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SUMMARY

We introduce a new approach to competing risks using random forests. Our method is fully non-parametric
and can be used for selecting event-specific variables and for estimating the cumulative incidence function.
We show that the method is highly effective for both prediction and variable selection in high-dimensional
problems and in settings such as HIV/AIDS that involve many competing risks.
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1. INTRODUCTION

Individuals subject to competing risks are observed from study entry to the occurrence of the event of
interest, a competing event, or often, before the individual can experience one of the events, that person
is right censored. Formally, let T o

i be the event time for the i th subject, i = 1, . . . , n, and let δo
i be the

event type, δo
i ∈ {1, . . . , J }, where J � 1. Let Co

i denote the censoring time for individual i such that the
actual time of event T o

i is unobserved and one only observes Ti = min(T o
i , Co

i ) and the event indicator
δi = δo

i I (T o
i � Co

i ). When δi = 0, the individual is said to be censored at Ti ; otherwise if δi = j > 0, the
individual is said to have an event of type j at time Ti . The observed data are (Ti , δi , xi )1�i�n where xi is
a p-dimensional vector of covariates.
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758 H. ISHWARAN AND OTHERS

We are interested in predicting events and in the discovery of risk factors. For the latter, we shall dis-
tinguish between risk factors for the cause-specific hazard and risk factors for the cumulative incidence.
The cause-specific hazard function for event j given covariates x is

α j (t |x) = lim
�t→0

P{t � T o � t + �t, δo = j |T o � t, x}
�t

= f j (t |x)

S(t |x)
.

Here, S(t |x) = P{T o � t |x} is the event-free survival probability function given x. The cause-specific haz-
ard function describes the instantaneous risk of event j for subjects that currently are event-free. Factors
found to change the instantaneous event risk are associated with the biological mechanism behind event j .
On the other hand, the probability that an event occurs in a specific time period, say [0, t], depends on the
cause-specific hazards of the other events (Gray, 1988). The probability of an event is determined using the
cumulative incidence function (CIF), defined as the probability of experiencing an event of type j by time
t ; i.e. Fj (t |x) = P{T o � t, δo = j |x}. The CIF and cause-specific hazard function are related according to

Fj (t |x) =
∫ t

0
S(s − |x)α j (s|x) ds =

∫ t

0
exp

(
−
∫ s

0

J∑
l=1

αl(u|x) du

)
α j (s|x) ds. (1.1)

Informally speaking, event j can only occur for those surviving other risks. A covariate that reduces the
cause-specific hazard of a competing risk increases the event-free survival probability and thereby indi-
rectly increases the cumulative incidence of event j . Thus, covariates found to change the t-year risk of
event j (i.e. the cumulative incidence) are those that change the cause-specific hazard function of event j
and those that change the cause-specific hazard functions of the competing risks.

When the aim is to assist decision-making and for patient counseling we are interested in t-year predic-
tions and in finding covariates that affect the cumulative incidence. On the other hand, to understand and
discuss treatment options for the biological mechanism that drives the risk of a specific event, we focus on
the cause-specific hazard function.

In this paper, we propose a new approach to competing risks that builds on the framework of random
survival forests (RSF) (Ishwaran and others, 2008), an extension of Breiman’s random forests (Breiman,
2001) to right-censored survival settings. Our novel approach benefits from the many useful properties of
forests and has following the important features: (a) it directly estimates the CIF; (b) it provides accurate
prediction performance; (c) it models non-linear effects and interactions; (d) it can be used for event-
specific selection of risk factors; (e) it can be used effectively in high-dimensional settings; and (f) it is
free of model assumptions.

Section 2 describes the main parameters which we estimate by using ensembles. Section 3 describes the
competing risks forest algorithm, introduces terminal node estimators used for constructing ensembles, and
describes splitting rules for growing competing risk trees suitable for either cause-specific hazard or CIF
inference. The prediction error for the proposed ensemble estimators and variable selection are discussed
in Sections 4 and 5. Section 6 studies the performance of our method using synthetic data. In Section A of
supplementary material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org), we
consider performance over a collection of well-known data sets. Section 7 utilizes RSF to identify event-
specific variables using the Johns Hopkins HIV Clinical Cohort, a large database involving over 6000 HIV
patients.
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Random survival forests for competing risks 759

2. PARAMETERS OF INTEREST

2.1 Expected number of life years lost and cause- j mortality

In addition to estimating the CIF, we propose a 1D summary of the cumulative incidence referred to as
the expected number of life years lost due to cause j (Andersen, 2012). In right-censored data, it is not
feasible to get a reliable estimate of the expected lifetime. Therefore, for a fixed time point τ, we consider
the restricted mean lifetime conditional on x:

∫ τ

0 S(t |x) dt . The truncation time point τ is chosen such
that the probability of being uncensored at τ is bounded away from zero: P(Co

i > τ) � ε > 0. In practice,
we will typically set τ in accordance with the observed follow-up period (see Section 3). We extend the
notation of Andersen (2012) to the case with covariates and note the relation S(t |x) +∑J

l=1 Fl(t |x) = 1,
which holds for all values t � τ and all x. The expected number of years lost before time τ is

L(τ |x) = τ −
∫ τ

0
S(t |x) dt =

∫ τ

0

J∑
l=1

Fl(t |x) dt.

Our summary value is M j (τ |x) = ∫ τ

0 Fj (t |x) dt , which the above shows equals the expected number of
life years lost due to cause j before time τ . We shall also call M j (τ |x) the cause- j mortality.

2.2 Terminal node estimators

We describe non-parametric estimators of the event-free survival function, the cause-specific CIF, and
mortality. The estimators are described here using the entire learning data set, but in implementation they
are calculated within the terminal node of a RSF tree and then aggregated to form the ensemble (see
Section 3.1).

Let t1 < t2 < · · · < tm denote the m � n distinct and ordered event times from (Ti )1�i�n . Let d j (tk) =∑n
i=1 I (Ti = tk, δi = j) be the number of type j events at tk , and N j (t) =∑n

i=1 I (Ti � t, δi = j) be the
number of type j events in [0, tk]. Define also d(tk) =∑ j δ j (tk), the total number of events occurring at
time tk , N (t) =∑ j N j (t), the total number of events occurring in [0, t], and Y (t) =∑n

i=1 I (Ti � t), the
number of individuals at risk (event-free and uncensored) just prior to t . The Nelson–Aalen estimator for
the cumulative event-specific hazard function Hj (t) = EX(

∫ t
0 α j (s|X) ds) is given by

Ĥ j (t) =
∫ t

0

dN j (s)

Y (s)
=

m(t)∑
k=1

d j (tk)

Y (tk)
,

where m(t) = max{k : tk � t}. The Kaplan–Meier estimator for the event-free survival function is given by

Ŝ(t) =
∏
s�t

(
1 − N (ds)

Y (s)

)
=

m(t)∏
k=1

(
1 − d(tk)

Y (tk)

)
.

We use the Aalen–Johansen estimator (Aalen and Johansen, 1978) to estimate Fj (t):

F̂j (t) =
∫ t

0
Ŝ(u−) dĤ j (u) =

∫ t

0
Ŝ(u−)Y (u)−1 N j (du) =

m(t)∑
k=1

Ŝ(tk−1)Y (tk)
−1d j (tk).

The cause- j mortality is estimated by M̂ j (τ ) = ∫ τ

0 F̂j (t) dt . We set τ to be the largest observed time tm .
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760 H. ISHWARAN AND OTHERS

3. COMPETING RISK FORESTS

A RSF (Ishwaran and others, 2008) is an collection of randomly grown survival trees. Each tree is grown
using an independent bootstrap sample of the learning data using random feature selection at each node.
RSF trees are generally grown very deeply with many terminal nodes (the ends of the tree). Trees in com-
peting risk forests are grown similarly. What differs are the splitting rules used to grow the tree (Section 3.3)
and the estimated values calculated within the terminal nodes used to define the ensemble (Section 3.1).

To grow a competing risk forest, we highlight two conceptually different approaches:

(1) Separate competing risk trees are grown for each of the J events in each bootstrap sample. The
splitting rules used to grow the trees are event-specific.

(2) A single competing risk tree is grown in each bootstrap sample. The splitting rules are either event-
specific, or combine event-specific splitting rules across the J events.

The second approach is more efficient (especially for high-dimensional problems and large data settings),
sufficient for most tasks, and what we do in this article. In the next subsections, we describe how to calcu-
late various ensembles useful for competing risks and provide details of competing risk trees. The forest
algorithm is then summarized in Section 3.4.

3.1 Event-specific ensembles

Let (Ti , δi , xi )1�i�n denote the learning data. As stated earlier, a RSF tree is grown using an independent
bootstrap sample of the learning data. Let ci,b be the number of times case i occurs in bootstrap sample b.
To define the CIF for the bth tree, take a case’s covariate x and drop it down the tree. Let hb(x) denote the
indices for cases from the learning data whose covariates share the terminal node with x. Denoting node-
specific event counts by N j,b(t |x) =∑i∈hb(x) ci,b I {Ti � t, δi = j} and the number at risk by Yb(t |x) =∑

i∈hb(x) ci,b I {Ti � t}, we define x’s CIF as

F̂j,b(t |x) =
∫ t

0
Ŝb(u − |x)Yb(u|x)−1 N j,b(du|x),

where Ŝb(t |x) =∏u�t (1 −∑ j N j,b(du|x)/Yb(u|x)) is x’s Kaplan–Meier estimate of event-free survival.
The ensemble estimates of the CIF and the cause- j mortality, respectively, equal

F̄j (t |x) = 1

B

B∑
b=1

F̂j,b(t |x), M̄ j (τ |x) =
∫ τ

0
F̄j (t |x) dt := 1

B

B∑
b=1

M̂ j,b(τ |x).

For reporting an internal error rate, we use out-of-bag (OOB) ensembles. By standard bootstrap theory,
each bootstrap sample leaves out approximately 37% of the data. The OOB data are used to construct the
OOB ensemble. Let Oi ⊂ {1, . . . , B} be the index set of trees where ci,b = 0; i.e. Oi records trees where
case i is OOB. The OOB ensemble estimates of the CIF and the cause- j mortality are, respectively, given by

F̄oob
j (t |xi ) = 1

|Oi |
∑
b∈Oi

F̂ j,b(t |xi ), M̄oob
j (τ |xi ) =

∫ τ

0
F̄oob

j (t |xi ) dt := 1

|Oi |
∑
b∈Oi

M̂ j,b(τ |xi ).

The OOB predicted value for a case does not use event time outcome information for that case, and,
therefore, because it is a cross-validation based estimator, it can be used for estimation of the prediction
error.
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Random survival forests for competing risks 761

3.2 Event-free survival ensembles

An efficient method to analyze event-free survival probability is to simply use the tree-specific esti-
mators already computed from the competing risks forests, which saves the computation time needed
to grow a separate forest. Thus, we estimate the forest event-free survival using the ensemble S̄(t |x) =∑B

b=1 Ŝb(t |x)/B.

3.3 Splitting rules

Here, we describe two splitting rules that can be used to grow competing risk trees. For notational con-
venience, we describe these rules for the root node using the entire learning data, but the idea extends
obviously to any tree node and to bootstrap data.

As before, let (Ti , δi )1�i�n denote the survival times and event indicators, and let t1 < t2 < · · · < tm be
the distinct event times. Suppose that the proposed split for the root node is of the form x � c and x > c for
a continuous predictor x (this can be obviously generalized to categorical variables). Such a split forms two
daughter nodes containing two new sets of competing risk data. To indicate these data, we use a subscript
of l and r for the left and right daughter nodes, and denote by α jl(t) and α jr (t) the cause- j specific hazard
rates in the left and the right daughter nodes, respectively. Similarly, define Fjl(t) and Fjr (t) to be the CIF
for the left and the right daughter nodes, respectively.

The number of individuals at risk at time t in the left and right daughter nodes are, respectively, Yl(t)
and Yr (t), where Yl(t) =∑n

i=1 I (Ti � t, xi � c), Yr (t) =∑n
i=1 I (Ti � t, xi > c), and xi is the x-predictor

for individual i = 1, . . . , n. The number of individuals who are risk at time t is Y (t) = Yl(t) + Yr (t). The
number of type j events at time t for the left and right daughters is, respectively,

d j,l(t) =
n∑

i=1

I (Ti = t, δi = j, xi � c), d j,r (t) =
n∑

i=1

I (Ti = t, δi = j, xi > c),

and d j (t) = d j,l(t) + d j,r (t) is the total number of type j events at t . Define also tm, tml , tmr to be the largest
time on study in the parent node and the two daughters, respectively.

3.3.1 Generalized log-rank test. Our first splitting rule is the log-rank test. In the setting with competing
risk, this is a test of the null hypothesis H0 : α jl(t) = α jr (t) for all t � τ . The test is based on the weighted
difference of the cause-specific Nelson–Aalen estimates in the two daughter nodes. Specifically, for a split
at the value c for variable x , the splitting rule is

LLR
j (x, c) = 1

σ̂ LR
j (x, c)

m∑
k=1

W j (tk)

(
d j,l(tk) − d j (tk)Yl(tk)

Y (tk)

)
, (3.1)

where the variance estimate is given by

(σ̂ LR
j (x, c))2 =

m∑
k=1

W j (tk)
2d j (tk)

Yl(tk)

Y (tk)

(
1 − Yl(tk)

Y (tk)

)(
Y (tk) − d j (tk)

Y (tk) − 1

)
.

Time-dependent weights W j (t) > 0 are used to make the test more sensitive to early or late differences
between the cause-specific hazards. The choice W j (t) = 1 corresponds to the standard log-rank test which
has optimal power for detecting alternatives where the cause-specific hazards are proportional. The best
split is found by maximizing |LLR

j (x, c)| over x and c.
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762 H. ISHWARAN AND OTHERS

3.3.2 Gray’s test. The cause- j specific log-rank splitting rule (3.1) is useful if the main purpose is to
detect variables that affect the cause- j specific hazard. It may not be optimal if the purpose is also pre-
diction of cumulative event probabilities. In this case, better results may be obtained with splitting rules
that select variables based on their direct effect on the cumulative incidence. For this reason, we model our
second splitting rule after Gray’s test (Gray, 1988), which tests the null hypothesis H0 : Fjl(t) = Fjr (t) for
all t � τ . For notational simplicity, consider analysis of event j = 1 and assume J = 2; that is, we pool all
events not equal to event j . Gray’s statistic for testing the null is

∫ tm

0
W j (s)Rl(s)

{
dF̂jl(s)

1 − F̂jl(s)
− F̂j (ds)

1 − F̂j (s)

}
,

where Rl(t) = I {tml � t}Yl(t)[1 − F̂jl(t−)](Ŝl(t−))−1. Here, the variance estimate is estimated based on
the asymptotic normal representation under the null hypothesis; see Gray (1988) for details.

In the special case where the censoring time is known for those cases that have an event before the
end of follow-up, it is possible to obtain the score statistic of Gray’s test by a simple modification of the
log-rank test statistic. This is achieved by substituting in (3.1) for Y (t) the modified risk set:

Y ∗
j (t) =

n∑
i=1

I (Ti � t ∪ (Ti < t ∩ δi |= j ∩ Co
i > t)).

This motivates our modified splitting rule. The splitting rule based on the score statistic that uses the
modified risk sets is denoted by LG

j (x, c) and given by substituting Y ∗
j for Y and Y ∗

jl for Yl in (3.1). Note
that if the censoring time is not known for those cases that have an event before the end of follow-up,
the largest observed time is used, and the statistic LG

j (x, c) is still a good (and computationally efficient)
approximation of Gray’s test statistic; see Fine and Gray (1999, Section 3.2).

3.3.3 Composite splitting rules. If the aim is to predict the CIF of all causes simultaneously, or if interest
is in identifying variables that are important for any cause, it can be useful to combine the cause-specific
splitting rules across the event types:

LLR(x, c) =
∑J

j=1(σ̂
LR
j (x, c))2 LLR

j (x, c)√∑J
j=1(σ̂

LR
j (x, c))2

, (3.2)

LG(x, c) =
∑J

j=1(σ̂
G
j (x, c))2 LG

j (x, c)√∑J
j=1(σ̂

G
j (x, c))2

. (3.3)

The best split is found by maximizing over x and c. Note that we have ignored the dependence in the
test statistics in defining the variance. We do so because these types of calculations are not suitable for
random forest trees. As these trees are grown deeply, tree nodes typically have few observations, which
makes estimation of a covariance matrix problematic due to the limited data and will result in a poorly
performing split-statistic. We should remark that a bias may occur with (3.3) if the censoring times remain
unknown for cases that have an event before the end of the follow-up. However, our empirical results
indicate that, for the purpose of building competing risk forests, the modified Gray splitting rule performs
very well.

 at T
he U

niversity of M
iam

i L
ibraries on A

ugust 20, 2015
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/


Random survival forests for competing risks 763

3.4 Competing risks forest algorithm

The steps required to construct a competing risks forest can be summarized as follows.

(1) Draw B bootstrap samples from the learning data.
(2) Grow a competing risk tree for each bootstrap sample. At each node of the tree, randomly select

M � p candidate variables. The node is split using the candidate variable that maximizes a com-
peting risk splitting rule.

(3) Grow the tree to full size under the constraint that a terminal node should have no less than n0 > 0
unique cases.

(4) Calculate (F̂j,b, Ĥ j,b, M̂ j,b(τ ))1� j�J and Ŝb, Ĥb for each tree, b.
(5) Take the average of each estimator over the B trees to obtain its ensemble.

4. PREDICTION PERFORMANCE

4.1 Performance metrics

To assess prediction performance, we use the concordance index and the prediction error defined by the
integrated Brier score (BS). The concordance index (C-index) is related to the area under the receiver
operating characteristic curve and estimates the probability that, in a randomly selected pair of cases, the
case that fails first had a worse predicted outcome. The BS is the squared difference between actual and
predicted outcome.

Individuals are ranked by ensemble cause- j mortality. We say that case i has a higher risk of event j
than case i ′ if M̄ j (τ |xi ) > M̄ j (τ |xi ′). Wolbers and others (2013) described a time-truncated concordance
index for competing risks, which in our setting is

C j (τ ) = P{M̄ j (τ |xi ) > M̄ j (τ |xi ′) | T o
i � τ, δo

i = j and (T o
i < T o

i ′ or δo
i ′ |= j)}.

Thus, the ensemble prediction of the cumulative incidence is concordant with the outcome if either the
case with the higher cause- j mortality has event j before the other case has an event of cause j or if
the other case has a competing event. We also consider the time-dependent BS (Graf and others, 1999;
Gerds and Schumacher, 2006) and its integral (IBS) to assess the performance of the ensemble CIF:

IBS j (τ ) =
∫ τ

0
BS j (t) dt =

∫ τ

0
E
{

I {T o
i � t, δi = j} − F̄j (t |X)

}2
dt.

4.2 OOB estimate of prediction error

Denote (Ti , δi , xi )1�i�n′ for the right-censored observations in a validation data set of size n′. Based on
these data, the prediction error can be estimated using inverse probability of censoring weights (IPCWs)
(Gerds and Schumacher, 2006; Wolbers and others, 2013). This technique requires an estimate of the cen-
soring distribution. Let Ĝ(t) denote the so-called reverse Kaplan–Meier estimate of the censoring distri-
bution. We shall assume that the censoring times are independent of the covariates and the event times and
the event type. Thus, Ĝ(t) provides an unbiased estimate of the probability of being uncensored at time
t . To estimate C j , we define weights ω̂i j,1 = Ĝ(Ti−)Ĝ(Ti ) and ω̂i j,2 = Ĝ(Ti−)Ĝ(Tj−). The OOB-IPCW
estimate at the largest observation time tm is

Ĉ j (tm) =
∑

i

∑
i ′
(

Aii ′ ω̂−1
i i ′,1 + Bii ′ ω̂−1

i i ′,2
)

Qoob
i i ′ (t)I {Ti � tm, δi = j}∑

i

∑
i ′
(

Aii ′ ω̂−1
i i ′,1 + Bii ′ ω̂−1

i i ′,2
)

I {Ti � tm, δi = j} ,
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764 H. ISHWARAN AND OTHERS

where Qoob
i i ′ = I {L̄oob

j (τ |xi ) < L̄oob
i ′ (τ |xi )}, Aii ′ = I {Ti < Ti ′ }, and Bii ′ = I {Ti � Ti ′ and δi ′ |= j}. Using

weights ω̂i (t) = I {Ti � t, δi |= 0}/Ĝ(Ti ) + I {Ti > t}/Ĝ(t) (Binder and others, 2009), the OOB estimate
of the integrated BS for event j is given by

ÎBS
OOB

j (tm) =
∫ tm

0

1

n

n∑
i=1

ω̂i (t){I {Ti � t, δi = j} − F̄OOB
j (t |xi )}2 dt.

Note that extremely large weights may occur, but can be avoided by evaluating the IPCW statistics at an
earlier time point t < tm .

5. VARIABLE SELECTION

5.1 Variable importance

RSF variable selection typically involves filtering variables on the basis of variable importance (VIMP).
VIMP measures the increase (or decrease) in prediction error for the forest ensemble when a variable is
randomly “noised-up” (Breiman, 2001). A large positive VIMP shows that the prediction accuracy of the
forest is substantially degraded when a variable is noised-up; thus a large VIMP indicates a potentially
predictive variable.

In Breiman’s original definition, VIMP is calculated by noising up a variable by permuting its value
randomly. A more effective noising-up method, and one used throughout this paper, is random node assign-
ment (Ishwaran and others, 2008). In random node assignment, cases are dropped down a tree and ran-
domly assigned to a daughter node whenever the parent node splits on the target variable. This is more
effective than permutation since it leads to a random assignment regardless of the type of variable. For
example, permuting a discrete variable with, say, two values may not lead to a sufficiently noised-up fea-
ture.

Both non-event-specific and event-specific VIMP can be readily calculated for competing risks. To
compute event-specific VIMP, we estimate the prediction error as described in Section 4.2. Then we noise
up the data by random node assignment, and recompute the prediction error. The difference in these two
values gives the VIMP for each variable for each event j .

5.2 Minimal depth

Minimal depth assesses the predictiveness of a variable by the depth of the first split of a variable relative
to the root node of a tree (Ishwaran, Kogalur, Gorodeski and others, 2010). The smaller this value, the
more predictive is the variable. There are unique advantages to using minimal depth in a competing risk
setting. First, unlike VIMP, there is an easily derived minimal depth threshold that can be used for selecting
variables. Secondly, minimal depth is non-event-specific, and therefore by fitting a single forest it can
be used to identify all variables that affect long-term event probabilities. On the other hand, while non-
event-specific analyses are useful, it may also be important to identify variables that are event-specific. In
Section 6.2, we describe a simple way to combine minimal depth with event-specific VIMP.

6. EMPIRICAL RESULTS

6.1 Simulations

We used simulations based on Cox-exponential hazard models α j (t |x) = α0 j exp(βT
j x) of two competing

events ( j = 1, 2) given a vector of covariates x = (x1, . . . , x p). In all simulations, we set α0 j = 1
100 . Six
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continuous predictors (x1, . . . , x6) were drawn independently from a standard normal distribution and six
binary predictors (x7, . . . , x12) from a binomial distribution with success probability of 50%. We set

β1 = (b1,−b1, 0, 0, b1,−b1, b2,−b2, 0, 0, b2,−b2),

β2 = (0, 0, b1,−b1, b1,−b1, 0, 0, b2,−b2, b2,−b2),

such that variables x1, x2, x7, x8 have an effect on the hazard of event 1 only, variables x3, x4, x9, x10 have
an effect on the hazard of event 2 only, and variables x5, x6, x11, x12 have an effect on both hazards. The
effect size b1 for the continuous variables was set to log(2) and for the discrete variables the effect size
b2 was set to 1.5. This was our “linear model”. The additive structure of the linear model was changed
in our “quadratic model”. Here, the squared variables, x2

1 , . . . , x2
6 , have an additional effect β

Q
j on the

event-specific hazards where

β
Q
1 = (b1,−b1, 0, 0, b1,−b1), β

Q
2 = (0, 0, b1,−b1, b1,−b1).

Finally, we consider an “interaction model”. Additional interaction effects were added to the linear model
of the form

β I
j I {xl > 0}xk for l = {1, . . . , 6} and k = {7, . . . , 12}.

We set the effect sizes of the interaction terms to

β I
1 = (−b1, b1, 0, 0,−b1, b1), β I

2 = (0, 0,−b1, b1,−b1, b1).

In all three simulation models, q independent noise variables were drawn independently from a standard
normal distribution and added to the simulated data sets. We set q = 12 in our low-dimensional scenarios
and q = 500 in our high-dimensional scenarios. In all settings, independent right censoring was induced
by drawing censoring times from an exponential distribution with rate 1/100. This yielded approximately
33% censored observations.

6.2 Forest models

The R-package randomForestSRC (Ishwaran and Kogalur, 2013) was used for computations. For each
simulation experiment, 1000 trees were grown using the log-rank splitting rule (3.2) and the modified
Gray’s splitting rule (3.3). Terminal node size was set at n0 = 6 (the default software setting). Randomized
splitting was used. Within each parent node, for each of the randomly selected candidate variables, “nsplit”
randomly selected split points were chosen (this is in contrast to non-random splitting where all possible
split points for each of the candidate variables are considered). The tree node was split on that variable and
random split point maximizing the absolute value of the split-statistic. We set nsplit = 2. A small nsplit
value is necessary in settings involving a mixture of discrete and continuous variables to avoid biasing
splits toward continuous variables (Loh and Shih, 1997; Ishwaran, Kogalur, Gorodeski and others, 2010).

We fit RSF using log-rank splitting (3.2) for each event using weights W1(t) = 1, W2(t) = 0 and
W1(t) = 0, W2(t) = 1. We denote the resulting forests as RSFLR

10 and RSFLR
01 . Because we focus on per-

formance over event 1 only (for ease of interpretation), we only report the results for RSFLR
10 . Additionally,

three forests were fit using Gray’s modified splitting rule (3.3): RSFG
11 used W1(t) = 1, W2(t) = 1; RSFG

10
used W1(t) = 1, W2(t) = 0; RSFG

01 used W1(t) = 0, W2(t) = 1. Only RSFG
10 and RSFG

11 are reported.
Variables were selected using minimal depth variable selection Ishwaran, Kogalur, Gorodeski

and others (2010). Those variables whose event-specific VIMP was positive, and that met a minimal
depth threshold (estimated from the forest), represented the final selected set of variables. As noted
in Ishwaran, Kogalur and others (2010), the number of variables selected at each node, M , referred to
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as “mtry”, should be set high when using minimal depth in high-dimensional applications. In our high-
dimensional simulations (p � n), we used M = p/4. The default setting M = √

p was used in low-
dimensions (p < n). See Ishwaran, Kogalur and others (2010) for further discussion on setting tuning
parameters in high dimensions.

For comparison, we used four alternative methods. For the first, we used the proportional subhazard
method of Fine and Gray (1999), abbreviated as FG1 and FG2. Computations were implemented using
the R-software package cmprsk (Gray, 2006). For the second method, we used cause-specific Cox
regression (abbreviated as Cox1 and Cox2) for each of the competing events. Predictions of the CIF were
obtained by combining the Cox models using (1.1). Computations were implemented using the R-software
riskRegression (Gerds and others, 2012). For both approaches, we specified additive effects of the
predictor variables and resorted to selecting variables by using p-values. A cutoff of 5% was used. For the
third method, we applied a stepwise selection algorithm (CRRstep) to the Fine-Gray regression models as
proposed in Kuk and Varadhan (2013). We used backward elimination as implemented in the R-package
crrstep with an Akaike information criterion selection criterion (Varadhan and Kuk, 2013). For the
fourth method, we used Cox-likelihood based boosting (Binder and Schumacher, 2008), abbreviated as
CoxBoost1 and CoxBoost2. This uses boosting to fit proportional subhazards as in Fine and Gray (1999).
Computations were implemented using the CoxBoost R-software package (Binder, 2009). The optimal
number of boosting iterations was estimated using 10-fold cross-validation. A boosting penalty of 100
was used.

6.3 Simulation results

The simulations were repeated 1000 times independently and results were averaged over the runs. To esti-
mate prediction performance (Table 1), in each simulation run we generated a training set with 200 inde-
pendent observations and a test set with 1000 independent observations. The C-index and the integrated BS
were truncated at a sufficiently low quantile of the observed event time distribution. A lower benchmark
for prediction performance was obtained in each simulation study by fitting a null model which ignores all
covariates. An upper benchmark was obtained by fitting the data generating model to each training data
set, i.e. the combination of two cause-specific Cox regression models that were given the correct linear
predictor (including quadratic and interaction terms) and no noise variables.

Based on Table 1, we draw the following conclusions:

(1) In the low-dimensional linear simulations, Fine–Gray, Cox, and CoxBoost are better than RSF.
(2) For the low-dimensional quadratic and interaction model, RSF outperforms the other methods.
(3) RSF is better than CoxBoost in the high-dimensional quadratic and interaction model simulations,

but CoxBoost is better in the linear model.
(4) The event-specific RSF models RSFLR

10 and RSFG
10 tended to be slightly better than the composite

model RSF11 in the low-dimensional simulations, but this trend was less pronounced in the high-
dimensional simulations, and in some cases it was reversed (high-dimensional linear model).

(5) We were not able to calculate Fine–Gray or Cox in the high-dimensional simulations. This is expected
of unregularized methods which perform poorly in high-dimensional problems.

To assess VIMP, we calculated selection rates across the 1000 runs (Tables 2 and 3). True positive
rates were summarized separately for each of the predictors x1, . . . , x12. False positive rates were averaged
across noise variables. Based on Tables 2 and 3, we draw the following conclusions:

(1) The log-rank splitting forest RSFLR
10 performs best in identifying only those variables affecting the

event 1 cause-specific hazard (i.e. x1, x2, x7, x8 and x5, x6, x11, x12). Recall that log-rank splitting is
designed to test for differences in the cause-specific hazard: the results confirm the efficacy of the
approach.
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Table 1. Cox-exponential simulations (1000 replications)

Low-dimensional simulations
n = 200, p = 24, p0 = 12

Linear model Quadratic model Interaction model

IBS1(29) C1(29) IBS1(25) C1(25) IBS1(30) C1(30)

NM1 15.4 (0.7) — 15.1 (0.6) — 15.5 (0.6) —
DGM1 10.1 (0.6) 82.1 (1.4) 9.5 (0.7) 79.4 (2.2) 10.8 (0.7) 80.3 (1.5)

RSFG
11 13.6 (0.7) 75.9 (2.3) 13.9 (0.7) 72.1 (2.6) 15.1 (0.6) 61.6 (2.5)

RSFG
10 13.2 (0.7) 76.5 (2.1) 13.6 (0.6) 72.0 (2.4) 15.0 (0.6) 61.3 (2.6)

RSFLR
10 13.1 (0.6) 77.2 (2) 13.5 (0.6) 72.9 (2.3) 15.0 (0.6) 61.9 (2.5)

CoxBoost1 11.4 (0.7) 79.6 (1.9) 13.9 (0.8) 65.7 (4) 15.4 (0.7) 55.9 (4.1)
FG1 11.7 (0.9) 79.5 (1.8) 14.6 (1.0) 66.4 (2.7) 16.5 (0.9) 57.5 (2.5)
Cox1 10.9 (0.7) 80.1 (1.7) 14.4 (1.0) 66.6 (2.6) 16.5 (0.9) 57.6 (2.5)
CRRstep1 13.6 (2.1) 62.7 (18.4) 14.8 (0.9) 55.4 (12.1) 15.7 (0.7) 49.7 (9.1)

High-dimensional simulations
n = 200, p = 512, p0 = 12

Linear model Quadratic model Interaction model

IBS1(29) C1(29) IBS1(25) C1(25) IBS1(30) C1(30)

NM1 15.4 (0.7) — 15.1 (0.6) — 15.5 (0.6) —
DGM1 10.1 (0.6) 82.0 (1.4) 9.8 (0.9) 79.3 (2.2) 10.8 (0.7) 80.3 (1.5)

RSFG
11 14.9 (0.7) 67.4 (2.9) 14.8 (0.7) 65.0 (3.6) 15.5 (0.7) 53.3 (2.5)

RSFG
10 14.9 (0.7) 65.8 (3.5) 14.6 (0.7) 64.5 (3.4) 15.6 (0.6) 52.2 (2.4)

RSFLR
10 14.8 (0.7) 68.3 (3.1) 14.4 (0.6) 66.7 (3.2) 15.6 (0.6) 52.7 (2.5)

CoxBoost1 13.5 (1.0) 72.0 (4) 14.8 (0.8) 58.4 (5.7) 15.7 (0.7) 51.5 (2.9)

Performance measures are average (standard deviation) of test set C-index C j (τ ) and integrated BS IBS j (τ ).
NM is the null model which assigns the same predicted CIF to each observation and DGM j is the data
generating model fitted to the training set.

(2) The Gray composite splitting forest RSFG
11 is designed to discover all variables affecting the event 1

CIF, which are x1, . . . , x12. We find it does a good job doing so. Furthermore, in nearly all simula-
tions, it achieves the smallest false positive rate over the noise variables.

7. HIGHLY ACTIVE ANTIRETROVIRAL THERAPY FOR HIV INFECTION

The Johns Hopkins HIV Clinical Cohort is a longitudinal, dynamic, clinical cohort of HIV-infected patients
receiving primary care through the Johns Hopkins AIDS Service, which provides care to a large proportion
of HIV-infected patients in the Baltimore metropolitan area (Moore, 1998). From this cohort, we identified
2960 individuals initiating effective antiretroviral therapy between 1996 and 2005 and for these we wished
to predict time to all-cause mortality, and time to AIDS-defining illnesses after the initiation of effective
treatment. Variables included laboratory measurements (CD4 nadir, HIV-RNA levels, total lymphocyte
counts, and hemoglobin, albumin, and creatinine levels) as well as non-laboratory measurements (prior
diagnosis of an AIDS-defining illness, prophylaxis for Pneumocystis jiroveci pneumonia, sex, race, history
of injection drug use, history of heavy alcohol use, heroin use, cocaine use, and a medical history of
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Table 2. Variable selection frequencies (%) from low-dimensional simulation study (n = 200, p = 24,

p0 = 12)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Noise

Linear model
RSFG

11 34.4 37 17.1 17.6 85.3 85.4 42.4 42.2 16.7 18 94.1 94.1 2.0

RSFG
10 90.3 91.2 22 19.7 39.5 42.4 94.1 94.5 17.5 18.8 39.1 39.2 7.5

RSFLR
10 88.4 88.9 6.5 6 81.8 81.6 93.2 94.4 2 2.6 88.4 86.6 5.2

CoxBoost1 99.9 99.7 78.2 75.8 91.4 91.6 99.9 100 82.5 80.5 95 94.4 37.6

DGM1 99.7 100 7.1 7.1 99.9 99.5 99.9 99.9 7 5.5 100 99.9 0

Cox1 99.6 99.6 9.5 8.2 99.4 99.6 99.9 99.8 8.9 8.5 99.8 99.6 8.9

FG1 97.8 97.3 41 42 70 72.2 99.2 99.3 48.7 46.9 79.8 77.4 8.9

CRRstep1 48.8 48.9 31.2 31.5 42.7 42.6 49 49.1 35.2 33.5 44.9 45.1 11.5

Quadratic model

RSFG
11 79.1 42.9 35.9 14.1 91.8 97.9 8.2 10 6.1 3.7 31.1 31.9 3.8

RSFG
10 99.9 84.1 23.3 18.9 59.2 42 31.1 32.9 7.4 7.5 10.6 9.6 7.6

RSFLR
10 100 80.7 5.5 6.2 96.4 83.6 27.5 30.9 2.5 2.4 23.8 22.5 6.4

CoxBoost1 92 83.5 60.9 46.3 57.9 70.1 68.3 66.4 37.5 38.6 46.2 43.4 28.7

DGM1 100 97.2 7.1 6.7 99.6 97.6 72.1 74.2 7.5 7.2 72.8 71.4 0

Cox1 92.9 66.7 10.5 9.3 76.6 69.9 45.3 46.3 8.2 9.6 41.1 37.8 8.4

FG1 80.3 66.1 34.8 18.9 30.4 44.5 39.3 40.7 12.1 12.3 18.4 16.5 7.2

CRRstep1 43.6 35.9 23.3 18 26.1 28.1 27.8 28.7 13.6 13 16.5 15.5 9.7

Interaction model

RSFG
11 28.3 27.2 18.1 18.5 65.2 59.5 20.5 27.7 8.9 11 66.5 57 14.2

RSFG
10 50.1 57.2 20.2 18.9 27.5 26.6 45.5 61.1 10.4 13.9 19.8 17.4 17.1

RSFLR
10 48.1 57.4 17.4 16.6 43.3 44.6 46.2 62.1 5.8 5.2 45.4 42.3 17.7

CoxBoost1 23.3 17 16.6 16.4 16.7 15 50.2 59.8 22.4 28.9 31.5 27.6 14.9

DGM1 99.1 96.9 7 6.4 97.4 97.1 56 45 6.1 6.1 54.1 50.3 0

Cox1 19 8.3 8.7 7.6 14.1 7.9 46.8 59.1 7.9 6.7 47.4 40.4 8.0

FG1 15.2 7 8.5 6.5 7.2 6.7 40.2 54.5 12 14.4 22.5 19.5 6.5

CRRstep1 15.8 5.7 6 5.8 5.8 5.9 19.8 22 9.1 5 7.4 6.2 5.7

Variables x1, x2, x7, x8 have an effect on the hazard of event 1 only, variables x3, x4, x9, x10 have an effect on the hazard of event 2
only, and variables x5, x6, x11, x12 have an effect on both hazards. Shown are the true positive rates separately for variables x1–x12.
False positive rates over the noise variables are given in columns labeled “Noise”.

personality disorder, anxiety, depression, schizophrenia, or suicide attempt). All marker measurements
were restricted to the measurement closest to the time of initiation of highly active antiretroviral therapy
(HAART) within a window starting 1 year prior to treatment with the exception of nadir CD4 counts. Nadir
CD4 counts was the lowest CD4 that was measured prior to the initiation of effective treatment.

Including death, there were 15 competing risk outcomes. Forests were fit using the modified Gray
splitting rule (3.3) with weights W j (t) = 1 for all j . The same tuning parameters were used as before
except for terminal node size, which was set to n0 = 60. This value was determined by optimizing the
OOB event averaged C-index using a small subset of the original data (n = 500; the remaining data were
used for the analysis). In addition, in order to determine cause-specific hazard risk factors, we fit a separate
RSF to each event j utilizing log-rank splitting (3.2) with weights W j (t) = 1, W j ′(t) = 0 for j ′ |= j .
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Table 3. Variable selection frequencies (%) from high-dimensional simulation study (n = 200, p = 512,
p0 = 12)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Noise

Linear model
RSFG

11 15.3 15 7.7 7 54.8 53.9 21.4 23.3 9.5 9.9 83.4 81.5 1.6

RSFG
10 53.5 51.7 5.5 6.6 16.2 17 64 67.1 6.4 4.9 11.6 10 3.4

RSFLR
10 44.5 44.8 1.4 1.4 35.7 35.3 56.6 59.8 0.3 0.1 48.2 44.6 1.4

CoxBoost1 89.9 91.2 26.8 27.3 47.2 46.5 93.6 93.6 33.6 31.3 57.8 53.6 3.9

DGM1 99.9 99.8 8.4 6.3 99.8 99.7 100 100 6.2 4.7 99.8 100 0

Quadratic model

RSFG
11 60.8 22.2 24.5 11.9 82.7 95.4 4.8 4.5 3.6 4.1 16.2 18.4 1.5

RSFG
10 99.4 30.7 6 12.4 48.4 8.2 12.3 11 1.4 2.4 2 2.7 3.7

RSFLR
10 99.1 31.1 3 5.8 93.5 40.4 13.4 12.7 0.6 1.2 8.6 9.5 4.5

CoxBoost1 68.7 32.7 13.4 8 16.7 18.3 18.1 18.7 3.2 4.7 5.6 5.1 1.8

DGM1 100 96.6 7.5 7.7 99.8 97.9 69.8 72.8 6.1 8.2 71.2 70.9 0

Interaction model

RSFG
11 3.8 4.4 4.5 3.5 10 9.8 7.7 13.4 6.6 7.3 38.1 33 2.6

RSFG
10 10.2 9.7 6.2 4.2 5.3 6.4 15.1 25.7 2.7 3.3 4.3 3.9 4.4

RSFLR
10 10.8 12.3 7.3 4.4 10.5 11.6 15.8 25.8 1.6 1.2 17.7 15.9 5.4

CoxBoost1 2.6 1.8 1.4 1.2 1.3 1.6 15.5 25.7 3.9 5.2 6 6.1 1.2

DGM1 97.9 97 6.8 7.7 98.5 97.3 56.8 46.8 8.5 7.7 54 47.9 0

Variables x1, x2, x7, x8 have an effect on the hazard of event 1 only, variables x3, x4, x9, x10 have an effect on the hazard of event 2
only, and variables x5, x6, x11, x12 have an effect on both hazards. Shown are the true positive rates separately for variables x1–x12.
False positive rates over the noise variables are given in columns labeled “Noise”.

Figure 1 displays the ensemble CIF for each of the 15 outcomes from the RSF analysis using the com-
posite Gray splitting rule. The CIF’s have been groups with similar ranges for better visualization. Most
apparent is that death has a near uniform higher incidence rate than all other events. Some AIDS illnesses
have incidence rates that peak rapidly. For example, incidence for non-Hodgkin’s lymphoma increases
rapidly and then begins to flatten after 4 years.

Table 4 lists the minimal depth and event-specific VIMP for each variable for the top five most frequent
outcomes, which includes death, the most frequently occurring event. Minimal depth values were obtained
using Gray’s splitting; event-specific VIMP were obtained using log-rank splitting. Variables selected by
minimal depth (a total of 11) represent factors affecting t-year predictions for all events. The top three
variables are nadir CD4 count, albumin level, and total lymphocyte count. These three factors, however,
have different cause-specific hazard effects as seen by their event-specific VIMP. For death, albumin level
is the most influential factor; nadir CD4 count is influential for the four other events; and total lymphocyte
counts are influential for HIV encephalopathy. The importance of albumin for death is not surprising
as it is a marker for many general health issues such as liver disease, malnutrition, renal disease, and
dehydration. However, it is not a marker for immune function, whereas nadir CD4 is a marker for immune
system damage. Candidiasis, pneumocystis pneumonia, HIV encephalopathy, and mycobacterium avium
complex are all infection related: thus it is not surprising that nadir CD4 is influential for these outcomes.
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Fig. 1. Averaged ensemble CIF for all 15 events from the HAART study using RSF. CIFs have been grouped by similar
vertical ranges for better visualization.

8. DISCUSSION

In this paper, we described a novel extension of RSF to competing risk settings. We introduced new splitting
rules for growing competing risk trees and described several ensemble estimators useful for competing
risks. These included ensembles for the CIF as well as event-specific estimates of mortality. We described
a novel non-parametric method for event-specific variable selection and showed how minimal depth, a new
variable selection method for RSF, could be used for identifying non-event-specific variables. Our two
splitting rules, log-rank splitting and the modified Gray’s splitting rule, are designed to test different null
hypotheses. Log-rank splitting tests for equality of the cause-specific hazard, while the modified Gray’s
splitting rule tests for equality of the CIF. We showed how event-specific VIMP and minimal depth variable
selection could be used individually or simultaneously with these rules to identify variables specific to
certain events or common to all events.
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Table 4. Minimal depth and event-specific VIMP for risk factors from HAART analysis for the top five
most frequent outcomes

VIMP
Minimal depth

(all events) Death Candediasis PCP HIV encephalopathy MAC

Nadir CD4 prior to HAART 1.14 0.45 4.81 8.88 5.28 6.89
Albumin level 1.81 5.51 0.60 −0.08 2.87 −0.01
Total lymphocyte counts 2.21 1.36 1.02 1.89 2.49 1.85
Hemoglobin level 2.48 0.98 0.65 0.77 1.48 2.58
Creatinine level 3.24 2.40 0.10 0.51 0.91 1.58
Injected drug use 3.32 0.64 0.20 0.17 0.23 0.10
HIV-RNA levels 3.53 0.12 0.51 2.38 0.24 3.50
Age 3.63 1.67 0.00 0.09 0.39 1.79
Pre-2000 3.93 0.00 0.26 0.06 0.15 −0.06
AIDS prior to HAART 4.14 0.32 0.46 1.23 0.42 2.46
PCP prophylaxis 4.69 0.04 1.58 0.85 0.16 0.99

History of hepatitis C 5.06 0.54 −0.02 0.26 1.10 0.09
Race 5.64 0.06 1.12 0.08 0.33 0.21
Heterosexual 5.74 0.05 −0.05 −0.02 −0.14 −0.05
History of mental illness 5.90 0.18 0.01 0.05 −0.10 −0.02
Sex 6.26 0.20 0.08 0.04 −0.08 −0.03
History of hepatitis B 6.36 0.18 −0.03 −0.08 −0.03 −0.03
Cocaine 6.43 0.08 0.00 −0.01 −0.05 −0.03
Men sex with men 6.49 0.02 0.02 0.11 −0.02 −0.10
Depression 6.54 0.01 −0.04 −0.05 −0.04 0.03
Heroin 6.68 0.07 0.04 0.01 −0.02 0.05
Current smoker 7.04 0.01 −0.06 −0.11 0.03 −0.03
Suicide attempt 7.51 0.01 −0.02 0.01 −0.04 0.00
Alcohol 7.53 0.01 −0.02 −0.01 −0.03 −0.04
Anxiety 7.60 0.00 0.00 0.00 −0.00 0.00
Personality disorder 7.60 0.00 0.00 0.00 0.00 0.00
Schizophrenia 7.60 0.00 0.00 0.00 0.00 0.00
Smoking history 7.60 0.00 0.00 −0.00 0.00 0.00

C j (τ ) 73.9 70.5 78.1 80.0 87.7

PCP, pneumocystis pneumonia; MAC, mycobacterium avium complex.
The minimal depth threshold for selecting variables is 4.7 (indicated by a horizontal line separating significant variables from
non-significant variables). The event-specific C-index is listed in the last row under the entry C j (τ ).

RSF computations were implemented using the randomForestSRC package. In the future, we
plan to complement the package with a Java application that will allow users to restore a RSF
analysis for prediction on new data. This would make it possible to apply competing risk predic-
tion in clinical settings (see Section B of supplementary material available at Biostatistics online
(http://www.biostatistics.oxfordjournals.org) for further discussion). Computational load is always an
issue in large-scale problems and we mention two strategies to combat this. One is to utilize
randomized splitting via “nsplit”. This not only mitigates bias but also greatly reduces computa-
tional times. A second strategy is to utilize the OpenMP enabled package of randomForestSRC
(http://www.ccs.miami.edu/∼hishwaran/rfsrc.html), which implements parallel processing. This approxi-
mately reduces computational time linearly with the number of CPU’s which can translate into substantial
computational gains.
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