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Abstract: Minimal depth is a dimensionless order statistic that measures the predictiveness of a variable in a survival tree.
It can be used to select variables in high-dimensional problems using Random Survival Forests (RSF), a new extension of
Breiman’s Random Forests (RF) to survival settings. We review this methodology and demonstrate its use in high-dimensional
survival problems using a public domain R-language package randomSurvivalForest. We discuss effective ways to
regularize forests and discuss how to properly tune the RF parameters ‘nodesize’ and ‘mtry’. We also introduce new graphical
ways of using minimal depth for exploring variable relationships.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining
4: 115–132, 2011
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1. INTRODUCTION

Survival outcome, such as time until death, is often
used as a powerful endpoint for studying disease processes.
Traditionally, survival data have been used to predict
outcome for patients based on clinical variables, but
recently there has been tremendous interest in combining
survival outcomes with data from high-throughput genomic
technologies, especially DNA microarrays, as a way of
studying disease processes at a molecular level.

Although the potential for discovery can be far greater
when using genome-wide data, the high-dimensionality of
this data poses challenging statistical issues. Various meth-
ods have been proposed to overcome these hurdles. These
include partial least squares [1,2], semi-supervised principal
components [3], and Cox-regression under lasso penaliza-
tion [4,5]. As well, there has been considerable interest in
applying machine learning methods. Boosting, in particular,
has been considered in a variety of contexts; for example,
Cox-gradient boosting [6,7], L2-boosting [8], and compo-
nentwise Cox-likelihood based boosting [9]. See the study
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of Ridgeway [10] for the first instance of boosting for Cox
models.

Another machine learning method that has attracted con-
siderable interest is Random Forests (RF) [11]. RF is an
ensemble learner formed by averaging base learners. The
base learners are typically binary trees grown using CART
methodology [12]. In traditional CART, a binary tree is
grown to full size and then pruned back on the basis of
a complexity measure. However, RF trees differ from clas-
sical CART as they are grown nondeterministically, without
pruning, using a two-stage randomization procedure. First,
an independent bootstrap sample of the data is drawn over
which the tree is grown. Second, during the tree growing
process, at each node of the tree, a subset of variables is
randomly selected and these are used as candidates to split
the node. The tree is grown to full, or near full size, so
that each terminal node contains a minimum number of
unique cases. Trees grown using CART methodology are
well known to exhibit high variance [13,14]. However, by
combining deep, random trees, RF is able to substantially
reduce variance as well as bias.

Most applications of RF have focused on regression
and classification settings. Many of these use the popular
Breiman and Cutler software implemented in R [15]. See
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the studies of Lunetta et al. [16], Bureau et al. [17], and
Diaz-Uriarte and Alvarez de Andres [18] for applications
to Single Nucleotide Polymorphism (SNP) and microarray
data. Recently, however, RF has been extended to right-
censored survival settings. This new method called Random
Survival Forests (RSF) [19] can be implemented using the
R-software package randomSurvivalForest [20,21].
Similar to regression and classification settings, RSF is
an ensemble learner formed by averaging a tree base-
learner. In survival settings, the base-learner is a binary
survival tree, and the ensemble is a cumulative hazard
function formed by averaging each tree’s Nelson–Aalen’s
cumulative hazard function.

More recently, Ishwaran et al. [22] described a new high-
dimensional variable selection method based on a tree
concept referred to as minimal depth. This differs from
the traditional method of variable selection in RF which
has been based on variable importance (VIMP) measures.
VIMP measures the increase (or decrease) in prediction
error for the forest ensemble when a variable is randomly
‘noised up’ [11]. While this informal idea first proposed by
Breiman [11] has had good empirical success, the complex
nature of the VIMP calculation has made it difficult to
study [23], and the method has remained largely ad hoc.
In contrast, rigorous theory for selecting variables as well
as comprehensive methodology for regularizing forests is
possible using minimal depth [22].

One of the main purposes of this paper is to familiarize
the reader with this new methodology and to demonstrate
how to effectively use it in high-dimensional survival prob-
lems, such as those frequently encountered in bioinformat-
ics settings. Section 2 begins by reviewing the definition
of minimal depth and minimal depth thresholding for vari-
able selection. Sections 3 and 4 discuss regularization of
forests through selection of the tuning parameters ‘node-
size’ and ‘mtry’. Section 5 investigates the effectiveness
of this regularization on minimal depth variable selection.
In Section 6, we discuss an ultra-high dimensional reg-
ularization method, termed ‘variable hunting’. Section 7
introduces new graphical methods using minimal depth and
related tree structures for exploring relationships between
variables. Although we focus on a low-dimensional prob-
lem for illustration we believe that these ideas could be
utilized in high-dimensional problems. In Section 8, we
summarize the principle findings of the paper. Finally, we
note that all RSF computations in this paper have been
implemented using the randomSurvivalForest pack-
age which has been extended to incorporate minimal depth
methodology [21]. For the convenience of the readers, we
have included small snippets of R-code to illustrate basic
calls for implementing the methodology.

2. MINIMAL DEPTH

2.1. Definition

Minimal depth assesses the predictiveness of a variable
by its depth relative to the root node of a tree. To make
this idea more precise, we define the maximal subtree for a
variable. A maximal subtree for a variable v is defined to be
the largest subtree whose root node is split using v (i.e., no
other parent node of the subtree is split using v). The short-
est distance from the root of the tree to the root of the closest
maximal subtree of v is the minimal depth of v. A smaller
value corresponds to a more predictive variable [22].

Figure 1 provides an illustration. Shown is a single tree
grown using the Primary Biliary Cirrhosis (PBC) data, an
example data set available in the randomSurvival-
Forest package (hereafter abbreviated as rsf). Maximal
subtrees for variables ‘bili’ and ‘chol’, two of the 17 vari-
ables in the data set, are highlighted using yellow and green,
respectively. Tree depth is indicated by an integer value
located in the center of a tree node. For example, on the
right-hand side of the tree, chol is split at depth 2. In fact,
this node and the subtree beneath it defines a maximal sub-
tree for chol because no parent node above this node splits
on chol. Although chol has other maximal subtrees (in the
middle and left side), the shortest distance to the root node
occurs for this particular maximal subtree. Thus, chol has a
minimal depth of 2. Note that bili is also split for the first
time on the right-hand side within the maximal subtree for
chol (at depth 3). Thus, within this subtree is a maximal
subtree for bili. There are other maximal subtrees for bili,
in fact there is one with a depth of 3 near the middle of the
tree. Scanning the tree, we see that the minimal depth for
bili is 3.

2.2. Distribution Theory for Minimal Depth

The distribution for the minimal depth can be derived in
closed form under certain conditions [22]. Let Dv denote
the minimal depth for a variable v. Let πv,j (t) be the
probability that v is selected as a candidate variable for
splitting a node t of depth j , assuming no maximal v-
subtree exists at depth less than j . Let θv,j (t) be the
probability that v splits a node t of depth j given that v

is a candidate variable for splitting t , and that no maximal
v-subtree exists at depth less than j . Then for 0 ≤ d ≤
D(T ) − 1, where D(T ) is the depth of the tree,

P

{
Dv = d

∣∣�0, . . . , �D(T )−1

}

=
[d−1∏

j=0

(
1−πv,j θv,j

)�j

][
1−(

1−πv,dθv,d

)�d

]
, (1)
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Fig. 1 Illustration of minimal depth (based on PBC data, an example data set available in the randomSurvivalForest package).
Yellow and green colored points are maximal subtrees for variables ‘bili’ and ‘chol’, respectively. Depth of the tree is indicated by
numbers 0, 1, . . . , 9 inside of each node. The minimal depth for bili is 3 and chol is 2.

where �d is the number of nodes at depth d. The distribution
(1) is normalized by setting

P

{
Dv = D(T )

∣∣�0, . . . , �D(T )−1

}

= 1 −
D(T )−1∑

d=0

P

{
Dv = d

∣∣�0, . . . , �D(T )−1

}
.

The above representation assumes that πv,j (t) and θv,j (t)

are independent of the node t . As discussed by Ishwaran
et al. [22] this assumption can hold in many scenarios. One
especially important case is when v is a noisy variable in
high-dimensional sparse settings.

DEFINITION 1: We call a variable noisy if it has no
effect on the true survival distribution. A variable that
effects the survival distribution is called strong.

Let m be the number of candidate variables randomly
selected for splitting a node, and let p be the total number
of variables. The distributional result (1) holds for a noisy
variable if the following two conditions are met:

πv,j (t) = πv,j = m

p
, (2)

θv,j (t) = θv,j = 1

m
. (3)

Condition (2) holds approximately if

m

p
= o(1). (4)

The value m is often referred to as mtry and is an
important tuning parameter used in forests. Its value
regulates the amount of correlation between trees. Smaller
values encourage different sets of variables to be used when
growing a tree which improves tree decorrelation. Typically
m is selected so that m = √

p, and while this satisfies
Eq. (4), we will show (see Section 4) that much larger
values are required for effective variable selection in high-
dimensional settings. Larger values are needed to improve
the chance of splitting a strong (non-noisy) variable.

Notice that Eq. (2) implies that each of the m candidate
variables is randomly selected from the full set of p

variables. Thus, among the m candidates, we would expect
mp0/p to be strong variables, where 1 ≤ p0 ≤ p is the total
number of strong variables. Now, because a strong variable
will be Sj > 0 times more likely to be selected than a noisy
variable, then if v is noisy, we have

θv,j ≈
[
m

(
1 − p0

p

)
+ mSj

p0

p

]−1

≈ 1

m

because p0/p � 1 in sparse settings. Thus, condition (3)
naturally holds in sparse settings.

Hence, in sparse high-dimensional settings, condi-
tions (2) and (3) will hold if v is a noisy variable and
if Eq. (4) is satisfied. Assuming that this is the case, the
distribution (1) can be approximated in closed form for a
noisy variable as follows:

P{Dv = d|v is a noisy variable, �0, . . . , �D(T )−1}

=
(

1 − 1

p

)Ld
[

1 −
(

1 − 1

p

)�d
]

, 0 ≤ d ≤ D(T ) − 1,
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P

{
Dv = D(T )

∣∣v is a noisy variable, �0, . . . , �D(T )−1

}
,

= 1 −
D(T )−1∑

d=0

(
1 − 1

p

)Ld
[

1 −
(

1 − 1

p

)�d
]

, (5)

where Ld = �0 + · · · + �d−1. See the study of Ishwaran
et al. [22] for details.

2.3. Minimal Depth Thresholding

Having a simple expression (5) for the minimal depth
distribution is highly advantageous. The mean of this distri-
bution, the mean minimal depth, easily calculated from Eq.
(5), represents a threshold value for selecting variables in
sparse high-dimensional settings. Those variables with for-
est averaged minimal depth exceeding the mean minimal
depth threshold are classified as noisy and are removed from
the final model. Definition 2 gives a formal description of
this selection method.

DEFINITION 2: Choose a variable v if its forest
averaged minimal depth, Dv = dv , is less than or equal
to the mean minimal depth of Dv under the null (5). We
refer to this variable selection method as (mean) minimal
depth thresholding.

Minimal depth thresholding is a simple and rigorous way
to select variables in high dimensions. We list two of its
key properties.

1. Because minimal depth is independent of prediction
error, variables selected using mean minimal depth
are not tied to any specific measure of error. This
is important as prediction error can vary greatly
in survival settings depending on the method used.
For example, the amount of censoring can play a
prominent role.

2. Because minimal depth utilizes only generic tree
concepts, it applies to all forests regardless of the
outcome. For example, it can be used in regression
as well as classification settings.

Being able to select variables independently of prediction
error is important. In some scenarios (such as survival set-
tings), there may be debate about what constitutes an appro-
priate measure of prediction error, and as we remarked,
different measures could yield different estimates of pre-
diction error which ultimately could yield different selected
variables. Equally importantly, there are scenarios where it
may not even be clear how to measure prediction error.
For example, in competing risks where the outcome is time

to the event of interest, but where the event can be pre-
cluded by other types of events, assessing prediction error
and defining VIMP is a challenging research problem by
itself [24].

Furthermore, variable selection based on prediction
error implicitly relies on having an accurate ensemble.
While forests are known to be excellent predictors in
high dimensions, without additional regularization, the
number of noisy variables eventually overwhelms a tree
as p increases, and prediction performance subsequently
breaks down. When this happens it becomes impossible
to effectively select variables. This is true regardless of
the method used for variable selection, but methods that
are based on prediction error, such as VIMP, may be more
susceptible to these effects than minimal depth. As long as a
variable v repeatedly splits across the forest, minimal depth
has a good chance of identifying v even in the presence of
many noisy variables.

Even when a forest provides reasonable VIMP, there
is still the issue of thresholding these values. Ad hoc
methods that use arbitrary cut-off values will not work in
high dimensions as VIMP varies considerably depending
upon the data; for example, the size of p, the correlation
in the data, and the underlying sparsity p0/p of the true
model play crucial roles. It is important, therefore, to have
a method for reliably thresholding variables. Furthermore,
this applies even to methods such as stepwise regression,
a type of regularization that has become popular as a way
to compensate for the inability to directly threshold VIMP
in high dimensions. In these methods, VIMP is used to
order variables. Models are then fit based on this ordering
in either a forward or backward stepwise manner, with the
final model being selected on the basis of prediction error.
See, for example, the studies of Diaz-Uriarte and Alvarez
de Andres [18] and Genuer et al. [25]. Our contention is
that such methods could be used far more effectively for
selecting variables if we could reliably threshold noise
variables. Indeed, in Section 6, we discuss an ultra-
high dimensional stepwise selection mechanism (variable
hunting) that combines the regularization of stepwise with
the utility of minimal depth thresholding.

Figure 2 illustrates some of these ideas. There we have
plotted VIMP based on a rsf analysis of simulated
data, where n = 200, p = 250, 500, 1000, and p0 = 25.
In each simulation, the signal strength for the strong
variables was set to the same value. Noisy variables were
drawn independently from a uniform [0, 1] distribution,
while strong variables were sampled jointly so that they
were pairwise correlated (see Section 5 for details). This
simulation is intended to represent the type of correlated
data one often encounters in high-throughput genomic
problems. For example, gene expression values assayed
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Fig. 2 VIMP from RSF applied to simulated data with increasing p where n = 200 and p0 = 25. Strong variables (indicated by red)
are pairwise correlated.

using microarrays may represent pathways and gene
networks which naturally exhibit a high level of correlation.

Two things should be noticed about Fig. 2. The first
is that the separation between noisy and strong variables
degrades noticeably as p increases. This is because
prediction error decreases rapidly with p (for p = 1000
the out-of-bag error rate was 39%, while for p = 250 it
was 34%). Second, VIMP decreases in magnitude as p

increases. Even going from p = 500 to p = 1000 leads
to a noticeable change in the range of VIMP. A good
thresholding cut-off rule for p = 500 would not necessarily
work well for p = 1000. It is clear that arbitrary cut-off
values would work poorly in this problem.

It would be extremely beneficial to be able to threshold
variables in scenarios like Fig. 2. In the next few sections,
we discuss how to do this effectively by using minimal
depth thresholding.

3. SELECTING NODESIZE

3.1. Mean Minimal Depth under Balanced Trees

To use minimal depth we must know the number of
nodes, �d , at each depth d of a random tree to be able to
calculate (5). Because these values are unknown, a strategy
that we first tried was to assume a balanced tree in which
�d = 2d for each d. Figure 3 shows how the mean minimal
depth under the null (5) varies as a function of p assuming
a sparse setting and a balanced tree.

As one can see from Fig. 3, the mean minimal depth
converges to the maximal depth of a tree, D(T ) as p

increases. The vertical lines and superimposed integers in
the figure indicate the number of variables at which point
the mean plus one-half of the standard deviation of Dv

exceeds D(T ). As can be seen, this can occur quite rapidly.

Fig. 3 Mean minimal depth under the null that a variable is noisy
assuming sparsity and a balanced tree. Dashed vertical lines and
superimposed integers indicate the number of variables at which
point the mean plus one-half of the standard deviation of minimal
depth exceeds the maximum depth of a balanced tree.

For example, with a sample size of n = 256, it only takes
p = 751 variables to reach this point.

3.2. Random Trees Are Unbalanced in High
Dimensions

What Fig. 3 demonstrates is that Dv will be nearly equal
to D(T ) for a noisy variable if p is substantially larger
than n under a balanced tree assumption. However, we now
discuss how realistic this latter assumption is.

In fact, we found through experimentation that balanced-
ness often failed to hold in high-dimensional sparse settings
and that minimal depth often saturated at values far higher
than D(T ) = log2(n), the asymptote for a balanced tree
in such settings. Thus, while Fig. 3 shows that the effec-
tiveness of minimal depth decreases rapidly with p for a
balanced tree, the story may actually be much better when
a tree is unbalanced.

Statistical Analysis and Data Mining DOI:10.1002/sam
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What we found was that the balancedness of a tree was
heavily influenced by the forest parameter nodesize defined
as the minimum number of unique deaths within a terminal
node. We found that trees became highly unbalanced when
nodesize was set to a very small value. Intuitively, this
can be understood as follows. In high-dimensional sparse
settings, each node of a tree can be split by a large number
of variables, many of these being noisy. Due to their
overwhelming majority, a noisy variable will often split
a node, and when this happens there is a non-negligible
probability that a split will occur near an edge. Furthermore,
this effect can become exaggerated due to the tendency
of some splitting rules to split near their edge when the
variable is noisy [12]. This can result in a daughter with
close to but greater than or equal to nodesize unique deaths
rather than, say, a daughter with approximately half the
population of the parent node. When an edge split such
as this occurs, any further splitting is impossible because
it would result in less than nodesize unique deaths in the
second-generation daughters of the node. Thus, the daughter
node is terminated.

Clearly nodesize plays a prominent role in all of this.
Because a noisy variable can split near its edge, nodes are
terminated very early in the tree growing process when
nodesize is large. On the other hand, if nodesize is small,
the tree is able to grow deeply, but again because noisy
variables often split nodes, the tree becomes unbalanced
since there is always a non-negligible probability of
splitting near an edge.

The following result makes these assertions rigorous and
suggests a way to regularize forests.

THEOREM 1: Grow a random survival tree such
that each terminal node contains a minimum of 1 ≤
N < n unique deaths. Let t be a node with 1 ≤ nt ≤ n

observations. Let πt(d) be the probability that no daughter
node under t of relative depth d is a terminal node if t is
split repeatedly using ordered noisy variables. Then

πt (d) ≤




d∏
j=1

(
1− 4N − 2

nt − 2(j − 1)N

)2j−1

if nt ≥ 2d+1N

0 otherwise.
(6)

Nodesize is represented in Theorem 1 by N . Typically
nodesize is used as a parameter for tuning prediction error,
with smaller values of nodesize yielding deeper trees, lower
bias, and in some instances, a lower mean-squared error.
However, Theorem 1 shows that nodesize also plays a
pivotal role in the balancedness of a tree. As an example, if
t is the root node, nt = 256, and d = 4, then πt(d) = 0.88
if N = 1, whereas if N = 5, πt(d) = 0.29. Thus when

Fig. 4 Forest distribution of number of nodes at a given tree
depth for PBC data with 1000 noise variables (boxplot widths are
proportional to the square-root of the number of observations).
Left- and right-hand sides were fit using a nodesize of N = 1 and
N = 5, respectively.

N = 5, terminal nodes occur with high probability (71%)
after only a few noisy splits. This probability is much
lower (12%) when N = 1, yet the probability is still non-
negligible. This is important, because while we would not
expect to find terminal nodes so close to the root node,
under noisy splitting this is clearly not the case.

Thus, Theorem 1 shows that large N will lead to
unbalanced premature trees, while decreasing N will
encourage deep unbalanced trees. This suggests that N

should be chosen as small as possible. This will encourage
deep trees and ensure that minimal depth does not saturate
rapidly.

As evidence of this, we added 1000 uniform [0, 1]
variables to the PBC data and then fit this data using the
rsf package. Default settings for the software were used
except that nodesize was set to the value 1. Additionally,
each tree was grown using log-rank splitting [26] with
randomization. For each of the randomly selected variables,
‘nsplit’ randomly selected split points were chosen, and
log-rank splitting was applied to these random split points.
The tree node was split on that variable and random
split point maximizing the log-rank statistic. We set nsplit
= 10. Random splitting is a useful tool for mitigating tree
bias favoring splitting on continuous variables and it can
improve prediction error [19,27].

The left-hand side of Fig. 4 presents boxplots depicting
the forest distribution for the number of nodes at a given
tree depth when N = 1. In this data set, there are n = 276
observations, and if trees were balanced, we would expect
tree depths to rarely exceed log2(276) = 8.1. Yet, the figure
shows that trees can often have depths in excess of 20.
Furthermore, depth ranges widely from about 3 to over
20 with the number of nodes at any given depth being
generally much smaller than 2d ; the value expected for a
balanced tree. This should be contrasted with the figure on
the right-hand side based on a similar analysis, but using a
nodesize of N = 5. Note how the distribution concentrates
at much smaller depth values, with a range of values from
about 3 to 6.
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Fig. 5 Mean minimal depth for a noisy variable from Eq. (5)
using forest estimates for �d and D(T ). Left- and right-hand sides
based on nodesize values of N = 1 and N = 5, respectively.

3.3. Forest Estimates for the Number of Nodes and
Tree Depth

While it is convenient to assume a balanced tree so that
�d is a known value, our results clearly show that such an
assumption is unrealistic in high dimensions when nodesize
is small. Even when nodesize is large, it is unlikely that a
balanced tree assumption will be appropriate.

Thus, to apply Eq. (5), we estimate �d as well as
tree depth, D(T ), using forest estimated averaged values.
These calculations can be easily programed, but for
convenience, they have been incorporated into the R-
wrapper max.subtree available in the rsf package. To
extract these estimates, we first must make an initial forest
call. Our call looked something like:

rsf.out <- rsf(rsf.f, pbc.noise,
ntree=1000, nsplit=10, nodesize=1,
forest=TRUE, big.data=TRUE)

The following commands extract minimal depth data from
the forest object, rsf.out:

max.out <- max.subtree(rsf.out)
nodes.at.depth <- max.out$nodesAtDepth
threshold <- max.out$threshold
min.depth <- max.out$order[, 1]

The first command invokes the max.subtree wrapper
which recursively parses the forest and gathers topological
information from each tree. The object obtained from this
call contains many useful items. One of these is the number
of nodes per depth per tree (line 2) that was used to produce
Fig. 4. Another is the mean minimal depth under the null
(line 3). This value is estimated by substituting forest
estimates for �d and D(T ) in Eq. (5). Line 4 extracts the
forest averaged minimal depth for each variable. Figure 5
shows how mean minimal depth varies as the number of
noise variables is increased for the PBC data. Observe how
mean minimal depth asymptotes at much higher values
under a nodesize of N = 1 (left-hand figure) than that for
a nodesize of N = 5 (right-hand figure).

4. SELECTING MTRY

In this section, we look at the issue of selecting mtry.
Similar to nodesize, mtry is a RF tuning parameter that
plays a crucial role in accurate variable selection.

4.1. Mean Minimal Depth for Strong Variables

The default setting for mtry in the rsf package is
m = √

p. While this satisfies the condition (4) needed for
Eq. (5) to hold, we now show that this value may be too
small for effective variable selection in sparse settings.

To do so, we study the effect mtry has on the distribution
of minimal depth for a strong variable. To derive this
distribution we make the following assumptions:

1. πv,j = m/p for each v.
2. If v is a strong variable, mθv,j =min(S

√
n/�j , m).

Condition 1 assumes that all variables are equally likely
to be selected as candidates for splitting a node. This is
reasonable when p is large. Condition 2 states that the
probability of splitting a node using a strong variable equals
S/m times the square-root of the sample size of the node,
nj = n/�j (here S is the signal strength). This is realistic
because we would expect any good splitting rule to have a√

nj -asymptotic property. Note that condition 2 implicitly
assumes that the sample size for each node at depth j is
equal; that is, that all daughters of the same depth are
equally balanced in size. Of course this will not always
hold in light of our previous discussions on the unbalanced
nature of trees in high dimensions. But the assumption is
stronger than needed. As long as the size of a node is
appreciable whenever a strong variable splits a node, our
distributional result will hold approximately.

Under these assumptions, the distribution for minimal
depth can be derived in closed form for a strong variable
analogous to Eq. (1):

P{Dv = d|v is a strong variable, �0, . . . , �D(T )−1}

=
(

1 − min(S
√

n/�d, m)

p

)Ld

[
1 −

(
1 − min(S

√
n/�d, m)

p

)�d
]

, (7)

where 0 ≤ d ≤ D(T ) − 1. The distribution is normalized
at D(T ) as before.

Figure 6 shows the mean minimal depth under Eq. (7) for
the PBC data using different values of mtry:

√
p, p2/3, p3/4,

and p4/5 (square points connected by dashed-lines). For
nodesize we used N = 1. All other parameter settings were
the same as before. For the analysis, we used S = 1, 20
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Fig. 6 Mean minimal depth for a noisy variable (circles) and
a strong variable (square points connected by lines) for PBC
data using forest estimates for �d and D(T ) as number of noise
variables and mtry values are varied. Top figure based on a signal
strength of S = 1; bottom figure S = 20.

(top and bottom figures, respectively) and as in Fig. 5,
we have substituted forest estimates for �d and D(T ). For
convenience, we have also superimposed the mean minimal
depth under the null (circles).

The top plot of Fig. 6 shows that when the signal strength
is weak, increasing mtry increases the mean minimal depth
under the alternative. With a weak signal a large mtry
value allows too many noisy variables to compete to split
a node. Even though the mean minimal depth under the
null increases, any benefit of increasing mtry appears to be
washed out. Indeed, one can show that for very small sig-
nal values, mean minimal depth under the alternative can
exceed that under the null if mtry is too large. On the other
hand, the bottom figure shows that increasing mtry under a
strong signal improves both the alternative and null distri-
bution.

It is interesting that the mean minimal depth under the
null increases with increasing mtry. One explanation for
this is as follows. As mtry increases, the chance of splitting
a noisy variable increases. Because splits on noisy variables
yield unbalanced daughter nodes, the distribution of �d

becomes more spread out and subsequently the mean value
for minimal depth under the null increases with mtry.

To demonstrate this effect, we redid the analysis of
Fig. 4 using an mtry value of m = p4/5 in place of the
default value m = √

p used previously. Figure 7 displays
the results. Compared with Fig. 4, one can see that when

Fig. 7 Same as Fig. 4, but using an mtry value of m = p4/5.
Left- and right-hand sides correspond to nodesize values of N = 1
and N = 5, respectively.

N = 1 (left-hand side figures) tree depths are far larger and
the distribution of tree depths are far more evenly spread.
As the PBC data are known to have strong signal variables,
and we know from Fig. 6 that the mean minimal depth
will be relatively small assuming a strong signal under the
alternative, we can conclude that Fig. 7 (left side) is at the
very least understating the skewness of the null distribution
and that the skewness seen in the figure is primarily driven
by the effect of unbalanced splitting of noisy variables
which is exaggerated by the large mtry value. This effect
is also dependent on a small nodesize value. This can be
seen from the right-hand side of Fig. 7, which is based on
a node size of N = 5. This looks nearly the same as the
right side of Fig. 4.

These results suggest that mtry should be set as high as
possible in strong signal scenarios as this will encourage the
best possible separation between the null and alternative
minimal depth distributions. In moderate signal settings,
there may be no benefit to using a very large mtry value.
In very weak signal scenarios, a large mtry may even be
detrimental.

Thus if the goal is to discover signal, then the best overall
strategy is to choose a large mtry value, while maintaining
the condition m/p = o(1). The latter condition is designed
to avoid poor performance in weak signal scenarios.
Choosing a large mtry value may seem like a curious
strategy, however, because one of the core principles of
RF is that the tree growing process should encourage
decorrelated trees. Decorrelated trees are desirable because
they ensure low variance. With increasing mtry, trees are
grown under less randomization and one might expect that
correlation between trees would increase because of this.

However, we do not believe that this is what happens. In
high dimensions, trees can maintain low correlation due to
the sheer volume of noise variables. In fact, given any two
trees, there will be little overlap in the noise variables used
to split their nodes. Thus in high-dimensional sparse set-
tings, we conjecture there is a built in decorrelation effect
at work. Furthermore, one should keep in mind that the goal

Statistical Analysis and Data Mining DOI:10.1002/sam



Ishwaran et al.: Random Survival Forests for High-Dimensional Data 123

of using minimal depth is to achieve accurate variable selec-
tion and not necessarily to minimize prediction error, so that
even if correlation degrades by increasing mtry, this may be
necessary in order to ensure accurate selection of variables.

4.2. Encouraging Strong Variables

In addition to increasing mtry, another way to increase
the number of nodes split by strong variables is to
actively encourage their selection. Rather than selecting
mtry variables randomly, it is better to select variables
using predetermined weights indicating their potential
importance. This idea has been explored in a related
approach referred to as ‘enriched random forests’ [28].

It is not necessary to use complicated methods when
selecting the weights. The only constraint is that condi-
tions (2) and (3) must continue to hold in order for Eq. (5)
to be valid. Consider condition (2). Let Wj ≥ 0 be the
weight for selecting variable vj , for j = 1, . . . , p. Suppose
that vk is noisy and let �k be the conditional probability
that vk is selected from {v1, . . . , vp} in a weighted-random
draw, conditional on the values (Wj )

p

j=1. Then

�k = Wk∑
j is noisy Wj + ∑

j is strong Wj

.

We will assume that 1 ≤ Wj ≤ λp, for j = 1, . . . , p. Then,

Wk∑
j is noisy Wj + p0λp

≤ �k ≤ Wk∑
j is noisy Wj + p0

.

If p0λp/p → 0 and Wj are i.i.d. when j is noisy, then
multiplying throughout by p, and using the strong law of
large numbers, we have

p�k = Wk

µ
+ op(1), as p → ∞,

where µ = E(Wk) is the mean for a noisy variable. Let πk

be the unconditional probability that vk is selected from
{v1, . . . , vp} in a weighted-random draw. From the above,
and noting that �k is bounded, it follows that

πk = E

(
Wk

pµ

)
+ op(1/p) = 1/p + op(1/p).

Therefore the probability that vk is chosen as a candidate
variable for splitting a node is approximately

1 − (1 − πk)
m = 1 − (1 − 1/p + op(1/p))m

= m/p + op(1).

For condition (3), notice that the preceding calculation
shows that each noisy candidate variable can be assumed

to be randomly selected from the p variables. In particular,
this implies that a strong variable will also have a 1/p

chance of being selected as a candidate. Thus, condition (3)
holds by the same argument given earlier.

It may seem surprising that in trying to improve the
chance of selecting a strong variable that the probability
is still no better than a random draw. But keep in mind
that this is only an asymptotic result. The key condition
p0λp/p → 0 used in our asymptotic argument can be satis-
fied by many sequences. If λp is allowed to increase rapidly
enough, then the effect can be substantial in finite sample
settings. We demonstrate this in the following section.

5. THRESHOLDING USING MEAN MINIMAL
DEPTH

In this section, we study the effectiveness of minimal
depth thresholding under regularization. For proper regular-
ization, we have shown that nodesize should be set as close
to N = 1 as possible and mtry should be chosen as large
as possible so that m/p → 0. We have also discussed reg-
ularization by encouraging strong variables to be selected
by using predetermined weights. These weights should be
selected so that p0λp/p → 0. In the following simulation
examples, we study the effectiveness of combining these
three regularization methods.

5.1. Selection of Weights

We used the following strategy for defining (Wk)
p

k=1.
Prior to fitting a forest, we fit a univariate Cox regression
analysis for each variable vk . Using the p-value, Pk , for the
coefficient estimate for vk , we defined

Wk = 1

max(Pk, λ−1
p )

, k = 1, . . . , p, (8)

where λp ≥ 1. Notice that Wk are identically distributed for
noisy variables since Pk is uniformly distributed under the
assumption of a zero coefficient. Also:

1 ≤ Wk ≤ λp, k = 1, . . . , p.

To ensure p0λp/p → 0, we set λp = p4/5.

5.2. Example 1: Correlated Strong Variables

For our first example, we return to the simulation
presented earlier in Fig. 2. The data in this simulation were
generated as follows. For each of the n = 200 observations,
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we randomly sampled the survival time Ti using

Ti = log

[
1 + ξi exp

(
p∑

k=1

xi,kβk

)]
, i = 1, . . . , n,

where (ξ)ni=1 were i.i.d. variables with a standard expo-
nential distribution. Coefficients were set to zero except
for the first p0 = 25 variables (the strong variables); these
were assigned the value βk = 1/

√
p0. Covariates xi,k for

the noise variables were independently sampled from a uni-
form [0, 1] distribution. For the strong variables, we set
xi,k = Ui,kUi , where (Ui,k, Ui) were i.i.d. uniform [0, 1]
variables. By using the same Ui , this ensured that the strong
variables were pairwise correlated (pairwise correlation of
3/7 = 0.43). The data were not censored.

We ran two sets of forests: one using the standard
approach in which mtry variables were sampled randomly
at each node, and the other using weighted variable
sampling (see Eq. (8)). Weights were assigned within the
rsf package by making use of the ‘predictorWt’ option.
All forest calculations were implemented using rsf similar
to the PBC analysis described earlier. In both cases,
nodesize was set to N = 2 and for mtry we used m = p4/5.
For each of these forests, we extracted VIMP as well as the
forest averaged minimal depth for each variable.

Figure 8 displays the results. Rows 1 and 2 display
VIMP, where row 1 was obtained from the standard forest
and row 2 from the forest using weighted variable sam-
pling. VIMP values were determined using the C-index
measure of prediction error under random daughter node
assignment [19]. This type of VIMP calculation is sim-
ilar to the Breiman permutation based VIMP commonly
used [11]. Rows 3 and 4 display the results from the min-
imal depth analysis. Row 4 was obtained from the forest
using weighted variable sampling (the same as that used
for row 2). The red horizontal dashed line superimposed
on the figure is the mean minimal threshold value under
the null (5).

Figure 8 shows, not surprisingly, that variable selection
performance degrades as p increases regardless of the
method. We also find that minimal depth thresholding (row
3) is conservative, but accurate. The number of falsely
identified variables (blue points below the red dashed line)
is no more than one or two variables in all scenarios. The
use of weighted variable sampling had no noticeable affect
on VIMP (row 2), whereas for minimal depth (row 4) the
effect is substantial. Now in place of only a handful of
strong variables, almost all strong variables (red points) are
below the minimal depth threshold, even in the p = 1000
simulation. The number of noisy variables that fall below
this threshold has increased, but the end effect is that
weighted variable sampling has allowed minimal depth to
discover more true signal.

The reason for the success of weighted variable sampling
with minimal depth but not VIMP goes back to our earlier
discussion in Section 2 regarding prediction error. Weighted
sampling improves the number of times a strong variable
splits a tree, which improves its chance of splitting near the
root, which ultimately improves variable selection under
minimal depth thresholding. However, weighted sampling
has a marginal effect on prediction error. The out-of-bag
prediction error without and with weighting was 39% and
35%, respectively, for the p = 1000 simulation. Even with
this improvement the prediction error is still too high for
VIMP to be effective.

To study the effect of mtry, we repeated the minimal
depth analyses for the p = 1000 simulation under dif-
ferent mtry values: p1/3,

√
p, p2/3, p3/4, and p4/5. All

other parameters were kept the same. For each mtry value,
we recorded the size of the estimated model p̂, the false
positive (FP) rate, and false negative (FN) rate based on
the variables identified by minimal depth. Variables were
selected using minimal depth thresholding as described in
Definition 2. The prediction error (PE) for the selected
model was estimated by using a hold out test data set (the
same n and p were used). The simulation was repeated
100 times. Performance values were averaged over the 100
independent runs. We then repeated the same analysis, but
where the data were randomly censored to have a censoring
rate of 25%.

The results are displayed in Table 1. For minimal depth
(abbreviated as MD), regardless of censoring, the FP rate
and PE decrease with increasing mtry up until roughly p3/4

at which point they start to increase. With increasing mtry,
estimated model size increases, but the FN rate remains
nearly zero. The best overall performance is when mtry
equals p3/4. For minimal depth combined with weighted
variable sampling (abbreviated as MD-W), regardless of
censoring, the FP rate and PE are near constant across mtry,
but estimated model size increases and is accompanied by
an increasing FN rate. The best overall performance is when
mtry equals p1/3 or

√
p.

For comparison, Table 1 also includes Cox-likelihood
based boosting [9]. Computations were implemented using
the CoxBoostR-software package [29]. The optimal num-
ber of boosting iterations was estimated using tenfold cross-
validation. A boosting penalty of 100 was used. The row
entry CoxBoost in Table 1 records the results from this
procedure. As can be seen, CoxBoost is highly conserva-
tive with a high FP rate. Its performance is roughly on par
with MD (although its PE is better under censoring), but
its performance is noticeably worse than MD-W.
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Table 1. High-dimensional simulation (n = 200, p = 1000, and p0 = 25) where strong variables are pairwise correlated.

No censoring 25% Censoring

mtry FP FN p̂ PE FP FN p̂ PE

MD p1/3 0.840 0.000 4 0.369 0.928 0.000 2 0.393√
p 0.821 0.000 5 0.367 0.916 0.000 2 0.389

p2/3 0.714 0.001 8 0.345 0.810 0.001 5 0.365
p3/4 0.702 0.002 9 0.344 0.784 0.002 7 0.361
p4/5 0.706 0.003 10 0.345 0.787 0.004 9 0.363

MD-W p1/3 0.005 0.025 49 0.330 0.036 0.020 44 0.342√
p 0.006 0.025 49 0.330 0.038 0.020 44 0.342

p2/3 0.005 0.035 59 0.330 0.043 0.027 51 0.342
p3/4 0.005 0.041 64 0.331 0.059 0.032 55 0.342
p4/5 0.006 0.040 64 0.331 0.075 0.028 50 0.342

CoxBoost 0.879 0.001 4 0.348 0.884 0.001 4 0.354

Results are averaged over 100 runs. Rows labeled MD, MD-W are minimal depth without and with weighting.

Fig. 8 High-dimensional simulation (n = 200, p = 250, 500, 1000, and p0 = 25) where strong variables (red) are pairwise correlated.
Rows 1 and 2 are VIMP analyses, rows 3 and 4 are minimal depth analyses. Rows 2 and 4 use weighted variable sampling where the
likelihood of choosing a variable as a candidate for splitting a node was specified by Eq. (8).

5.3. Example 2: Interactions Without Main Effects

Our second simulation investigates minimal depth’s
ability to identify interactions. One of the strengths of
VIMP is that it measures the importance of a variable in
combination with all other variables. This allows VIMP to

be successful in problems involving interactions. Here we

study whether minimal depth has this same property.

For our simulation, all covariates were drawn indepen-

dently from a uniform [0, 1] distribution. We randomly

selected q0 distinct indices from {1, . . . , p − 1} and took

Statistical Analysis and Data Mining DOI:10.1002/sam



126 Statistical Analysis and Data Mining, Vol. 4 (2011)

the interaction of each variable j in this random set with
its right adjacent variable j + 1. These p0 = 2q0 variables
corresponded to the strong variables. Let J denotes the
indices for the q0 randomly selected values. For each i, the
event time was simulated using

Ti = log


1 + ξi exp


 ∑

j∈J

xi,j xi,j+1βj




 , i = 1, . . . , n,

where as before, (ξ)ni=1 were i.i.d. variables with a standard
exponential distribution. Observe that the model includes
pairwise interactions between strong variables but without
any main effects. We set βj = 5/

√
p0 for j ∈ J where

q0 = 5 (so that p0 = 10). The data were randomly censored
to have a censoring rate of 25%.

Figure 9 displays the results. The analysis was imple-
mented exactly as was done for Fig. 8. Delineation between
strong and noisy variables is not as good as in Fig. 8, but
the overall trends are similar. In particular, minimal depth
combined with weighted variable sampling identifies the
most signal, whereas weighted variable sampling has very
little effect on VIMP.

We repeated the p = 1000 simulation 100 times inde-
pendently under different mtry values. We then repeated
the same experiment, but with a censoring rate of 50%.
Table 2 displays the results. One trend that is immediately
apparent is that the FP rate and PE are noticeably larger
than Table 1. These set of simulations are challenging and
all procedures have difficulty in selecting true signal vari-
ables, especially under heavy 50% censoring. However,
although performance measures are noticeably degraded,
overall trends are not that different from Table 1. In particu-
lar, weighted variable sampling continues to promote larger
models which in turn has allowed for greater discovery of
signal. For MD selection, PE decreases with mtry and then
begin to increase at around p3/4. FP rates decrease with
mtry. For MD-W selection, FP rates decrease with mtry
until p2/3. PE increases with mtry but is generally flat. For
MD, the optimal mtry appears to be p3/4 while for MD-W
it is roughly p2/3. Finally, as before, CoxBoost selects very
small models. Its FP rate and PE are better than MD but
worse than MD-W.

Combining the results of Tables 1 and 2, we conclude
that in sparse high-dimensional problems, minimal depth
with weighted variable sampling outperforms minimal
depth thresholding in terms of PE and in terms of finding
more signal (lower FP rate). Weighted variable sampling
appears robust to the choice of mtry, whereas minimal
depth alone performs best when mtry is moderately large.
These trends appear to hold independently of the amount of
censoring. However, if censoring is very high, and complex
interactions are at play between variables, then performance
eventually degrades regardless of the method used.

6. VARIABLE HUNTING WITH MINIMAL DEPTH
FOR ULTRA-HIGH DIMENSIONAL PROBLEMS

In ultra-high dimensional problems, where p may be
many times larger than n, mean minimal depth thresholding
becomes ineffective even with regularization to mtry,
nodesize, and weighted variable sampling. For these
challenging problems, further regularization is needed.

One promising method is called variable hunting. In this
approach, stepwise regularization is combined with minimal
depth thresholding. Briefly, the procedure works as follows.
First, the data are randomly subsetted and a number of
variables, mvars, are randomly selected. A forest is fit
to these data and variables selected using minimal depth
thresholding (recall Definition 2). These selected variables
are used as an initial model. Variables are then added to
the initial model in order by minimal depth until the joint
VIMP for the nested models stabilizes. This defines the
final model. This whole process is then repeated several
times. Those variables appearing the most frequently up to
the average estimated model size from the repetitions are
selected for the final model.

Several points should be noted. First, the variable hunting
algorithm described by Ishwaran et al. [22] did not make
use of weighted variable sampling, but here we show
that this can be easily and effectively incorporated into
the procedure. Second, the use of joint VIMP for model
selection goes back to our earlier comments about stepwise
VIMP-based variable selection. We had remarked that these
methods could be improved by making use of minimal
depth and in fact a crucial ingredient in implementing
variable hunting is that the initial model used to prime
the search is based on minimal depth thresholding. Starting
with variables meeting a minimal depth criterion initializes
the algorithm at a good candidate model and is crucial to
it success. Furthermore, models are ordered by minimal
depth, as opposed to VIMP. Again, this is done to reduce
the dependence on prediction error. Finally, we note that
computing joint VIMP (the VIMP for a collection of
variables) can be done efficiently without having to refit
the forest [21].

The variable hunting algorithm can be implemented using
the varSel R-wrapper available in the rsf package. A
general call to varSel has following form:

vh.out <- varSel(rsf.f, data,
method = ‘‘vh’’,
mvars = 1000,
predictorWt = cox.wts,
nodesize = 2, nrep = 100,
nstep = 5)

The wrapper provides several methods for selecting vari-
ables. Setting method to ‘vh’ (as above) implements the
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Fig. 9 High-dimensional simulation with 25% censoring (n = 200, p = 250, 500, 1000, and p0 = 10). Model includes all pairwise
interactions but no main effects. Rows defined as in Fig. 8.

Table 2. High-dimensional simulation (n = 200, p = 1000, and p0 = 10) for model with pairwise interactions but no main effects.

25% Censoring 50% Censoring

mtry FP FN p̂ PE FP FN p̂ PE

MD p1/3 0.949 0.001 1 0.478 0.963 0.001 1 0.487√
p 0.949 0.001 1 0.477 0.962 0.001 1 0.488

p2/3 0.922 0.002 2 0.477 0.963 0.001 1 0.484
p3/4 0.879 0.005 6 0.468 0.946 0.003 3 0.486
p4/5 0.871 0.008 9 0.468 0.945 0.004 5 0.487

MD-W p1/3 0.392 0.027 32 0.421 0.622 0.018 22 0.450√
p 0.393 0.027 33 0.423 0.616 0.020 23 0.451

p2/3 0.339 0.037 43 0.426 0.610 0.023 27 0.451
p3/4 0.339 0.040 47 0.427 0.644 0.023 26 0.457
p4/5 0.342 0.041 47 0.427 0.648 0.022 26 0.457

CoxBoost 0.719 0.002 5 0.423 0.871 0.002 3 0.461

Results are averaged over 100 runs.

variable hunting algorithm. Preweighted selection for vari-
ables is implemented using the ‘predictorWt’ option. This
option ensures that each variable is selected with probabil-
ity proportional to its preassigned weight. Another useful
option is ‘nstep’. This controls the step size used in the
stepwise procedure. Instead of adding one variable at a

time, this adds nstep variables when incrementing the initial
model. Larger values of nstep encourage more model space
exploration.

As illustration, we analyzed the 78 patient breast can-
cer microarray data set of van’t Veer et al. [30], which
we refer to as NKI-78. The data comprise p = 24136
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Fig. 10 Results from fitting the NKI-78 microarray breast cancer
data set [30]. Shown are the error rates for nested RSF models
for the top 100 variables, with variables ordered on the basis of
frequency selected using variable hunting. Dashed vertical line
indicates the forest estimated model size. Text in blue indicates
MammaPrint genes found in the original analysis.

Fig. 11 Similar to Fig. 10, but with variables ordered using Cox-
likelihood boosting. Vertical axis records partial log-likelihood
values.

expression values. Event time was defined as the time in
years for metastasis to occur. Of the 78 patients, 34 experi-
enced metastasis, the remaining 44 were right-censored. We
included only those genes whose expression values varied
substantially and filtered genes similar to Bair and Tibshi-
rani [3]. This left p = 4707 genes. The variable hunting
algorithm was applied to these data with parameter settings
of nodesize = 2, nrep = 100, and nstep = 5. In setting pre-
dictorWt, we used weights in Eq. (8) as before. All other
rsf parameters were set to default values.

Variables were ordered by the frequency of their
occurrences. These were then fit in a nested fashion with the
first model consisting of the top variable hunting variable,
the second model consisting of the top two variable hunting
variables, and so on, up to the top 100 variables. Figure 10
displays the out-of-bag error rate for each of these models.
The blue text superimposed on the figure highlights the
genes found in the original van’t Veer et al. [30] analysis
(which we refer to as the MammaPrint genes). Of the top
100 RSF genes, 19 overlap with the MammaPrint set. The
estimated model size determined by the variable hunting
algorithm was 23 (see the dashed vertical line in Fig. 10).

Of these, ten overlap with the MammaPrint signature. As
comparison, Fig. 11 displays results from Cox-likelihood
based boosting. Computations were implemented as in
Section 5. As can be seen, CoxBoost identifies ten of the
original MammaPrint genes in the first 100 boosting steps.
These results are consistent with what we found in our
simulations of Section 5 in that CoxBoost tends to select
small parsimonious models.

For validation, we used the 295 patient breast cancer
microarray data set of van de Vijver et al. [31], which we
refer to as NKI-295. Of the 295 patients in this cohort,
61 overlapped with the original NKI-78 data. We removed
these patients and used the resulting data (n = 234 and
63 events) as a test data set. Five different RSF models
were fit to the NKI-78 training data. One used the top 23
genes from the variable hunting algorithm. Another used
only those 70 genes from MammaPrint. A third model used
those ten genes that were common to both models 1 and 2.
The final two models used those genes common to only
the first and second models, respectively (13 and 60 genes,
respectively). All models were fit using a nodesize of 2. All
other parameters were set to default values.

The results given in Table 3 show that all methods have
lower training error rates than test set error rates. This
is not unexpected, since all models used genes selected
using the NKI-78 training data. The RSF model for the top
23 genes had the lowest training error rate. Over the test
data, the model with genes common only to MammaPrint
was best, followed closely by the RSF model based on
the genes common only to RSF. The MammaPrint and
RSF models had nearly similar test set error. Thus, RSF
maintains prediction error on par with a well established
gene signature, yet it does so with far fewer genes.

7. OTHER WAYS OF EXPLORING VARIABLE
RELATIONSHIPS

So far we have focused on minimal depth as a means
for thresholding variables by using mean minimal depth,
but there are other ways of using minimal depth as well
as maximal subtrees for exploring relationships between
variables which we now briefly illustrate. One useful
technique is to consider how minimal depth varies by an
individual. We define Dv,i to be the minimal depth for
individual i for variable v. This value is estimated by
averaging Dv over the forest for i. Variable selection is
often thought of as a population-based approach but one
can also consider how a variable impacts survival for a
given individual. The value Dv,i captures this concept.

To illustrate, we reanalyzed data from a multi-institu-
tional study of esophageal cancer patients [32]. Variables
measured on each patient included TNM classifications,
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Table 3. Training and test set error using the NKI-78 and NKI-295 microarray breast cancer data sets.

RSF MammaPrint Shared RSF only MammaPrint only

NKI78 0.159 0.234 0.211 0.175 0.254
NKI295 0.388 0.372 0.421 0.371 0.361
p̂ 23 70 10 13 60

Overlapping patients have been removed from NKI-295.

Fig. 12 Five-year predicted survival versus age, T classification,
and number of sampled nodes for N0M0 adenocarcinoma
esophageal patients. Colored points indicate minimal depth for
each patient for histologic grade. Minimal depth increases in size
going from black to red, to green, to blue, to cyan.

number of lymph nodes removed at surgery, number of
cancer-positive lymph nodes, other non-TNM cancer char-
acteristics, patient demographics, and additional variables
to adjust for institution. The primary outcome used in the
analysis was time to death, measured from date of surgery.
For our analysis we focused on metastasis-free adenocarci-
noma patients. This gave a total of n = 3110 observations
and p = 31 variables. The data were analyzed using rsf
under all default settings.

In Fig. 12, we have plotted the forest 5-year predicted
survival against age, T classification, and number of
sampled nodes for patients free of nodal disease and
metastasis (N0M0 patients). The colored points indicate
the minimal depth Dv,i for each individual i for histologic
tumor grade, a crude indicator of tumor biology. Depths
Dv,i increase in size going from black to red, to green,
to blue, to cyan. For individuals with black or red points,
tumor grade is especially influential on survival. We see
that these patients are primarily those with T1 classification

and in some cases T2 classification. This is consistent
with the findings of Ishwaran et al. [32], and is also
consistent with the biology of esophageal cancer. The
unique lymphatic anatomy of the esophagus allows spread
of cancer to regional lymph nodes for minimally invasive
tumors such as T1 and T2 tumors, and tumor grade is an
early warning sign of this. It is also interesting that tumor
grade plays less of a role in younger T3 patients with
more extensive lymphadenectomies (top right plot with blue
points). For these deeply invasive tumors, a more extensive
lymphadenectomy (more sampled lymph nodes) decreases
the likelihood of being understaged so that tumor grade
becomes less relevant.

As we have mentioned, maximal subtrees are a powerful
tool for exploring relationships between variables. We have
so far considered first-order maximal subtrees, but second-
order maximal subtrees are another type of maximal subtree
useful for identifying associations. A second-order maximal
(w, v)-subtree is a maximal w-subtree within a maximal v-
subtree for a variable v. A variable w having a maximal
(w, v)-subtree close to the root of v will be highly associ-
ated with v because w splits closely after v. By considering
the minimal depth of w for its maximal (w, v)-subtrees we
can quantify the association of w with v. This is done for
each variable w and each v so that a matrix D of dimension
p × p can be constructed with each entry (i, j) measuring
the pairwise association between variables vi and vj . These
values are estimated by using forest averaged values.

Figure 13 illustrates this idea. We calculated D using the
forest from our esophageal analysis and converted D to a
distance matrix which we then clustered using hierarchical
clustering. Interestingly, the blue cluster in the middle of
the dendrogram corresponds to the top six variables in terms
of their first-order minimal depth (given in the bottom row
of the figure). Importantly note that D does not measure
first-order minimal depth. Therefore, it is interesting that
these variables are grouped together in this manner.

8. DISCUSSION

Minimal depth is a simple and powerful method for
selecting variables in high-dimensional survival settings. It
is easily implemented using the open source rsf package
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Fig. 13 Variables clustered by second-order minimal depth using second-order maximal subtrees. Bottom panel displays first-order
minimal depth.

(http://cran.r-project.org). If p is on the order of n, vari-
able selection can be based directly on mean minimal depth
thresholding. In this case, mtry or nodesize must be regular-
ized, but this is easy to do. We recommend setting nodesize
to a small value, such as 1 or 2, and setting mtry to as
large a value as computationally feasible while maintaining
the condition m/p = o(1). In our examples, we found that
using larger mtry values such as p2/3 and p3/4 yielded far
better results than using

√
p, the default value used by rsf.

We also recommend using random splitting rules. Not
only does this substantially improve computational speeds,
but it may also help to decorrelate trees and to improve
variable selection. In our examples, randomly selected split
points were chosen, and log-rank splitting was applied to
these random split points. The tree node was split on that
variable and random split point maximizing the log-rank
statistic. The number of split points is controlled using the
nsplit option in rsf. With continuous high-throughput data,
setting nsplit to a value such as 10 should be adequate.

As well as regularizing mtry and nodesize, we discussed
weighted variable sampling to encourage selection of strong

variables. The weight 1 ≤ Wk ≤ λp for selecting a variable
vk should satisfy p0λp/p = o(1). In our examples, we used
univariate p-values from Cox-regression to define Wk . We
found the method to be quite effective. It encouraged larger
models and discovered more strong variables. The effect
of mtry has a minimal impact on performance of minimal
depth thresholding when using weighted variable sampling.
The default mtry choice of

√
p appears to work best.

With very large p relative to n, different regularization is
needed. One such method is the variable hunting algorithm.
In this approach, minimal depth thresholding is applied
to randomly selected subsets of the data and to randomly
selected subsets of variables. Weighted variable sampling
can also be used to select candidate variables.

Regularization for mtry and nodesize becomes less
crucial with variable hunting and their values can be
selected less extremely to ensure faster computations
without compromising accuracy. Coupled with the fact that
the algorithm uses only a subset of the data in each iteration,
overall computational times can be reasonably fast. Usually
about 100 iterations of the algorithm are enough to discover
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useful variables. The R-wrapper varSel implements
this procedure. It can also be used as a front-end to
the max.subtree core function for minimal depth
thresholding. Note that in terms of computational burden,
most of the computations are spent in growing the forest.
Minimal depth calculations are relatively fast. The number
of operations required to parse a tree to extract maximal
subtree information is on order of the number of nodes
in the tree, which is bounded by the sample size n. Thus
maximal subtree parsing calculations are independent of p.

While much of the manuscript focused on minimal
depth as a means for thresholding variables, in Section
7, we described alternate ways of using minimal depth
as well as maximal subtrees for exploring relationships
between variables. In particular, Figs. 12 and 13 indicate
the potential of patient-specific minimal depth and second-
order maximal subtrees for understanding long term
survival of esophageal cancer patients. Although we
focused on a large data set with a moderate number of
variables for illustration, we believe that these methods can
be extended to high-dimensional scenarios. In future work,
we plan to study this more closely.
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APPENDIX: PROOF OF THEOREM 1

First consider the case when the relative depth is d = 1. To bound
πt (d), we consider the complementary event. Let π∗

t be the conditional
probability that t has a terminal node daughter, given that t is split using
a noisy ordered variable. Suppose that v is the noisy variable used to split
t and let v(1) ≤ · · · ≤ v(nt ) be the ordered values of v in t . If the split for
v is v∗ and v(1) ≤ v∗ ≤ v(2N−1) or v(nt −2N+1) ≤ v∗ ≤ v(nt ) then one of
t’s daughters, say t ′, will have less than 2N observations. But if t ′ has
less than 2N observations then it must be a terminal node, since any split
on t ′ will yield a daughter with less than N unique deaths. Because each
split of v is equally likely, it follows that

π∗
t ≥ 4N − 2

nt

.

Because this is the complementary event, we have for d = 1 that

πt (d) ≤ 1 − 4N − 2

nt

.

Now consider the case when d = 2. Let t ′, t ′′ be nonterminal daughter
nodes of t such that nt ′ , nt ′′ ≥ 2N (if this were not the case, they would

be terminal nodes). Let π∗
t ′ be the conditional probability that one of t ′’s

daughters is a terminal node, given that t ′ is split using a noisy ordered
variable. Using our previous argument we have

π∗
t ′ ≥ 4N − 2

nt ′
≥ 4N − 2

nt − 2N
.

As the same inequality applies to t ′′, it follows that

(1 − π∗
t ′ )(1 − π∗

t ′′ ) ≤
(

1 − 4N − 2

nt − 2N

)2

.

Therefore, by the product rule of probability, we have for d = 2 that

πt (d) ≤
(

1 − 4N − 2

nt

) (
1 − 4N − 2

nt − 2N

)2

.

By repeating this argument we obtain the general result (6) for arbitrary
d ≥ 1. Finally, note that the size of each daughter node at depth d must
be no smaller than 2N as otherwise they would be classified as being
terminal nodes. As there are 2d such daughters, nt ≥ 2d (2N).
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