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A: Benchmark performance of RSF

To further study performance of RSF, we used benchmark data obtained from Pintilie (2006). These

included Table 1.3b involving hypoxia (hypox); Table 1.4b involving follicular cell lymphoma; and Table

1.6b involving Hodgkin’s disease (hd). Also included is the well known PBC data set from Appendix D

of Fleming and Harrington (1991). All datasets involved two events.

We fit the data using the same methods as in Section 6 of Ishwaran et al. (2013). For RSF, only event-

specific models were considered (logrank-split forests are denoted by RSF:LR and Gray-split forests by

RSF:CR). All parameter settings were kept the same with one exception. The event-specific prediction

error for each dataset was calculated by using 1000 random splits of the data into independent training

sets (90%) and test sets (10%). This method was called bootstrap cross-validation (Mogensen et al., 2012).

Prediction error was estimated using the integrated Brier score, IBSj(τ), and the C-index,Cj(τ), for each

event j = 1, 2. Throughout we estimated the censoring distribution using the Kaplan-Meier estimator.

The average prediction error and average C-index over the 1000 splits and the corresponding standard

deviation were calculated by averaging over the runs. The results are displayed in Table 1.
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Table 1. Leave 10%-out bootstrap cross-validated prediction errors and C-index for benchmark data† averaged over
1000 independent replicates (averaged standard errors are given in parentheses). The prediction errors of the null
model (NM) which ignores all covariates are used for comparison.

Event 1 Event 2
IBS1(τ ) C1(τ ) IBS2(τ ) C2(τ )

NM 19.8 (5.5) – 11.5 (6.1) –
RSF.LR 11.6 (5.3) 73.1 (20.5) 10.4 (5.4) 72.8 (20.2)
RSF.CR 11.7 (5.3) 72.7 (20.6) 10.4 (5.4) 73.6 (20.2)

hypox CoxBoost.CV 19.8 (5.5) 50.0 (0.0) 11.5 (6.1) 50.0 (0.0)
Cox 17.5 (6.1) 71.1 (17.8) 11.8 (6.4) 55.9 (29.8)

FineGray 18.3 (6.8) 69.9 (18.2) 12.1 (6.7) 57.8 (27.4)
CRRstep 19.0 (6.8) 67.7 (18.9) 11.5 (6.1) 56.3 (24.2)

NM 22.3 (1.3) – 6.7 (2.4) –
RSF.LR 22.9 (2.1) 55.8 (5.5) 6.4 (2.2) 71.2 (10.2)
RSF.CR 23.0 (2.1) 56.1 (5.5) 6.4 (2.2) 71.2 (10.2)

follic CoxBoost.CV 22.3 (1.3) 50.0 (0.0) 6.7 (2.4) 50.0 (0.0)
Cox 21.7 (1.7) 58.1 (5.8) 6.3 (2.2) 71.7 ( 9.7)

FineGray 21.7 (1.7) 58.4 (5.9) 6.3 (2.2) 71.5 ( 9.6)
CRRstep 21.7 (1.7) 58.6 (5.8) 6.3 (2.2) 72.4 (9.3)

NM 20.1 (1.6) – 5.8 (1.6) –
RSF.LR 21.0 (1.9) 54.7 (5.2) 5.3 (1.3) 74.7 (7.8)
RSF.CR 20.9 (1.9) 54.8 (5.2) 5.3 (1.3) 74.6 (7.8)

hd CoxBoost.CV 19.6 (1.7) 58.7 (5.4) 5.2 (1.4) 76.9 (7.1)
Cox 19.6 (1.7) 58.6 (5.4) 5.1 (1.3) 76.2 (7.3)

FineGray 19.6 (1.7) 58.7 (5.4) 5.2 (1.4) 76.1 (7.2)
CRRstep 19.6 (1.7) 58.9 (5.4) 5.2 (1.4) 76.3 (7.2)

NM 3.1 (1.9) – 16.1 (2.3) –
RSF.LR 3.0 (1.7) 74.3 (18.3) 10.3 (1.9) 79.3 (5.9)
RSF.CR 2.9 (1.7) 76.6 (17.7) 10.3 (1.9) 79.6 (5.9)

pbc CoxBoost.CV 3.1 (1.7) 80.3 (11.5) 10.8 (2.0) 79.3 (5.8)
Cox 3.2 (1.7) 80.0 (11.5) 10.9 (2.1) 77.3 (5.9)

FineGray 3.3 (1.8) 76.6 (13.0) 10.9 (2.1) 78.9 (5.7)
CRRstep 3.1 (1.8) 80.2 (12.7) 12.7 (2.5) 74.6 (6.3)

Summary Values‡ for Datasets

n D0 D1 D2 p τ

hypox 109 59 33 17 6 8
follic 541 193 272 76 4 15

hd 865 439 291 135 6 20
pbc 418 223 25 161 17 3000

†Data available at http://www.uhnres.utoronto.ca/labs/hill/People Pintilie.htm
‡n is the sample size; D0 is the number of censored observations; Dj is the number of type j events, j > 1; p equals the number
of variables; and τ is the time of evaluation.



Supplementary Materials 3

Generally, we find the results to be fairly comparable. For the hypox data one variable was excluded

from cause-specific Cox regression and Fine-Gray regression to achieve model convergence. This leads

to significantly reduced performance for these models as compared to RSF and CoxBoost.

The two splitting rules did not have a significant effect on performance. Also, data adaptive selection

of boosting steps did not significantly affect performance of CoxBoost without such adaptivity.

It should be noted that all the datasets contain only a small pre-selected list of covariates, where

variable selection was often based on semiparametric modeling. Thus, it could not be expected that the

RSF or CoxBoost could outperform the semiparametric models. However, there are some instances where

RSF appears better. For example, type 2 events for the primary biliary cirrhosis (pbc) dataset. This may

indicate that the semiparametric models are misspecified.

B: Transportability and interpretation of RSF analysis

Analytical methods with the goal of prediction require an ease of interpretation and ability to be

transportable to other populations. However, given that a random survival forest provides an estimate for

the cumulative incidence function, which is defined as the probability of event J occurring by time t, the

interpretation is fairly straightforward. This is in contrast to parametric or semi-parametric approaches

which often present cause-specific hazards ratios or subdistribution hazards ratios for survival time. The

hazard function as a rate is in our opinion less intuitive than a probability. In terms of transportability,

as remarked in the Discussion of Ishwaran et al. (2013), it is possible to create software to permit a RF

analysis to be restored at a later time for prediction on new data, thus for example, making it possible to

apply RSF to clinical medical settings.

However, we point out that the use of a parametric or non-parametric approach may not always be the

pertinent issue. Rather the transportability of the prediction model relies on the populations it is applied to.

That is, if the population to which the model is to be applied is selected in a manner in which the attributes

of some unmeasured factor is a modifier of the relationship between the covariates in the model (paramet-
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ric or random forest) and the outcome, then it is unlikely for the model to be generalizable regardless of

the analytical method (of course, if no such unmeasured factor exists, but the parametric method fails to

correctly model the relationship between variables and the outcome, then the nonparametric method is at

an advantage). Furthermore in competing risks, for prediction estimates to be transportable, the compet-

ing risk events must have the same distribution as the original study sample. Consider for the moment the

non-competing risk situation, the upper bound for CIF for the event of interest is 1.0 such that by time

infinity all individuals have the event (for a proper distribution). However, in the competing risk situation,

by time infinity a certain proportion of individuals will have experienced the competing event preventing

the event of interest to occur. This creates a boundary for the event of interest that is less than one. Now

transporting the model to another population in which the competing event is even more likely to occur

creates an even lower boundary than the original population. Thus even if the cause-specific hazards driv-

ing the event of interest does not change between populations, the CIF is not transportable (Lau et al.,

2009). Rather a re-calibration of the CIF would be necessary.
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