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Abstract
sidClustering is a new random forests unsupervised machine learning
algorithm. The first step in sidClustering involves what is called sidification of
the features: staggering the features to have mutually exclusive ranges (called the
staggered interaction data [SID] main features) and then forming all pairwise
interactions (called the SID interaction features). Then a multivariate random
forest (able to handle both continuous and categorical variables) is used to pre-
dict the SID main features. We establish uniqueness of sidification and show
how multivariate impurity splitting is able to identify clusters. The proposed
sidClustering method is adept at finding clusters arising from categorical and
continuous variables and retains all the important advantages of random forests.
The method is illustrated using simulated and real data as well as two in depth
case studies, one from a large multi-institutional study of esophageal cancer, and
the other involving hospital charges for cardiovascular patients.
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1 INTRODUCTION

Machine learning is generally divided into two branches:
supervised and unsupervised learning. In supervised
machine learning, the response is known and the intent
is to train a model to predict its value, while in unsuper-
vised learning the target variable needs to be determined
from a set of known features. One of the most famous
examples of this type of algorithm is k-means clustering
[14] but a major drawback of this method is its lack of
feature selection which becomes increasingly important
as the dimensionality of the problem increases. Another
challenging aspect is when the data exhibit a mix of both
numerical as well as categorical feature variables (referred
to as mixed data). Such data is very common in modern big
data settings such as in medical and health care problems.
However many unsupervised methods are better suited for

data containing only continuous variables. This includes
methods dependent on densities [12], those that rely on
connectivity-based approaches [10] and methods that rely
on distance metrics such as k-nearest neighbor approaches
[16]. Even mixture model methods, which are widely used
tools for unsupervised clustering, are not always appropri-
ate. This is because when the data are of a mixed type,
standard distributions used for mixture modeling may not
be valid [15].

In this paper, we introduce a new random forests
based method for unsupervised learning. The benefit of
using random forests [1] is that we can take advantage
of its many excellent properties to deal with the chal-
lenges of unsupervised learning. For example, dealing
with mixed data is naturally addressed under the random
forests framework, as the process of growing and split-
ting a tree naturally accommodates both continuous and
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Algorithm 1 sidClustering

1: procedure sidClustering((Xi)n
i=1,𝛿)

2: Sidify the original variables using Algorithm 2
3: Use SID interaction features to predict SID main features using MVRF
4: Extract the random forest distance from the trained multivariate forest
5: Calculate Euclidean distance on the matrix of distances
6: Cluster the observations based on distance of Step 5 utilizing HC or PAM
7: end procedure

categorical data. Also random forests is scalable to big data,
due to trees being trained independently, thus allowing for
parallelization of the algorithm. Furthermore, it is robust
to outliers due to the well-known robustness property of
trees. Feature selection has been shown to be an imperative
part of high-dimensional clustering [6, 11], otherwise the
noise features can greatly influence the clustering result
away from the desired result. Our approach will be able
to circumvent this issue by taking advantage of random
forests ability to weed out uninformative variables.

One strategy of unsupervised algorithms involves
reworking the problem into a supervised classification
problem [5, 13]. Breiman’s unsupervised method [2] is
one widely known random forests method which uses
this strategy. The idea is to generate an artificial dataset
that goes into the model alongside the original data. A
random classification forest (RF-C) is trained on the com-
bined data (original+ artificial) and the proximity matrix
is extracted from the resulting forest. Then standard clus-
tering techniques can be utilized on the proximity matrix
such as hierarchical clustering [7] or partitioning about
medoids [18] to determine clusters (for convenience we
refer to these techniques as hierarchcial clustering [HC]
and partitioning about medoids [PAM], respectively).

Although Breiman’s clustering method has been
demonstrated to work well, it is highly dependent on the
distribution chosen for the artificial data class. There-
fore, we introduce a new random forests based method
for unsupervised learning which we call sidClustering.
The new sidClustering method is based on two new con-
cepts: (1) sidification of the data; (2) multivariate random
forests (MVRF) [22] applied to the sidified data to develop
distance between points via the multivariate relation-
ship between features and their two-way interactions.
Section 2 formally describes the sidClustering method
and details how sidification works. We show unique-
ness of the sidification mapping and provide justification
for how multivariate splitting using sidified interactions
yields good clustering properties. Section 3 provides
two real world data examples illustrating the algorithm.
Section 3.1 describes a case study involving esophageal
cancer patients while Section 3.2 presents a case study

of hospital costs for cardiovascular patients. Section 4
uses benchmark experiments to compare sidClustering
to Breiman clustering and other competitive procedures
using both simulations and real datasets and shows supe-
riority of the proposed method in many cases. Section 5
discusses our primary findings.

2 SIDCLUSTERING

Throughout we use X = (X1, … , Xd)T to represent the
d-dimensional feature and ℒn = (Xi)n

i=1 to denote the i.i.d.
learning data. Algorithm 1 presents a formal description of
the sidClustering algorithm. Line 2 creates the enhanced
feature space from the sidification of the data. We call
this new data, staggered interaction data (SID). Line 3 fits
a MVRF using the SID main features as response values
and the SID interaction features as the predictors. The
distance matrix between points obtained from the multi-
variate regression are extracted in Line 4 and then con-
verted to Euclidean distance in Line 5. Clusters are then
obtained in Line 6 by applying either HC or PAM using the
Euclidean distance based on the random forest distance
matrix obtained in Line 4.

The key idea behind sidClustering is to turn the unsu-
pervised problem into a multivariate regression problem.
The multivariate outcomes are denoted by Y = (Y 1, … ,
Y d)T and are called the SID main effects. The Y is obtained
by shifting the original X features by making them strictly
positive and staggering them so their ranges are mutu-
ally exclusive (we think of this process as “staggering”).
Translating the range of the original features in this way
is permissible due to the invariance of trees under mono-
tonic transformations [3]. For example, suppose Xj and Xk
are coordinates of X which are continuous. Then the SID
main effects obtained from Xj and Xk are coordinates Y j
and Y k of Y defined by

Yj = 𝛿j + Xj, Yk = 𝛿k + Xk,

where 𝛿j, 𝛿k > 0 are real values suitably chosen so that Y j,
Y k are positive and the range of Y j and Y k do not overlap.
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T A B L E 1 V-shaped cluster simulation

Variable Simulated by

X1 (signal variable) ∼Uniform(0, 1)

X2 (signal variable) First 250, = X1 +Normal(0, 0.2)

Last 250, =−X1 +Normal(0, 0.2)

X3, … , X10 (noise variables) ∼Uniform(0, 1)

Section 2 provides a detailed description of sidification,
here we are discussing things more informally in order to
motivate the key ideas behind our approach. The features
used in the multivariate regression are denoted by Z and
are called the SID interaction features. The SID interaction
features are obtained by forming all pairwise interactions
of the SID main effects, Y. Going back to our example
above, the SID interaction corresponding to features Xj
and Xk is some coordinate of Z denoted by Xj ⋆ Xk and
defined to be the product of Y j and Y k

Xj ⋆ Xk = Yj × Yk =
(
𝛿j + Xj

)
(𝛿k + Xk) .

As will be shown, the staggering of Y j and Y k so that their
ranges do not overlap will ensure identification between
the SID interactions Z (which are the features in the mul-
tivariate regression) and the SID main effects Y (which are
the outcomes in the multivariate regression).

The rationale for using sidified data for our multivari-
ate regression tree approach is as follows. Because Y is
directly related to X, informative X features will be cut
by their SID interactions Z because this bring about a
decrease in impurity in Y (and hence X). This then allows
cluster separation, because if coordinates of X are infor-
mative for clusters, then they will vary over the space in
a systematic manner. As long as the SID interaction fea-
tures Z are uniquely determined by the original features
X, cuts along Z will be able to find the regions where the
X informative features vary by cluster, thereby not only
reducing impurity, but also separating the clusters which
are dependent on those features.

Obviously uniqueness between X, Y, and Z plays a cru-
cial role in making sidClustering work. The identification
of sidification will be established shortly, but first we pro-
vide an example to help motivate the basic idea. For our
illustration we simulate data from a V-shaped distribution
that creates two clusters that intersect at the origin (X1,
X2)T = (0, 0)T and diverge as X1 becomes positive. Table 1
describes the simulation. Notice that d = 10 because the
simulation contains noise variables; however while the
data lies in d = 10 dimensions, the V-shape cluster sits
within the lower dimensional space of the first two coordi-
nates. For simplicity we therefore focus only on (X1, X2)T

and ignore the other coordinates for our discussion.

The top left panel of Figure 1 displays the data for
the first two dimensions from the simulation. Data values
are colored black and red to indicate cluster membership:
observe how points lie along a V-shape. The top right
panel plots X = (X1, X2)T against the SID interaction fea-
ture Z = X1 ⋆ X2. In the bottom coplot, SID main effects
Y = (Y 1, Y 2)T are plotted against Z. We can use this coplot
to understand how a multivariate regression tree might
behave using Y for the outcome and Z as the feature.
Looking at the coplot notice how there are promising cuts
along Z that can not only reduce impurity of the responses
(Y 1, Y 2)T but also lead to effective separation between the
true clusters. For example, low values of Z (region A) yield
small Y 1 values and large Y 2 values, whereas large values
of Z (region F) yield large Y 1 values and large Y 2 val-
ues, and the two groups are perfectly separated in cluster
membership. Due to the large difference in response val-
ues in regions A and F, a split on Z separating these values
would lead to a large drop in impurity, and thus a mul-
tivariate regression tree would seek to split these regions.
The same holds true for regions B, C, D, and E. On the other
hand, consider what would happen if the same tree used
the original data (X1, X2)T for the multivariate outcome.
The coplot from the top panel illustrates this scenario. The
problem is that (X1, X2)T varies far less than (Y 1, Y 2)T as Z
changes. For example, regions C, D, E, which correspond
to data near the origin, have similar X1 and X2 values. Thus
a split on Z between these regions would be less effective
in reducing impurity and the multivariate tree would be
less likely to separate region C from D and E. This does
not happen when (Y 1, Y 2)T is used because Y 1 and Y 2 do
not overlap due to staggering and thus (Y 1, Y 2)T changes
more rapidly with Z. This also explains why we use (Y 1,
Y 2)T and not (X1, X2)T for the outcomes in the multivari-
ate regression, even though these two values are directly
related (compare the left top panel to the left bottom panel
to see the effect of staggering).

We also would like to explain why we use SID inter-
actions Z for the features in the multivariate regression.
Basically, interactions are a way to create meaningful syn-
thetic features so that the unsupervised problem can be
converted to a multivariate regression problem. However
for this to work, it is crucial for identification to hold
between Z and X. This is an important property which
does not hold for just any type of interaction: for example
standard interactions constructed from X do not have this
property. Figure 2 illustrates this point. The figure shows
the difference between an algebraic interaction and a SID
interaction for the V-shaped data. Arrows map (X1, X2)T

points to their interaction value (displayed on the second
horizontal axis). Arrows in the right-hand figure display
mapping to the algebraic interaction X1 ×X2. As X1 gets
closer to zero, there is more symmetry in the values for
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F I G U R E 1 V-shaped two cluster simulation illustrating the basic concept behind sidification and sidClustering. Data are displayed as
points on the figures and are colored black and red to indicate cluster membership (observe how points lie along a V-shape). Top right panel
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in the left scatter plot. In the bottom panel, the coplot is displayed in terms of the SID main effects (Y 1, Y 2)
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X1 and X2 which leads to nearly identical X1 ×X2 val-
ues. This is apparent by the bunching up of arrows (both
black and red) for these points. Thus there is a lack of
uniqueness between X1 ×X2 and (X1, X2)T . In contrast,
the left-hand figure displays the mapping to the sidified
interaction Z = X1 ⋆ X2. Notice that arrows are no longer
bunched up and are mapped to unique values. Thus SID
interactions Z are uniquely mapped to the original fea-
tures (X1, X2)T . This uniqueness is due to the staggering
used for (Y 1, Y 2)T because recall that the Z interaction,
Z = X1 ⋆ X2, equals the algebraic interaction of the Y val-
ues, Z = Y 1 ×Y 2, and because of staggering (Y 1, Y 2)T does
not suffer from the symmetry seen with (X1, X2)T which is
what causes the breakdown in identification.

The remainder of this section is devoted to provid-
ing further details for the sidClustering algorithm as well
as presenting supporting theory. We start in Section 2 by
describing sidification in detail. A parameter required by
sidification is 𝛿 > 0 which specifies the size of the trans-
lation used in staggering. As will be shown in Section 2.3
(Theorem 3) 𝛿 can be set to an arbitrary positive number
(we use 𝛿 = 1) under a simple data preprocessing step. Mul-
tivariate regression trees which are used in Line 3 of the
algorithm are discussed in Section 2.2. There we describe
the relationship between impurity and multivariate split-
ting. Finally, Section 2.4 discusses the random forest dis-
tance metric used in Line 4. This is a new forest distance
metric and calculated in a different way than traditional
random forest proximity.

2.1 Sidification

Formally, sidification is a two-step map from the feature
space 𝒳 for the original features X to the artificially cre-
ated SID space for (Y, Z), which we denote by 𝒴 ×𝒵 .
In the first step, called staggering, the SID main space
is obtained by shifting the original features X by making
them strictly positive and staggering them so their ranges
are mutually exclusive, yielding Y. We denote this map by
𝒴 = 𝜙 (𝒳 ). In the second step, SID interaction features
Z are obtained by forming all pairwise interactions of the
SID main effects, Y. We denote this second step as the map
𝒵 = 𝜓 (𝒴 ). Thus sidification is the map:

X ∈ 𝒳 → (Y,Z) ∈ 𝒴 ×𝒵 = {(𝜙 (X) , 𝜓 (𝜙 (X)) ∶ X ∈ 𝒳}.

In practice, sidification is applied to the learning data
ℒn = (Xi)n

i=1. To distinguish abstract sidification from sid-
ification used in practice, we will use a subscript of n. In
practice, sidification maps the learning space to the sidified
space as follows:

ℒn → ℒ S
n = {(𝜙n (Xi) , 𝜓n (𝜙n (Xi))) ∶ i = 1, … ,n}
= {(Y1,Z1) , … , (Y1,Zn)} .

Algorithm 2 provides a formal description of this proce-
dure. Lines 2 and 3 translate continuous features to be
positive with the same maximum value and then reorders
them by their range. Theorem 3 will show this improves
separation of distance between certain types of clusters.
Lines 4–8 are the staggering process which results in the
main SID features (Yi)n

i=1 (see Line 9). Lines 10–16 form
pairwise interactions of main SID features resulting in
the SID interaction features (Zi)n

i=1 described in Line 17.
The algorithm returns the sidified data ℒ S

n = (Yi,Zi)n
i=1 in

Line 19.

2.1.1 Uniqueness of sidification

Because sidClustering is designed to uncover clustering in
the original features, it is clear that sidified data must pre-
serve the structure of the original data in order for the pro-
cedure to work. In particular to be successful, we require a
1:1 relationship between the SID main features, (Yi)n

i=1, the
SID interaction features, (Zi)n

i=1, and the original features,
(Xi)n

i=1.
To satisfy uniqueness, we assume that coordinates of

X are either finitely discrete or that they are continuous
with a nondegenerate density. For notational convenience
we assume the coordinates of X have been arranged so that
discrete features appear first. If 0≤ p≤ d denotes the num-
ber of discrete features, then the remaining d− p features
are assumed to be continuous (if p = d then there are no
continuous features). We make the following assumptions:

A1. If Xj is a discrete feature, then Xj has a discrete den-
sity function with respect to counting measure and its
space 𝒳(j) satisfies |𝒳(j)| <∞.

A2. The joint density for the continuous features has a
d − p dimensional support with respect to Lebesgue
measure on Rd− p.

Under these mild assumptions, the following unique-
ness property of sidification holds (see the Appendix for a
proof).

Theorem 1. Let (Y i, Zi) be the sidified main and interac-
tion features corresponding to X i for i = 1, … , n. Then with
probability one, Zi = Zi′ if and only if X i = X i′ if and only if
Y i = Y i′ .

2.2 Multivariate regression trees:
relationship of impurity to clusters

Earlier we used the V-shaped clustering problem to
motivate sidClustering by illustrating how impurity and
clustering were related (recall Figure 1). This relationship
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Algorithm 2 Sidification

1: procedure Sidification((Xi)n
i=1,𝛿 = 1)

2: Translate each continuous feature so that they are positive and all have the same maximum value (note that the
minimum value can differ over variables)

3: Order the variables in terms of their range with variables with largest range appearing first. This applies only to
continuous variables (factors are placed randomly at the end)

4: Convert any categorical variable with more than two categories to a set of zero-one dummy variables with one for
each category

5: Add 𝛿 to the first variable
6: for number of input variables, excluding the first do
7: Add 𝛿 plus the maximum of the previous input variable to the current variable
8: end for
9: (Xi)n

i=1 have now been staggered to (Yi)n
i=1 = (𝜙n(Xi))n

i=1 the main SID features
10: for all pairs of main SID features (from Line 9) do
11: if a pair consists of two dummy variables then
12: Interaction is a four level factor for each dummy variable combination
13: else
14: Create interaction variable by multiplying them
15: end if
16: end for
17: This yields (Zi)n

i=1 = (𝜓n(𝜙n(Xi))n
i=1 the SID interaction features

18: end procedure
19: return ℒ S

n = (Yi,Zi)n
i=1 = (𝜙n(Xi), 𝜓n(𝜙n(Xi)))n

i=1the sidified data

between impurity and clustering holds in general and is
formalized by the next result. To simplify matters, we will
assume d = 2 and that both coordinates of Y are continu-
ous. Let Y = (Y 1, Y 2)T and Y∗ =

(
Y∗

1 ,Y
∗
2
)T be two distinct

points to be separated. Let 𝒴n denote the SID main space
which is assumed to be a two-dimensional rectangle,𝒴n =
[a1, a2] ×

[
b1, b2

]
. The following result describes how splits

defined in the SID interaction space 𝒵n are able to sepa-
rate points in the main effect space 𝒴n while preserving
clusters (see the Appendix for a proof).

Theorem 2. Without loss of generality, let Y1 < Y∗
1 .

Case I: Y2 ≤ Y∗
2 . Then every value along the vector ⃗YY∗

from Y to Y* can be separated by a single SID interaction
split with values along ⃗YY∗ assigned to Y if they are to the
left of the split-point and to Y* if they are to the right of
the split-point.

Case II: Y2 > Y∗
2 and Y1Y2 < Y∗

1 Y∗
2 . Then Y and Y* can be

separated using two SID interaction splits with values
along ⃗YY∗ to the left of the first split assigned to Y and
values to the right of the second split assigned to Y*.

We return to Figure 1 to help explain Theorem 2. Case
I applies to points Y = (Y 1, Y 2)T in region C and points
Y∗ =

(
Y∗

1 ,Y
∗
2
)T in region E. This is because Y1 < Y∗

1 and
Y2 < Y∗

2 for most points in these two regions. Theorem 2
asserts that for any two points satisfying Case I, there exists

a split on Z that separates the two points as well as any data
lying along their vector ⃗YY∗. For example any value of Z
in region D would be an example of such a split. Because
⃗YY∗ passes through D, all data in D along this vector will

be assigned either to the cluster for C (left split on Z) or
the cluster for E (right split on Z). Applying this principle
to all Y and Y* in C and E, we can conclude that since the
multivariate tree will seek to split C and E (as it will lead to
a large impurity drop), it will split C and E within D using a
single split on Z. This will assign C and E to different nodes
of the tree with most values within D likely assigned to the
node with E.

Case II applies to points in regions C and D. This is
because there are Y = (Y 1, Y 2)T in C and Y∗ =

(
Y∗

1 ,Y
∗
2
)T

in D such that Y1 < Y∗
1 and Y2 > Y∗

2 . Also, Z = Y1Y2 <

Z∗ = Y∗
1 Y∗

2 for any two points in C and D. Theorem 2
asserts that for points satisfying Case II, two splits on Z
are needed. One split will separate data primarily using the
Y 1 response. The second split will separate primarily on
Y 2. Notice that this makes sense as it would help separate
the black points in C and the red points D, which are the
difficult cases to classify.

2.3 Ordering coordinates and selecting 𝜹

A third and final case arises for Theorem 2 when the two
coordinates have the following configurations: Y1 < Y∗

1 ,
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Y2 > Y∗
2 and Y1Y2 ≥ Y∗

1 Y∗
2 . This is a more difficult scenario

but can be mitigated by the simple remedy of ordering
the coordinates so that the first coordinate always has a
much larger range; thus helping to reduce this scenario.
This helps explain why we use the ordering step in Line 3
of the sidification algorithm (Algorithm 2). Ordering also
has an another important consequence for sidClustering.
By reordering the original features in descending order of
range, this maximizes the range of the resulting SID inter-
action, thus further improving separation of distance for
the two cases considered in Theorem 2.

The next result describes how ordering increases the
range of SID interactions. However as the result shows,
this requires setting 𝛿 > 0 to a suitable value. Because this
may not always be easy to do, a simple method for pre-
processing the data is provided which makes the choice
of 𝛿 irrelevant. This preprocessing step is implemented in
Line 2 of Algorithm 2. See the Appendix for a proof of the
following.

Theorem 3. For a suitably large enough 𝛿 > 0, sorting
the SID main effects in descending order of range of the
original features maximizes the range of SID interaction
features. Thus the range of Xk ⋆ Xl is larger when Xk is
placed before Xl in the design matrix if the range of Xk is
larger than Xl. Because selecting 𝛿 may be difficult to do in
practice, the following preprocessing step can be used which
allows any value of 𝛿 > 0 to be used: prior to sidifying the
data, first translate each continuous feature so that they are
positive and all have the same maximum value. Then if vari-
ables are sorted by their range, the conclusion above holds
for the resulting sidified data for any 𝛿 > 0. For concrete-
ness the value 𝛿 = 1 is used in all examples throughout the
paper.

2.4 New forest distance

Finally we discuss the new forest distance metric used in
Line 4 of Algorithm 1. Like proximity, the goal of the new
distance is to measure dissimilarity between observations,
however unlike proximity it does not use terminal node
membership for assessing closeness of data points. Instead,
it uses a measurement of distance based on the tree topol-
ogy to provide a more sensitive measurement. The issue
with proximity is that if two observations split far down
the tree versus close to the root node, both scenarios are
counted as having a proximity of zero, even though the first
scenario involves data points closer in the sense of the tree
topology.

Let Tb denote the bth tree in a forest. The forest dis-
tance is applied to SID interaction features Z. For each
pair of observed data points Zi and Zj, define S(Zi, Zj,
Tb) to equal the minimum number of splits on the path

from the terminal node containing Zi to the terminal node
containing Zj in Tb such that the path includes at least
one common ancestor node of Zi and Zj. Similarly, define
R(Zi, Zj, Tb) as the minimum number of splits on the
path from the terminal node containing Zi to the termi-
nal node containing Zj in Tb such that the path includes
the root node. We define the forest distance between Zi
and Zj as:

D
(
Zi,Zj

)
= 1
ntree

ntree∑
b=1

D
(
Zi,Zj,Tb

)

= 1
ntree

ntree∑
b=1

S
(
Zi,Zj,Tb

)
R
(
Zi,Zj,Tb

) .
As an example, observe when two observations share the
same terminal node, we have D(Zi, Zj, Tb) = 0 since the
numerator is a measure of zero splits. Also, in the case
where two observations diverge at the first split, S(Zi, Zj,
Tb) = R(Zi, Zj, Tb), and the tree distance equals one.

2.5 Motivating examples comparing
sidClustering to Breiman clustering

We end this section by providing two detailed examples
that illustrate the difference in splitting between Breiman
clustering, the current clustering method used by random
forests, and sidClustering. These examples neatly explain
why sidClustering is superior.

Algorithm 3 presents a formal description of the
Breiman clustering method. The algorithm requires the
following parameters: ntree (number of trees trained in
the forest), nodesize (terminal node size), and mtry
(number of random features used to split a tree node).
As discussed earlier, the idea is to generate an artifi-
cial dataset with an artificial class label and then train a
random classification forest on the combined data. Clus-
tering is performed using the proximity matrix extracted
from the resulting forest. As was mentioned, a concern
with Breiman’s clustering method is its sensitivity to the
method used to generate the artificial data. Shi and Hor-
vath [21] refine Breiman’s clustering method to address
this. They considered two different modes for generating
the artificial class data which we will use as comparative
procedures:

SH mode 1: Randomly draw from each set of observed
features to form new features.

SH mode 2: Fit a uniform distribution for each of the
features and draw from it. The uniform distribution
is constrained to lie between the minimum and
maximum value of a given feature.
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Algorithm 3 Breiman Clustering

1: Develop second artificial set of data
2: Label original observations class 1 and newly devised ones class 2
3: Set the class label Ci as the response i = 1,… ,N where N = 2n
4: procedure RF-C((Xi,Ci)N

i=1,ntree,nodesize,mtry)
5: for ntree do
6: Select N values with replacement from (Xi,Ci), i = 1, ..,N
7: for all nodes do
8: while observations in node > nodesize & impurity present do
9: Randomly select mtry features for splitting

10: Split tree node decreasing impurity most
11: end while
12: end for
13: end for
14: end procedure
15: Utilizing HC or PAM, cluster the data using the proximity matrix for the original observations

2.5.1 V-shaped cluster simulation

For our first example, we return to our previous V-shaped
cluster simulation. Figure 3(A) displays the results of run-
ning a single multivariate regression tree on the sidified
data (results are displayed for the first two coordinates).
Observe how the tree is able to accurately separate the two
clusters. This is confirmed by the confusion matrix dis-
played in table (D). The latter was obtained by running
sidClustering using 1000 multivariate regression trees.
Clusters were obtained using PAM.

Comparing sidClustering to Breiman clustering, pan-
els (B), (C) display the partition resulting from a sin-
gle classification tree using artificial data obtained using
Shi–Horvath Modes 1 and 2 (denoted by SH1 and SH2).
The goal in Breiman clustering is for the tree to separate
the artificial data (gray points) from the true classes (black
and red points). However even with a very deep tree (large
number of cells), the tree is not able to properly discern dif-
ferences between the two clusters. This is most apparent
as we move toward the origin, which is where clustering
is the most difficult. This poor performance is confirmed
by tables (E) and (F). The two tables display the confusion
matrices obtained by running 1000 trees using Breiman
clustering for SH1 and SH2 data with PAM applied to
the proximity matrix. The tables clearly demonstrate poor
performance.

2.5.2 Four-bivariate normal clusters

Table 2 presents our second example and changes the
problem in two major ways. First, we now have two-way
symmetry between the clusters, and second we have

increased the number of clusters from 2 to 4. Again, we see
that both SH methods require heavy splitting to detect the
clusters (subpanels (C) and (D) of Figure 4). This unfor-
tunately works diametrically to the idea of random forest
proximity. Random forest proximity measures the average
number of times two observations share a terminal node
and if each tree requires deep splitting to discern clusters
then it is likely that the average proximity between any
two given points will be close to zero. This is illustrated
in tables (F) and (G) by the tendency of both methods
to put the vast majority of points in the same cluster (in
other words, SH is only detecting one cluster). In compar-
ison, the partitions for SID are able to carve out the space
such that the clusters are grouped together (subpanel (B) of
Figure 4), and this in conjunction with random forest dis-
tance, allows for observations in different terminal nodes
to still have an informative measure (table (E)). Notice
from the coplot in Figure 4 (subpanel [H]) how there are
promising cuts along the SID interaction feature x1 ⋆ x2
that can reduce impurity of the SID variables (x1, x2) while
also separating the four clusters.

3 REAL WORLD EXAMPLES

In this section, we provide two illustrations of sidCluster-
ing to real world data. In both cases, sidClustering was
implemented using the randomForestSRC R-package
[8]. Because feature selection was necessary to reduce
dimensionality in the two problems, and in order to con-
trol run time performance, we utilized a feature selection
algorithm. We used Shi–Hovarth’s method as a first pass
through, which is relatively computationally cheap, and
used variable importance [9] from the classification forest
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(B) SH1 partition from classification tree differ-

entiating between real and artificial observations,

notice the deep splitting required to detect clus-

ters. Number indicates predicted class: 1-Real data,

2-Artificial Data
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(C) SH2 partition from classification tree differ-

entiating between real and artificial observations,

notice the deep splitting required to detect clus-

ters. Number indicates predicted class: 1-Real data,

2-Artificial Data

1 2

1 71 248

2 179 2

(D) SID clustering, top

is truth, side is pre-

dicted.

1 2

1 122 80

2 128 170

(E) SH1 clustering, top

is truth, side is pre-

dicted.

1 2

1 227 228

2 23 22

(F) SH2 clustering, top

is truth, side is pre-

dicted.

F I G U R E 3 Splitting by three methods on V-shaped cluster problem. ( ) Cluster 1; ( ) Cluster 2; ( ) SH artificial data

Variable Simulated by

X1, X2 (signal variables) ∼ First 500,Bivariate Normal
⎛⎜⎜⎝
⎡⎢⎢⎣
0

4

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
1 0

0 4

⎤⎥⎥⎦
⎞⎟⎟⎠

Next 500,Bivariate Normal
⎛⎜⎜⎝
⎡⎢⎢⎣
4

0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
1 0

0 4

⎤⎥⎥⎦
⎞⎟⎟⎠

Next 500,Bivariate Normal
⎛⎜⎜⎝
⎡⎢⎢⎣

0

−4

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
1 0

0 4

⎤⎥⎥⎦
⎞⎟⎟⎠

Final 500,Bivariate Normal
⎛⎜⎜⎝
⎡⎢⎢⎣
−4

0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
1 0

0 4

⎤⎥⎥⎦
⎞⎟⎟⎠

X3, … , X20 (noise variables) ∼Normal(0, 1)

T A B L E 2 Four-bivariate normal simulation

to select the most informative variables. sidClustering was
then run using the filtered variables.

3.1 Identifying patient differences
across multiple institutions

The World Wide Esophageal Cancer Collaboration
(WECC) was a large multi-institutional effort to accrue
data from esophageal cancer patients. The goals were
to: (1) better understand clinical and pathologic prog-
nostic implications for the disease; (2) better facilitate

pretreatment prognostication; and (3) improve clini-
cal decision-making [19]. In total, 22,654 patients were
accrued at 33 different institutions from 6 different con-
tinents. Of these patients, 13,993 were adenocarcinoma,
which will be the focus of our analysis.

Patients were represented across the spectrum of
common therapies. This included esophagectomy alone,
the primary treatment for esophageal cancer patients,
esophagectomy and adjuvant therapy, neoadjuvant ther-
apy with esophagectomy and neoadjuvant and adjuvant
therapy with esophagectomy. Additionally patients receiv-
ing endoscopy only, chemoradiotherapy only, palliative
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4 bivariate normal problem
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(A) 4-cluster bivariate normal.
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4 bivariate normal problem, SID

(B) SID terminal node plot from multivariate tree

using sidified data (plot mapped back to original

features). Number indicates terminal node.
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(C) SH1 partition using single classification tree.

Notice the very deep splitting required to detect the

clusters. Number indicates predicted class: 1-Real

data, 2-Artificial Data
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(D) SH2 partition using single classification tree.

Notice the very deep splitting required to detect the

clusters. Number indicates predicted class: 1-Real

data, 2-Artificial Data

1 2 3 4

1 0 491 0 0

2 0 7 0 497

3 7 2 500 0

4 493 0 0 3

(E) SID clustering, top is observed, side is

predicted.

1 2 3 4

1 429 500 442 411

2 0 0 0 89

3 71 0 0 0

4 0 0 58 0

(F) SH1 clustering, top is observed, side is

predicted.

1 2 3 4

1 0 20 0 0

2 500 480 460 477

3 0 0 0 23

4 0 0 40 0

(G) SH2 clustering, top is observed, side is

predicted.
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F I G U R E 4 Splitting by three methods on 4-bivariate normal cluster problem. ( ) Cluster 1; ( ) Cluster 2; ( ) Cluster 3; ( ) Cluster 4;
( ) SH artificial data
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care and no therapy were also accrued. Patient cancer
variables included clinical level characteristics (cTNM),
pathological level characteristics (pTNM), and characteris-
tics for patients with neoadjuvant therapy (ypTNM). Other
cancer characteristics included histologic grade, length of
tumor, number of regional resected nodes, and location
and distance of cancer. Patient level information included
demographics (age, gender, race), patient characteristics
(BMI, weight loss, ECOG), and comorbidities (example:
diabetes, heart related diseases, other cancers, kidney). In
total, there were d= 38 variables comprising dichotomous,
categorical, and continuous variables.

The endpoint used for the primary WECC analysis was
all-cause mortality defined from first management deci-
sion for a patient. Here we consider a different goal and
remove the outcome and apply sidClustering to the unsu-
pervised data in order to study and quantify differences in
patient makeup across institutions. We regard this as the
first step in assessing quality of hospital care. Quantifying
patient characteristics helps to identify possible system-
atic differences between hospitals. This is important, since
if systematic bias exists, then quality of care cannot be
assessed by direct comparison of outcomes, and advanced
techniques (such as causal inference) would have to be
applied to obtain correct inference.

Hierarchical clustering (HC) was applied to the dis-
tance matrix obtained from running sidClustering to the
data. Number of clusters was set to 20. The results are
displayed in Figure 5. Features appear along rows of the
heatmap, while columns are patients which have been
sorted by institution with institutions grouped by proxim-
ity according to clusters.

Figure 5 reveals no general systematic differences
between institutions. Most differences that do exist appear
largely related to patient therapy assignment. For example,
prevalence of palliative care and chemoradiotherapy is
generally low (red values) across all institutions excepting
a few small patches near the left hand side (blue values).
Upon investigating, we found that these two therapies
(which are generally rare) were predominately found in
one hospital. Another noticeable pattern we found relates
to the variable psmp, defined as number of lymph nodes
resected by lymphadenectomy. Fewer nodes are generally
associated with improved survival. We observe a pattern
of low values for this variable (red regions to the right of
heatmap and some also in the middle). This pattern is mir-
rored by low values of bilirubin, low values of weight loss,
and to a lesser extent, higher pT2 prevalence (the variable
“pT” measures tumor invasiveness). Low bilirubin can be
considered a sign of health and a patient with stable weight
is also a positive indicator. Also pT2 is a less invasive can-
cer than pT3, which is the predominant pT classification.
This pattern suggests therefore a small subset of hospitals

with a slightly healthier patient cohort. Indeed, upon care-
ful inspection of the data this does match with what we
found—although we certainly would not have been able to
discern such a subtle difference without the results of the
unsupervised analysis.

3.2 Hospital charges

Cost data for cardiovascular patients was collected at a
large US hospital. Values recorded included cost, margin,
and profit characteristics of each encounter along with
data on the type of procedure, location of residence of
the patient, and referral source of the patient. This data
(sample size n = 5741, d = 37 attributes) was run through
sidClustering with hierarchical clustering (HC) used for
the distance matrix. The intention was to determine if
there existed clusters in the data for which the finan-
cial attributes were unique versus the rest of the popula-
tion. Figure 6 depicts the most influential variables across
clusters that had the most differentiating effect between
clusters.

There were several clusters of note that were revealed
by the analysis. One example was the pair of clusters, num-
bers 17 and 23. These represent a high proportion of heart
transplants but they vary vastly in regards to profit margin
despite being very similar in regards to many of the plotted
metrics. Looking further it can be observed that the tech
margin (amount made in tech charges or revenue, minus
tech costs to the hospital) varied just as largely suggest-
ing that this is the component that drew down the profit
of the encounter since the overall profit margin is the sum
of the margins from all sources including tech. Techni-
cian services include labs, tests, equipment use and other
procedures not provided by doctors or nurses. This may
suggest that adjustments to charges may be required for
a particular subset of patients to adjust for tech costs that
are outpacing their corresponding charges and bringing
overall profit down despite the comparable revenue levels
being collected. Opposite adjustments may be applied to
the high profit group for higher equability. Another inter-
esting cluster is number 14 which contains many of the
bypass procedures and we can see that overall their profit
margins are very middle of the range but the tech margin
drags it down which indicates that the other components
are what bring it back to a median profit margin. Lastly,
it was very interesting to see how valves as a service was
distributed across many difference clusters as opposed to
the other services that tended to concentrate. This suggests
high levels of heterogeneity in this service type which is
further confirmed by the plot. For example, if we look at
days at hospital, we can see this includes the full range of
encounter lengths from very short to very long.
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F I G U R E 5 Heatmap
from sidClustering analysis of
WECC esophageal cancer data
where data have been sorted by
institution (columns of the
heatmap). Rows display patient
and cancer characteristics for
identifying patient differences
across institutions

4 BENCHMARK EXPERIMENTS

In this section we used benchmark experiments to
compare sidClustering to Breiman clustering using
Shi–Hovarth’s two generation modes (SH1 and SH2). Per-
formance was also compared to the Cluster Forest (CF)
method of Yan et al. [23] and to Gaussian Mixture Models
(GMM) described in [17]. Both simulated and real world
data were used in the experiments. sidClustering was

applied with and without the feature selection algorithm.
The procedure using variable selection is referred to
as SID varselect. As before, all random forest calcula-
tions including sidClustering were implemented using
the randomForestSRC R-package [8]. For all com-
peting methods default settings are utilized including
ntree = 1000 and nodesize = 5. For sidClustering and
Shi–Horvath, both HC and PAM were used for clustering
the distance and proximity matrices.
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F I G U R E 6 Heatmap from
sidClustering analysis of hospital
costs data. Rows display
encounter characteristics for
identifying different clusters of
encounters

4.1 Performance measures

Performance of methods was assessed using measures
based on Gini and entropy, which are related to mutual
information proposed by Romano et al. [20]. These mea-
sures function as weighted averages of impurity in the
predicted clusters. Weights are determined by cluster size
which then takes into count the possibility of gaming the
measure by forming small clusters. Smaller clusters have
a higher chance of being pure by random chance but
their contribution to the score is reduced to compensate.
The idea is that we want clusters that are both as large
and pure as possible in order to obtain the best possible
score. The entropy and Gini measures of performance are
as follows:

𝜌E =
k∑

i=1

ni

n

kt∑
j=1

−
Lij

ni
log2

(Lij

ni

)
,

𝜌G =
k∑

i=1

ni

n

kt∑
j=1

Lij

ni

(
1 −

Lij

ni

)
,

where:

n = total number of cases;
ni = number of cases in cluster i;
kt = number of clusters targeted by clustering algorithm;
k = true number of clusters;
Lij = number of cases when predicted cluster label is

j when true label is i.

Both measures can be normalized to a range of 0–1 by
dividing by the maximum value which occurs under uni-
form guessing. A lower score indicates better overall clus-
tering. Also, squaring the normalized measure retains the
0–1 range and adds a middle point of comparison where
a score of 0.5 corresponds with 50% correct clustering. It
should also be noted that these are measures of purity
which are robust to label switching since our goal is to
determine ability to cluster similar observations.

When testing these two measures we noticed that they
ranked procedures similarly. We chose therefore to use
the entropy measure for evaluating performance due to
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T A B L E 3 Eight-cluster simulation

Variable Simulated by

X1 ∼Binomial(m = 1, p = 0.5)

X2 ∼Binomial(m = 1, p = 0.5)

X3 First 1000∼Uniform(0, 1),
second 1000∼Uniform(1.1, 2.1)

X4, … , Xd Noise variables∼Uniform(0, 1)

Cluster X1 X2 X3

1 1 1 ≥1.1

2 1 1 ≤1.0

3 0 1 ≥1.1

4 0 1 ≤1.0

5 1 0 ≥1.1

6 1 0 ≤1.0

7 0 0 ≥1.1

8 0 0 ≤1.0

the involvement of Gini splitting by random forests which
may marginally, but unfairly, favor the methods based on
random forests.

4.2 Synthetic experiments

Tables 3 and 4 describe simulations utilized in our exper-
iments. The number of noise variables is represented
by d, which is set to d = 17 and d = 100 in order to
reflect low- and high-dimensional settings. The simula-
tions drew inspiration from the examples of Shi and Hor-
vath [21]. In addition to these simulations we also ran
the V-shaped cluster and 4-bivariate normal simulation
(Table 2) described earlier. All simulations were run 100
times independently.

Figure 7 displays the results from the experiment. We
can see that in nearly all simulations, sidClustering outper-
forms the other methods by a large margin. Furthermore,
in some cases the performance was nearly equal to a super-
vised forest (red values) calculated using the true class
labels (which should be our limit of performance since this
is the case where the target is known). We notice that the
clustering algorithm used on the proximity matrix seems
to be important for SH1 and SH2, while for sidClustering,
performance does not vary very much if we switch between
HC or PAM. We suspect the geometry of the clusters hin-
ders the ability of SH1 and SH2. Since in the simulations
the informative features are mostly categorical and the
only continuous one has very little space between the clus-
ters, it made it very difficult for either method to flood the
empty space with the artificial class.

T A B L E 4 Twelve-cluster simulation

Variable Simulated by

X1 ∼Binomial(m = 1, p = 0.5)

X2 ∼Binomial(m = 2, p = 0.5)

X3 First 1000∼Uniform(0, 1),
second 1000∼Uniform(1.1, 2.1)

X4, … , Xd Noise variables ∼Uniform(0, 1)

Cluster X1 X2 X3

1 1 1 ≥1.1

2 1 1 ≤1.0

3 0 1 ≥1.1

4 0 1 ≤1.0

5 1 0 ≥1.1

6 1 0 ≤1.0

7 0 0 ≥1.1

8 0 0 ≤1.0

9 0 2 ≥1.1

10 0 2 ≤1.0

11 1 2 ≥1.1

12 1 2 ≤1.0

4.3 Real data experiments

Performance of sidClustering was also tested on a col-
lection of real datasets (Table 5): some have purely con-
tinuous or categorical features or mixed, the number of
true classes varies, as well as sample size. For each sim-
ulation, the entire procedure was run 100 times using
stratified subsampling (40% rate) in order to assess vari-
ability of performance. Stratified subsampling was used
because we wanted to ensure that all clusters were rep-
resented in each run, otherwise k could potentially vary
between runs. Some of these results are displayed in
Figure 8, the remaining can be found in Figure A1 of
the Appendix. As in the synthetic experiments, a super-
vised random forest was run using the true class labels
to provide a benchmark performance value (depicted
using red values). Performance was calculated by com-
paring the predicted out-of-bag (OOB) class labels to
the truth.

Table 6 summarizes overall performance of methods.
We also make the following comments:

1 For SH1 and SH2, the type of clustering algorithm used
on the proximity matrix was again found to greatly
affect performance in most cases, while sidClustering
was for most cases generally robust to this.
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(A) 8-cluster low-dimensional problem.
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(B) 8-cluster high-dimensional problem.
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(C) 12-cluster low-dimensional problem.
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(D) 12-cluster high-dimensional problem.
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(E) 4-bivariate normal clusters
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(F) V-shaped cluster.

F I G U R E 7 Results on simulated datasets. Red boxplot signifies supervised random forest performance. (Section 4.1 discusses
normalized entropy)
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(A) Biomechanical
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(B) Esophagus
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(C) Heart
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(D) Iowa Housing with categorical features
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F I G U R E 8 Results on real world data. Red boxplot signifies supervised random forest performance. (Section 4.1 discusses normalized
enotrpy)
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Data
Continuous
features

Categorical
features k n

Biomechanical 7 0 2 310

Breast tissue 9 0 6 106

Esophagus 0 9 5 2343

Glass 9 0 7 214

Heart 10 3 2 270

Iowa housing—categorical 2 12 4 2930

Iowa housing—continuous 8 2 2 1470

Iris 4 0 3 150

Lung cancer 26 0 3 27

Parkinson 22 0 2 195

Pima 8 0 2 768

Renal 16 9 2 87

Robot 90 0 5 164

Soybean 8 13 4 47

SPECT 0 22 2 267

WDBC 30 0 2 569

Wine 13 0 3 178

VO2 13 26 2 2231

T A B L E 5 Data experiments

2 There is only one sidClustering mode, therefore there
is no possibility of choosing the incorrect mode, while
if one chooses the incorrect mode between SH1 and
SH2, performance could be greatly hindered. This issue
is further compounded by the fact that in practice the
truth is not known therefore there is no way of know-
ing which is correct. Also, although in many cases SH1
does outperform SH2, there are two cases, Renal and
Iowa housing (categorical), where SH2 rendered better
performance.

3 The sidClustering variable selection algorithm per-
formed very well. Performance was also very good in
the previous synthetic experiments. This shows it is
possible to use the dimension reduction to improve
computational cost while at the same time retaining
clustering performance. This is especially true for the
two high-dimensional cases where the original data
contained over 100 features which produced over 4000
total SID features.

5 DISCUSSION

sidClustering is a random forests based clustering
algorithm that greatly eases on the requirements for

the original Brieman clustering approach. No artificial
set of observations needs to be generated. In most data
where performance was compared, sidClustering outper-
formed either one, or both, of Shi–Hovarth’s modes. In
the cases where sidClustering did not outperform both
there usually was a wide margin in the performance
between the two Shi–Hovarth modes. This means that if
the incorrect mode were to be chosen then performance
can potentially be greatly hindered. As complexity of the
data increases, it becomes more difficult to determine the
correct mode.

Another point worth noting is the constraints imposed
on the artificial data used by Breiman clustering. Here
the number of observations in this class has to be roughly
the same as the original data. The problem is that if
we unbalance the combined data, then this potentially
becomes a class imbalanced problem. This would hinder
any machine learning algorithm’s ability to differentiate
the two classes. This constraint precludes one from tak-
ing the most direct solution to artificial data creation,
which would be to replicate each of the points a few times
plus a small amount of error to create the second class.
Then the resulting artificial class would perfectly cover
the first and truly force the random forest to fit a model
that distinguishes the two classes. It would be similar to
what is done in data smearing [4] for increasing predictive
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T A B L E 6 Summary of performance on real data experiments: ✓ indicates top performing (within 1 SE) method in at least half of the
datasets

Dataset type
SID
HC

SID
PAM

SID
varselect
HC

SID
varselect
PAM

SH1
HC

SH1
PAM

SH2
HC

SH2
PAM CF GMM

Continuous features only ✓ ✓ ✓ ✓

Categorical features only ✓ ✓ ✓ ✓ ✓

Mixed features ✓ ✓ ✓ ✓ ✓ ✓ ✓

2-class ✓ ✓ ✓ ✓ ✓ ✓ ✓

>2 class ✓ ✓ ✓ ✓ ✓ ✓

performance of random forests. Unfortunately, each time
one replicates a point in the original class, this diminishes
the ratio between the original class and the artificially gen-
erated class, thus increasing the potential of inducing a
class imbalanced problem.

Looking at GMM and CF, we notice there are a number
of high performing situations but they seem to falter in cer-
tain places. For example, GMM seems to have issues with
more than two clusters or purely continuous features. This
could stem from the increased number of conformations
clusters could take in this case and increase the difficult
of selecting borders between clusters. The more complex
these boundaries can be, the more difficulty GMM seems
to have. In the case of CF, we have somewhat the opposite
with regard to complexity of the data: CF performs well in
cases with purely continuous features, this may be because
the algorithm is tree based and therefore able to select very
precise boundaries. However CF falters in purely categori-
cal cases, possibly due to sparsely filled space which makes
selection of the boundary more tricky. This is an advan-
tage of SID which performs will with both continuous and
categorical features.

In future work, we will include the implementation of
semisupervision in the clustering in order to emphasize
what features should be most driving clusters. Also, we
believe that it is possible to use this method to determine
the number of clusters that should be created. And lastly,
since random forests was used to develop the groups, then
random forests should be able to also impart the identity
of the group’s members; therefore, we intend to develop a
rule generator for this purpose.
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APPENDIX A. PROOFS

Proof of Theorem 1. First suppose that p> 1 so that X
contains at least two discrete features. We can assume
without loss of generality that the discrete features X1,
… , Xp are all dichotomous. Because if they were not,
then Line 4 of Algorithm 2 would convert them to a finite
set of q> p dichotomous values (and notice q remains
finitely bounded as n→∞ because of the finite discrete
Assumption A1).

X1 = {0, 1}
𝜙D

→ Y (1) = {1, 2} = 2− (1−X1)

X2 = {0, 1}
𝜙D

→ Y (2) = {3, 4} = 4 − (1 − X2)

X3 = {0, 1}
𝜙D

→ Y (3) = {5, 6} = 6 − (1 − X3)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Xj = {0, 1}
𝜙D

→ Y (j) = {2j − 1, 2j} = 2j − (1 − Xj)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Xp = {0, 1}
𝜙D

→ Y (p) = {2p − 1, 2p} = 2p − (1 − Xp).

We will first look at identification for the discrete fea-
tures. Now because we are working with finite sample
spaces (of cardinality two without loss of generality), we
can dispense with the distinction between the theoret-
ical and actual sidification map and simply work with
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the theoretical map. For notational convenience, we use
a superscript D to indicate we are subsetting to discrete
features. The following is the theoretical staggering map
𝜙D ∶ 𝒳D → 𝒴D, where we assume as in Algorithm 2 that
𝛿 = 1: We now show that an arbitrary ZD ∈ 𝜓

(
𝜙
(
𝒳D))

cannot be produced using two different XD ∈ 𝒳D. Because
the SID interaction feature ZD is comprised of all possible
pairwise interactions of YD (Lines 10–16 of Algorithm 2),

ZD =
(

Y (1)Y (2), … ,Y (1)Y (p),Y (2)Y (3),

… ,Y (2)Y (p), … ,Y (p−1)Y (p))T
.

Observe that each of the coordinates of ZD is of the form

Y (j)Y (k) =
(
2j − 1 + Xj

)
(2k − 1 + Xk)

which is a factor with one of the following four unique
categories (Line 12 of Algorithm 2),

{(2j − 1) (2k − 1) , (2j) (2k − 1) , (2j − 1) (2k) , (2j) (2k)} .

Thus, each coordinate of ZD uniquely determines the val-
ues for two coordinates Xj and Xk, and since ZD contains
all possible pairs of coordinates, it follows that ZD can only
correspond to one specific XD. Finally, it is clear that YD

can only correspond to one XD value.
Thus, we have shown that when X contains at least two

discrete coordinates, ZD
i = ZD

i′ if and only if XD
i = XD

i′ if and
only if YD

i = YD
i′ .

Consider next the case when X contains at least one dis-
crete and one continuous coordinate. Suppose that coordi-
nates j and k of X are discrete and continuous, respectively.
By Line 14 of Algorithm 2, the interaction between a con-
tinuous and binary feature is obtained by multiplying their
staggered values. Thus, we must show for two data cases
i ≠ i′

YijYik = Yi′jYi′k (A1)

if and only if

(
Xij,Xik

)T =
(

Xi′j,Xi′k
)T

if and only if (
Yij,Yik

)T =
(

Yi′j,Yi′k
)T
.

The staggered discrete coordinate j is

Yij = 2j − 1 + Xij, Yi′j = 2j − 1 + Xi′j,

while the staggered continuous coordinate k is

Yik = 𝛿kn + Xik, Yi′k = 𝛿kn + Xi′k,

where 𝛿kn > 0 denotes the value used to stagger Xk. It is
clear there is a 1:1 map between staggered values and the
original features. Therefore, we focus on proving the first
if and only if. Observe that (A1) holds if and only if

(
2j − 1 + Xij

)
(𝛿kn + Xik) =

(
2j − 1 + Xi′j

)
(𝛿kn + Xi′k) .

Canceling and collecting terms, we obtain

(2j − 1) (Xik − Xi′k) + 𝛿kn
(

Xij − Xi′j
)
= Xi′jXi′k − XijXik.

Recall that Xj ∈ {0, 1} is binary. If Xij = Xi′j, then

(2j − 1) (Xik − Xi′k) = Xij (Xi′k − Xik) ,

which implies Xik = Xi′k regardless if Xij = 0 or Xij = 1. On
the other hand, suppose that Xij ≠Xi′j. If Xij = 1 and Xi′j
= 0, we obtain

2jXik = (2j − 1)Xi′k − 𝛿kn,

which occurs with probability zero by Assumption A2
because Xk is continuous and Xik and Xi′k are independent.
A similar conclusion holds if Xij = 0 and Xi′j = 1.

The final case is when X contains at least two coordi-
nates that are continuous. Suppose that j and k are coor-
dinates that are continuous. Then their SID interaction is
obtained by multiplying their SID main effects similar to
(A1). In this case, (A1) holds if and only if

(
𝛿jn + Xij

)
(𝛿kn + Xik) =

(
𝛿jn + Xi′j

)
(𝛿kn + Xi′k) .

Under Assumption A2, (Xj, Xk) has a nondegenerate den-
sity. Using this and independence, deduce that the above
event occurs with probability zero unless Xij = Xi′j and
Xik = Xi′k.

Proof of Theorem 2. Let Z = Y 1Y 2 and Z∗ = Y∗
1 Y∗

2 .
Define

𝛼 (𝜃) = 𝜃Y1 + (1 − 𝜃)Y∗
1 , 𝛽 (𝜃) = 𝜃Y2 + (1 − 𝜃)Y∗

2 ,

0 ≤ 𝜃 ≤ 1.

By convexity, Y (𝜃) = (𝛼 (𝜃) , 𝛽 (𝜃))T ∈ 𝒴n. Therefore Y(𝜃)
is a properly defined SID main effect and Z(𝜃)= 𝛼(𝜃)𝛽(𝜃) is
a properly defined SID interaction value. Notice also that
every point along the vector ⃗YY∗ between Y and Y* can be
written as

Y + (1 − 𝜃) (Y∗ − Y) = 𝜃Y + (1 − 𝜃)Y∗ = Y (𝜃)

for some 0 < 𝜃 < 1. Therefore the SID interaction value for
a point Y(𝜃) along ⃗YY∗ is Z(𝜃).
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We consider Case I first. By assumption we have Y1 <

Y∗
1 and Y2 ≤ Y∗

2 . Therefore

Y1 < 𝛼 (𝜃) < Y∗
1 , Y2 ≤ 𝛽 (𝜃) ≤ Y∗

2 , 0 < 𝜃 < 1.

By uniqueness Z ≠Z*. Therefore because all values are
non-negative due to sidification,

Z = Y1Y2 < Z (𝜃) = 𝛼 (𝜃) 𝛽 (𝜃) < Z∗ = Y∗
1 Y∗

2 , 0 < 𝜃 < 1.

Therefore, we can use the split-point Z(𝜃) to assign cases
to Y if their SID interactions values are less than or equal
to Z(𝜃) or to Y* if their SID interactions values are greater
than Z(𝜃). Furthermore, because Z(𝜃*) is the SID inter-
action value for a point Y(𝜃*) along the vector ⃗YY∗, this
shows that assignment of points along ⃗YY∗ depend on
whether Z(𝜃*) ≤ Z(𝜃) or Z(𝜃*) > Z(𝜃).

Now for Case II, we have Y1 < Y∗
1 and Y2 > Y∗

2 . Also
by assumption, Z < Z*. Therefore since Z(𝜃)→Z for 𝜃→ 1
and Z(𝜃)→Z* for 𝜃→ 0, we can find values 0 < 𝜃, 𝜃∗ < 1
such that

Z = Y1Y2 < Z
(
𝜃
)
< Z

(
𝜃∗
)
< Z∗ = Y∗

1 Y∗
2 .

Therefore assign all values to the left of Z
(
𝜃
)

to Y and
all values to the right of Z

(
𝜃∗
)

to Y*.

Proof of Theorem 3. It suffices to consider features X1
∈ [a, b] and X2 ∈ [c, d] (the same argument can then
be applied to the remaining finite number of features).
We can assume without loss of generality that R = b −
a > r = d − c and the ranges of our features have a
lower bound of at least zero and a strictly positive upper
bound due to the sidification algorithm which translates
all features to this space. Therefore, assume without loss of
generality

b, d > 0 and a, c ≥ 0

b − a = R > 0 and d − c = r > 0.

We can now define the SID main features:

Y1 ∈
[
a + 𝛿, b + 𝛿

]
, Y2 ∈

[
c + 𝛿 + b + 𝛿, d + 𝛿 + b + 𝛿

]
.

We denote Zdes as the SID interaction feature formed when
the ranges are descending in order:

ZDES ∈
[
(a + 𝛿) (c + b + 2𝛿) , (b + 𝛿) (d + b + 2𝛿)

]
.

The range of the SID interaction feature is

range
(

ZDES) = (b + 𝛿) (d + b + 2𝛿) − (a + 𝛿) (c + b + 2𝛿)

= bd + b2 + 2b𝛿 − ac − ab − 2a𝛿

+ 𝛿 (d + b + 2𝛿 − c − b − 2𝛿)

= b2 − ac + b (d − a) + 2𝛿 (b − a)

+ 𝛿 (d − c) .

Now we reverse the order of the ranges to obtain the
suboptimal ordering effect:

X1 ∈
[
c, d

]
, X2 ∈

[
a, b

]
.

The resulting SID main effects are:

Y1 ∈
[
c + 𝛿, d + 𝛿

]
, Y2 ∈

[
a + 𝛿 + d + 𝛿, b + 𝛿 + d + 𝛿

]
.

We denote Zasc as the SID interaction feature when the
ranges are suboptimally ordered ascendingly:

ZASC ∈
[
(c + 𝛿) (a + d + 2𝛿) , (d + 𝛿) (b + d + 2𝛿)

]
.

Its range equals,

range
(

ZASC) = (d + 𝛿) (b + d + 2𝛿) − (c + 𝛿) (a + d + 2𝛿)
= db + d2 + 2d𝛿 − ca − cd − 2c𝛿
+ 𝛿 (b + d + 2𝛿 − a − d − 2𝛿)

= d2 − ca + d (b − c) + 2𝛿 (d − c) + 𝛿 (b − a) .

Now taking the difference between the ranges of the two
SID interaction features, we have

range
(

ZDES) − range
(

ZASC)
= b2 − ac + b (d − a) + 2𝛿 (b − a) + 𝛿 (d − c)

−
(

d2 − ca + d (b − c) + 2𝛿 (d − c) + 𝛿 (b − a)
)

= b2 − ba − d2 + dc + 𝛿 (b − a) − 𝛿 (d − c)

= bR − dr + 𝛿 (R − r) . (A2)

The proof is completed if we can show (A2) is strictly
positive. If b ≥ d, then

bR − dr + 𝛿 (R − r) = d
(

b
d

R − r
)
+ 𝛿 (R − r)

≥ d (R − r) + 𝛿 (R − r) = (d + 𝛿) (R − r)

which is greater than zero for any 𝛿 > 0 since d > 0 and R
> r by assumption. On the other hand, if d > b, then (A2)
is strictly positive if and only if

𝛿 >
dr − bR

R − r
. (A3)

Such a 𝛿 can always be found since the denominator is
nonzero ensuring that the bound is finite.
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F I G U R E A1 Results on real world data. Red boxplot signifies supervised random forest performance. (Section 4.1 discusses
normalized enotrpy)
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F I G U R E A1 Continued
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In fact, it is only the case d> b when 𝛿 must be selected
carefully, since (A2) is strictly positive for any 𝛿 > 0 when
d ≤ b. Therefore we are free to choose any 𝛿 > 0 if we elimi-
nate the latter case. This can be readily achieved as follows.
Prior to reordering the data, translate each continuous fea-
ture so that all feature values are positive and all have the
same maximum value. Even though the minimum value
may differ over variables their maximum value is the same
which forces d = b and removes the case d > b.

APPENDIX B. PERFORMANCE ON REAL
DATA

Performance of sidClustering on a collection of
datasets. For each dataset, the true class label was removed

and sidClustering applied. The entire procedure was run
100 times using stratified subsampling (40% rate). Com-
parison procedures include Breiman clustering [2] under
Shi–Hovarth’s [21] two generation modes (SH1 and SH2)
and cluster forest (CF) [23]. A supervised random forest
was run using the true class labels to provide a bench-
mark performance value (depicted using red values). Per-
formance was calculated by comparing the predicted OOB
class labels to the truth.


