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Reply to the Editor:

As noted in our commentary on the work by Bolourani
and colleagues,1 the problem of class imbalance in biomed-
ical data is ubiquitous and requires special care because
of the tendency of machine learning (ML) methods to clas-
sify members of the majority class (ie, “negatives” or non-
events) correctly at the expense of members of the minority
class (ie, “positives” or events). As discussed, recent work
on “quantile classifiers” is a promising new approach to
navigate this challenging problem. It was thus with great in-
terest that we read the commentary by Nedadur and col-
leagues2 on the same article. In their commentary, they
advocated for more comprehensive and standardized re-
porting of ML methods to promote easier understanding
and evaluation, which was made more difficult in this anal-
ysis because of the nature of the data.

We sympathize with these comments, and as ML
methods become more widely used, there will undoubtedly
be more calls like this, as well as for standardized work-
flows for ML methods. (Indeed Nedadur and colleagues2

provided such an example.) With this in mind, we would
like to suggest 2 points for consideration in such
discussions.

First, we believe that greater awareness of the limitations
of current metrics used for evaluating performance is
needed. C-statistics and areas under receiver operating char-
acteristic (ROC) curves are routinely reported, but these
have many limitations, most notably in the class-
imbalanced setting. Specifically, they account for neither
prevalence (ie, the frequency of the minority class) nor un-
equal misclassification costs (eg, the cost of incorrectly
classifying an early readmission vs cost of incorrectly clas-
sing a nonearly readmission). Precision-recall (PR) curves
have been suggested as an alternative to ROC curves in
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the presence of class imbalance.3 PR curves, however, do
not have the desirable property of a “universal baseline.”
Specifically, the baseline for all ROC curves is 0.5, whereas
the baseline for a PR curve is the prevalence, which is data
dependent and this can lead to confusing results if the same
method is used to analyze new data with a slightly different
prevalence.4 Importantly, both skirt the issue of selecting a
threshold and thus evaluate theoretic capability rather than
actual performance. Moreover, both include clinically
nonsensical thresholds that can contribute more to the
area than clinically desirable thresholds.5 As advocated by
Nedadur and colleagues,2 we recommend that calibration
information for class probability estimates be provided,
such as a “smoothed calibration curve” that compares pre-
dicted probability to observed proportions.6 Regardless, if
ROC and PR curves are used, we recommend also reporting
the G-mean, a robust and interpretable metric summarizing
classification performance.

A second issue is the overemphasis on prediction perfor-
mance, with many articles devoting entire sections and
lengthy appendices to this, but with relatively less effort be-
ing placed on clinical insight. We concur with the call of
Nedadur and colleagues2 for meaningful and interpretable
statements, but disagree that MLmethods are “black boxes”
not designed for this goal. In fact, there exist many tools that
can aid in this endeavor. These include (1) variable impor-
tance, which provides a direct interpretation of the contribu-
tion of each variable to prediction of the outcome7,8; and (2)
partial effects (also known as marginal effects), which esti-
mate the effect of a change in a specific predictor variable
on the outcome after averaging over all other predictor vari-
ables.9 It should be noted that variable importance and par-
tial effects are not available for all ML methods, and this
should be an important consideration when choosing a pro-
cedure. Algorithms designed solely for prediction, such as
deep learning and support vector machines, are true black
boxes. These methods may utilize synthetic variables unre-
lated to original variables, thus rendering them unable to
provide meaningful variable importance, and as they are
only suitable for classification and recognition tasks, they
do not provide class probability estimates and thus cannot
provide partial or marginal effects. In contrast, there are
ML methods that yield insight, such as random forests
and gradient boosted trees. These methods work directly
with the outcomes and original variables, even categorical
variables with many levels, without obfuscating meaning.
These tree-based methods have been used successfully in
many clinical settings.

Prediction performance and clinical insight are thus
sometimes complementary but more often at odds with
each other. These 2 concepts should not be confused,
and when reporting results the original goal of the analysis
should dictate not only the appropriate method but also the
format for reporting the results to avoid misunderstanding.
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Reply to the Editor:

We thank Nedadur and colleagues1
for their interest and insightful comments in our study
of using machine learning in thoracic surgery
outcomes, specifically predicting early readmission after
esophagectomy. We agree with the message of the letter
that comprehensive reporting of machine-learning models
is key to understanding the inner working of the model
and the conclusions reached. However, as it was pointed
The Journal of Thoracic and Car
out by Ishwaran and O’Brien,2 we diverge from their
emphasis on performance measures rather than
methodology and the clinical applications. Given the
variable nature of prediction models and the uneven
importance of metrics for each clinical question, while
many guidelines have been developed for reporting
performance metrics, there is inconsistency and debate on
what is important to report. We further caution against using
any published machine-learning methods/schema to actual
clinical practice without externally validating them. As
we learned after further investigation of our work, even if
all the steps of data-oriented research including problem
formulation, design/development of methodology, data
gathering, and preparation are solid, tree-based models
are very sensitive in their experimental evaluation and a
minor error may affect the obtained results significantly.
Thankfully, while the error overestimated the area under
the curves and other metrics of the models, it did not affect
the conclusion of our work. The random forest model was
the most accurate model among those presented; after
applying NearMiss method, the sensitivity of the model
increases, which comes at the cost of decreasing
specificity and accuracy. Both models have superior
predictive ability than logistic regression, and order of
blended metrics presented in Table E7 of our
article remained intact.
The issue was raised that if the calibration metrics are not

reported, then the probability of certainty is not clear. Our
main focus in this work was discrimination, and we did
not focus on calibration of the model. As the authors
pointed out, calibration plots will show the reliability of
predictions as a function of change in the prevalence. For
the sake of completeness, we take this opportunity to pre-
sent the calibration plots for the classifier used along with
isotonic and sigmoid calibration3 of the model (Figure 1)
and the corresponding Brier scores,4 precisions, recalls,
and F1 scores5 (Table 1).
This discussion gives us an opportunity to present a

measure that is sometimes overlooked in prediction models
of biomedical sciences: the precision–recall curve. In our
case, the curves capture how much precision is traded
between the models to gain the recall (sensitivity)
(Figure 2). As we argued in work, we believe in the case
of clinical decisions, this is often necessary (in our case,
we would like to catch as many patients that are to be
readmitted early after discharge, even at the cost of losing
much of the precision). The best way to measure this among
models is by a weighted blended metric like Fb score, which
is the weighted harmonic mean of precision and recall. This
measure can be used to compare the 2 models when
precision and recall (sensitivity) have different importance.
That is, if we value recall (sensitivity), b times as much the
precision. Fb score is often used to compare models when
false negatives have greater detriment than false positives
diovascular Surgery c Volume 163, Number 1 e103
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