Df (S) = n−1
∑n

i=1

∑d
k=1 x2

i,k = d (the last
identity on the right is due to orthogonality). Meanwhile, for the spike and slab
smoother matrix (3.3), we have the following corollary to Theorem 3.1.

Corollary 3.1. Under the conditions of Theorem 3.1,

Df (S∗) = n−1
n∑

i=1

d∑
k=1

Vkx2
i,k =

d∑
k=1

Vk ≤ d.

Hence, the degrees of freedom for the spike and slab smoother is bounded by the
dimension of the underlying polynomial basis.

Observe how {Vk}, the shrinkage parameters, dictate the degrees of freedom. The
larger the value, the more degrees of freedom used up, and the less shrinkage there
is. In the analysis presented earlier using a saturated design (d = 25), the effective
degrees of freedom are 4.2 and 5.8 for men and women, respectively, indicating
more overall shrinkage for men and evidence of differences in the two curves.

Effective degrees of freedom are useful for assessing overall differences between
curves. However the method is limited in its ability to register a curve, as it reduces
the overall properties of a curve to a single summary value. In the next section we
illustrate a much more effective way to register curves.

4. Local regression

In this section we illustrate how rescaled spike and slab models can be used for local
regression, an alternative method of smoothing [15, 16]. By exploiting orthogonality,
and by drawing connections to generalized ridge regression, we show that rescaled
spike and slab predictors can be viewed as local regression smoothers with a local
smoother matrix whose effective degrees of freedom can be traced over x as a way
to characterize curvature of the underlying function. Another nice feature of using
rescaled spike and slab models, just like in global smoothing, is that we end up
being fairly robust to the choice of the dimension of the underlying basis functions.

First let’s review some background on local regression. In local regresssion, for
a given xi, rather than performing a global regression to estimate fi, one instead
fits a weighted regression model using weighted least-squares, with weights for an
observation x chosen by how close they are to xi. This results in a local estimator

f̂(xi) = (̂fi,1, . . . , f̂i,n)t

in which the ith coordinate, f̂i,i, is used as an estimator for fi = E(Yi). Unlike (3.1),
however, the relationship between fi and xi can vary with i.
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As well known, a local regression predictor is nothing more than a weighted least
squares predictor. That is, for a given xi, let bi,j = (bi,j,1, · · · , bi,j,d)t be the values
of the d basis functions chosen for xi evaluated at xj . The local regression predictor
is defined as f̂(xi) = Biβ̂ββW , where

(4.1) β̂ββW = arg min
βββ

{
n∑

j=1

(
Yj −

d∑
k=1

βkbi,j,k

)2

K

(
xj − xi

h

)}
,

and K(·) is a positive kernel function with unknown bandwidth parameter h > 0.
Solving, it can be shown that f̂(xi) is the weighted least squares predictor,

(4.2) f̂(xi) = Bi(Bt
iW(xi)Bi)−1Bt

iW(xi)Y

where Bi is the n × d design matrix with jth row bi,j , and W(xi) = diag{Wi,j} is
the n × n diagonal weight matrix, where

Wi,j = K

(
xj − xi

h

)
, j = 1, . . . , n.

See [14] for details.

Example 4.1. A popular basis function expansion for local regression is in terms
of polynomials [17, 18]. In this case, the design matrix is

(4.3) Bi =

⎛
⎜⎜⎜⎝

1 x1 − xi · · · (x1 − xi)d

1 x2 − xi · · · (x2 − xi)d

...
...

...
...

1 xn − xi · · · (xn − xi)d

⎞
⎟⎟⎟⎠

n×(d+1)

.

Note that Bi has rank d + 1 because we always include an intercept term. The
rationale for using a polynomial expansion follows by considering an expansion of
of E(Yj) = f(xj) around xi. Since,

f(xj) = f(xi) +
p∑

k=1

(xj − xi)k

k!
f (k)(xi) + Rj ,

where Rj is a small remainder term, the local weighted regression (4.1) is (approx-
imately) the value for βββ minimizing

n∑
j=1

(
f(xi) +

p∑
k=1

(xj − xi)k

k!
f (k)(xi) −

(
β0 +

d∑
k=1

βk(xj − xi)k
))2

K

(
xj − xi

h

)
.

If d = p, then β0 estimates f(xi) while βk estimates f (k)(xi)/k! for k = 1, . . . , d.
The local regression predictor is

f̂i,j = β̂0,W +
d∑

k=1

β̂k,W (xj − xi)k, j = 1, . . . , n,

which should be a good approximation to f(xj) when xj is near xi.
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4.1. Rescaled spike and slab weighted regression

The representation (4.2) presents an immediate tie-in to the spike and slab method-
ology. The rescaled posterior mean, β̂ββ, from (2.2) is a model averaged generalized
ridge regression (GRR) estimator, expressible as

β̂ββ = E

{(
XtX + nΓ−1

)−1
XtY

∣∣∣∣Y∗
}

.

It is not hard to see that by appropriately introducing a weighting matrix into the
hierarchy, that one can arrive at a model averaged weighted GRR estimator, and
a smoother of the form (4.2). The advantage of this type of approach is that the
resulting smoother will be based on an estimator that uses adaptive penalization.

In this modification, similar to (4.3), we work with a polynomial basis that
depends upon i. However, our polynomial basis will be strictly orthogonal. Let

Ii,h =
{

j : K

(
xj − xi

h

)
> 0

}
.

For an orthogonal basis we define Bi to be the design matrix for xi obtained using
a d-degree orthogonal basis using only those xj values where j ∈ Ii,h.

For each j ∈ Ii,h, define Y ∗
j = σ̂−1

i n
1/2
i Yj , where ni is the cardinality of Ii,h

and σ̂2
i is an estimator for σ2

0 for the set of responses, {Yj : j ∈ Ii,h}. We use the
estimator due to [19],

σ̂2
i =

1
2(ni − 1)

ni−1∑
j=1

(Y(j+1) − Y(j))2,

where Y(j) is the Y -value corresponding to the jth ordered x-value in Ii,h (the
estimator is most easily computed by sorting the x values).

Let Y∗
i be the vector of the rescaled values Y ∗

j = σ̂−1
i n

1/2
i Yj for j ∈ Ii,h. Let Wi

be the subset of W(xi) corresponding to those j ∈ Ii,h. For a given xi, the modified
rescaled spike and slab model is

(Y∗
i |Bi,Wi, βββ) ∼ N(Biβββ, niW−1

i ),
(βββ|γ) ∼ N(0,Γ),

γ ∼ π(dγ).(4.4)

Consider the following theorem which characterizes the spike and slab predictor
f̂∗(xi) = Biβ̂ββi,W , where β̂ββi,W is the rescaled posterior mean from (4.4). We use this
result later to explicitly characterize the smoother matrix and its effective degrees
of freedom under orthogonality.

Theorem 4.1. Under the Bayesian hierarchy (4.4), the spike and slab local pre-
dictor can be expressed as

f̂∗(xi) = (̂f∗i,1, . . . , f̂
∗
i,n)t = S∗

i,hYi,

where S∗
i,h is the model averaged smoothing matrix defined by

S∗
i,h = E

{
Bi

(
Bt

iWiBi + niΓ−1
)−1

Bt
iWi

∣∣∣∣Y∗
i

}
.

Note that the smoother matrix S∗
i,h, unlike (4.2), takes advantage of adaptive pe-

nalization.
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4.2. Orthogonality

Our construction for the basis ensures that Bt
iBi = niI. However, in order to fully

exploit orthogonality, we additionally require that

(4.5) Bt
iWiBi = niI.

For (4.5) to hold we must have Wi = I. The simplest way to satisfy this condition
is to use a nearest neighbour kernel. For a fixed bandwidth value h, let

K
(x

h

)
= 1{|x| < h}.

The nearest neighbour kernel puts a weight of 1 on all values of x within a distance
of h to zero. Using such a kernel implies that Wi = I and Ii,h = {j : |xj −xi| < h}.

Shrinkage, just as in the global orthogonal regression setting, is intimately related
to the degrees of freedom of the smoother matrix. Consider the following corollary
to Theorem (4.1) characterizing effective degrees of freedom under orthogonality.

Corollary 4.1. Under the orthogonality assumption (4.5), the local smoother ma-
trix for the rescaled spike and slab predictor is S∗

i,h = n−1
i BiViBt

i. The effective
degrees of freedom of S∗

i,h equals

Df (S∗
i,h) = n−1

i tr(BiViBt
i) = n−1

i tr(Bt
iBiVi) =

d∑
k=1

Vi,k ≤ d,

where Vi = diag{Vi,k} and

Vi,k = E

(
γk

1 + γk

∣∣∣Y∗
i

)
, k = 1, . . . , d.

Hence, the degrees of freedom of the spike and slab local smoother is bounded by the
dimension of the local polynomial basis.

The effective degrees of freedom can be used to provide insight into the geometry
of a curve f . If the effective degrees of freedom is large, f will possess higher order
local curvature, whereas if the degrees of freedom are small, f is likely to be flat.
Plotting Df (S∗

i,h) is therefore a way to register a curve and to identify key differences
between curves. We illustrate this concept by way of three different examples.

4.3. Spinal BMD data revisited

For our first example, we applied the local rescaled spike and slab model (4.4) to
the previously analyzed BMD data. For the analysis, we used a nearest neighbour
kernel with a bandwidth set at h = 1, corresponding to one year of age. For the
basis function we used cubic orthogonal polynomials. Figure 5 plots the spike and
slab predictor for men and women (line types as in Figure 3). Also superimposed
on the figure are predicted curves using Friedman’s supersmoother (implemented in
the programming language R by the call “supsmu(x,y)”). The two methods agree
closely, although Friedman’s smoother appears to over-smooth the data for men.
The right-hand side of Figure 5 plots the effective degrees of freedom for men and
women. One can immediately see a phase shift in the figure, signifying distinct
modes for the two curves. Also, overall, there is significantly less shrinkage for
women with degrees of freedom being positive over a much wider region than men.
In both cases, curves eventually flatten out at around age 20.
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Fig 5. Left plot: Local kernel regression for BMD data via rescaled spike and slab models with
orthogonal polynomial cubic basis functions. Solid dark and dashed dark lines are spike and slab
predictors for men and women, respectively. Gray solid and dashed lines are Friedman’s super-
smoother for men and women. Right plot: Effective degrees of freedom of spike and slab local
smoother (solid lines are men, dashed lines are women).

4.4. Cosmic microwave background radiation

As another illustration we look at data related to cosmic microwave background
(CMB) radiation [20]. Here, the value for x is the multipole moment and Y is the
estimated power spectrum of the temperature fluctuations. The outcome is sound
waves in the cosmic microwave background radiation, which is the heat left over
from the big bang.

We used the same strategy and settings as before. For the bandwidth we used
h = 25 which was estimated prior to fitting using generalized cross-validation.
Results from the analysis are depicted in Figure 6 with plots zoomed in on different
regions of x in order to help visualize the varying curvature. The bottom right plot
of Figure 6 shows the effective degrees of freedom. The plot suggests the presence
of at least 4 distinct inflection points. In particular, note that initially for x < 200
there is a steep increase in the curve signified by the effective degrees of freedom
being roughly constant at 3.0. At around x = 200 there is a significant drop in
the effective degrees of freedom, followed by an increase and a flattening out until
around x = 400. The drop at x = 200 indicates the first inflection point. At x = 400
there is another drop in the effective degrees of freedom. Similarly, there is a drop
near x = 600 and x = 800. All told, this suggests at least 4 distinct inflections, all
appearing in multiples of 200 starting at x = 200.

4.5. Mass spectrometry protein data

The study of proteins is critical to understanding living organisms at the molecular
level as proteins are the main components of physiological pathways of cells. Pro-
teomics, the study of proteins on a large scale, is often considered the natural step
after genomics in the study of biological systems. Greatly complicating any system-
wide analysis of proteins, however, is the dynamic nature of the proteome, which
constantly changes through its biochemical interactions with the genome and the
environment. While the challenges faced by proteomics are great, the benefits at
the same time are potentially huge. For example, by studying protein differences for
diseased individuals, one might be able to discover pathways responsible for these
differences, which in turn could lead to novel biomarkers for identifying disease.
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Fig 6. First 3 plots (top to bottom left to right) are rescaled spike and slab local predictors (thick
dark lines) for CMB data. Gray lines are Friedman’s smoother. Bottom right plot: Effective
degrees of freedom for rescaled spike and slab predictor. Note the presence of 4 modes suggested
by this last plot.

One promising technology for profiling protein behavior is SELDI-TOF-MS (sur-
face enhanced laser desorption/ionization time-of-flight mass spectrometry). In this
technology, homogeneous biological samples are placed on the active surface of an
array. The protein samples are washed and an energy absorbing molecule solution
is placed on the surface of the array and allowed to crystalize. The array is then
queried by a laser which ionizes the proteins in the sample. Charged gaseous pep-
tides are emitted and their intensity is detected downstream. The mass over charge
ratio (m/z) of a peptide-ion is determined from the recorded TOF (time-of-flight).
The data collected from a SELDI-TOF-MS experiment consists of the intensity
(abundance) of proteins in the sample for a given m/z ratio. One can think of the
set of these two values as constituting a spectra. Each biological sample produces
one spectra and it is of interest to study differences in spectra as a function of
phenotype. See [21] for more details and further references.

Identification of unique peaks in the spectra, a method commonly referred to
as peak identification, is a crucial part of analyzing mass spectrometry data. From
a statistical perspective, peak identification can be recast as a smoothing problem
where the goal is to identify modes in the data after appropriate smoothing. The
outcomes are the spectrometry intensity measurements, whereas x is the specific
m/z ratio. To illustrate how our spike and slab method can be used for peak detec-
tion, we analyzed a set of 8 calibration spectra available as part of the “PROcess”
library [21] in the Bioconductor R-suite. The data is unique because it is known a
priori that the same 5 proteins are present in each of the 8 samples.

The results from the analysis are plotted in Figure 7 (we note that the data was
first baseline normalized prior to analysis). The black lines in the top plot are the
rescaled spike and slab smoothed predictors for each spectra. We used orthogonal
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Fig 7. Mass spectrometry calibration data: 8 spectra, each comprising 13,468 distinct m/z ratios
(horizontal axis constrained to a subset of observed m/z ratios to help zoom in figure). Top plot:
Solid lines are rescaled spike and slab predictors and dashed vertical lines indicate known unique
proteins. Bottom plot: Effective degrees of freedom.

polynomials of degree 5 (the high degrees of freedom used due to the spiky nature
of the data). The bandwidth was set at h = 50. Superimposed are 5 dashed vertical
lines indicating the 5 distinct proteins. Interestingly, we find that 3 of the 5 proteins
are clearly identified in all 8 spectra. However, the two smallest proteins m/z = 1084
and m/z = 1638 are less visible, the protein at m/z = 1084 especially so. There
is also evidence of at least 2 additional peaks at approximately m/z = 3500 and
m/z = 4500. The effective degrees of freedom plot, also given in Figure 7, confirms
these findings. The plot also indicates that overlap of spectra is sub-par suggesting
further normalization of the data is needed.
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