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Traditional methods for evaluating hospital performance, such as regression or propensity score analysis, offer 
population-level comparisons but lack the granularity required for patient-level insight. We propose a causal 
framework based on virtual (digital) twins, enabling counterfactual outcome comparisons for individual patients 
across hospitals. Using data from the American Association for Thoracic Surgery (AATS) Quality Gateway Adult 
Cardiac Database, which includes 52,792 surgeries across 19 hospitals, we estimate patient-level causal effects 
for adverse surgical outcomes. Our approach combines model-free variable priority screening, random forests 
quantile classification (RFQ) for handling rare events, and isolation forests to assess treatment overlap and 
exclude invalid counterfactuals. Building on prior work, we introduce graphical tools for overlap diagnostics and 
counterfactual visualization at both the institutional and patient level. These tools reframe outcome modeling as 
individualized causal inference and support transparent, patient-centered hospital benchmarking.

1. Introduction

Hospital performance is typically assessed using ranking systems, 
such as the U.S. News Best Hospitals Honor Roll [9], and star-based 
ratings, which are employed by organizations such as the Society of Tho

racic Surgeons (STS), the Centers for Medicare and Medicaid Services, 
and, more broadly, by consumer platforms for rating services [7]. While 
these systems can incentivize quality improvement, they often lack the 
granularity needed for real-time monitoring and individualized evalu

ation. Within hospitals, quality officers frequently rely on unadjusted 
outcome summaries and Mortality and Morbidity (M&M) conferences 
[13], which, though informative, remain largely qualitative and lack a 
systematic framework for patient-focused comparisons.

To address these limitations, the American Association for Thoracic 
Surgery (AATS) introduced the AATS Quality Gateway (AQG) [1], an 
initiative that integrates statistical and machine learning methods into 
hospital quality assessment. Our study extends this effort by introduc

ing a data-driven framework that supports patient level counterfactual 
comparisons across hospitals, enabling individualized benchmarking be

yond traditional aggregate approaches.

Achieving this level of individualized assessment requires robust 
methods for causal inference using observational data. Propensity score 
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methods [19,21] have been widely used to mitigate selection bias and 
facilitate comparisons between treatment groups. These approaches typ

ically estimate average treatment effects using matched or weighted 
groups, but often fall short when the goal is to simulate outcomes for 
specific patients or when treatment assignment depends on complex, 
high-dimensional covariates.

To overcome the limitations of traditional population-level methods 
and enable individualized causal inference, we adopt the virtual (or dig

ital) twins framework, which simulates alternative outcomes for specific 
patients. The term ``virtual twin'', introduced by [6], was originally de

veloped to estimate individual treatment effects from clinical trial data. 
More recently, the related term ``digital twin'' has gained prominence 
in biomedical contexts [8,4,15,12]. Both refer to the same underlying 
concept: creating a synthetic copy of a patient to simulate what might 
happen under a different exposure. While most applications compare 
treatment 𝐴 versus treatment 𝐵, the framework naturally generalizes to 
our setting of comparing outcomes across hospitals. In our formulation, 
a patient treated at one hospital (which we can think of as treatment 𝐴) 
is virtually transferred to another (treatment 𝐵) by estimating their ex

pected outcome using that hospital’s predictive model. This allows us to 
ask: What would have happened if this patient had been treated at a different 
hospital under similar conditions?
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To operationalize this framework, our analysis draws on a dataset 
comprising 52,792 adult cardiac surgeries performed between July 2017 
and January 2020 across 19 hospitals from three high-performing sys

tems participating in the AATS Quality Gateway initiative [10]. The data 
encompass a wide range of procedures, including coronary artery bypass 
grafting, valve surgeries, and thoracic aortic interventions. Outcomes of 
interest, previously modeled in related work [10,23], include operative 
mortality, stroke, deep sternal wound infection, renal failure, prolonged 
ventilation, cardiac reoperation, prolonged length of stay, and a com

posite of major morbidity or mortality. In that earlier work, machine 
learning techniques such as random forests quantile classification [18] 
and model-free variable screening [16] were used to develop accurate 
risk models for outcome prediction and risk stratification.

In this study, we extend these models by enabling individualized 
benchmarking through estimates of how a patient’s outcome might have 
differed had they received care at another hospital. Building on the vir

tual twins framework, our contribution lies in assembling a practical 
system that integrates machine learning, virtual twin causal inference, 
and diagnostic tools for hospital-level performance evaluation. We intro

duce graphical tools for overlap assessment and counterfactual visual

ization, including hospital effect plots, isolation forests to detect regions 
of poor overlap, and diagnostics to flag patients lacking valid compara

tors. Together, these components enable individualized benchmarking 
and offer a transparent framework for understanding institutional vari

ability in surgical outcomes.

2. Methods and materials

A non-technical description of our approach is as follows. The goal 
is to compare outcomes between hospitals in a way that mimics a con

trolled experiment. Ideally, we would observe each patient receiving 
treatment at multiple hospitals to directly measure differences in out

comes. Since this is not possible, we use machine learning to create 
“virtual twins'' counterfactual predictions of what a patient’s outcome 
would have been had they been treated at a different hospital. By com

paring a patient’s actual outcome to their predicted counterfactual out

come, we estimate the causal effect of hospital treatment. This approach 
enables fair, patient-specific comparisons across institutions.

To implement our framework, we train machine learning models sep

arately for each hospital. Specifically, treatment 𝐴 denotes the hospital 
under study, while treatment 𝐵 serves as a comparator. Each hospital’s 
model predicts outcomes under its care, enabling counterfactual estima

tion across hospitals. While any machine learning method could be used 
in principle, we adopt random forests (RF) [3] due to their flexibility, 
ability to capture complex interactions, and built-in mechanism for out

of-bag (OOB) prediction [2], which reduces overfitting and improves 
generalizability.

A key challenge in this setting is class imbalance: most outcomes in 
the AQG database are binary adverse events, such as operative mortality, 
stroke, or renal failure, that occur infrequently [10,23]. To address this, 
we employ random forest quantile classification (RFQ) [18], a modifica

tion of RF specifically designed for imbalanced outcomes. RFQ satisfies 
a dual optimality criterion and yields well-calibrated probability esti

mates without the need for external adjustment, making it especially 
well suited to rare event prediction in surgical outcomes.

Using RFQ, data from Hospital 𝐴 is used to develop a predictive out

come model specific to 𝐴, while a separate RFQ model is trained on data 
from Hospital 𝐵 to obtain a predictive outcome model specific to 𝐵, with 
both models using the same dependent variables. Under the assumptions 
of strong unconfoundedness and treatment overlap, unbiased estimates 
of causal effect sizes can then be obtained. These assumptions, collec

tively known as strongly ignorable treatment assignment [19], ensure 
valid causal inference. A more detailed discussion of these assumptions 
and our causal estimation procedure is provided below.

2.1. Strong unconfoundedness

In causal inference, strong unconfoundedness, as defined by Ru

bin [20], ensures the validity of causal effect estimation from obser

vational data by assuming that treatment assignment is independent of 
potential outcomes, conditional on observed covariates.

To formally define this, we use (𝐗, 𝑌 ) to denote the covariate fea

ture vector and 𝑌 for the binary outcome response. Let 𝑇 denote the 
treatment assignment, where 𝑇 = 𝐴 represents Hospital 𝐴, and 𝑇 = 𝐵

represents Hospital 𝐵. Let 𝑌 (𝐴) and 𝑌 (𝐵) be the potential outcomes un

der treatments 𝐴 and 𝐵, respectively. These represent the two possible 
outcomes a patient would have experienced if treated at either hospital. 
While a patient’s outcome is only observed under their actual treatment 
assignment, the other potential outcome remains unobserved and can 
be conceptually regarded as the patient’s virtual twin.

The assumption of strong unconfoundedness states that:

{𝑌 (𝐴), 𝑌 (𝐵)} ⟂ 𝑇 ∣𝐗.

This assumption implies that, conditional on 𝐗, the treatment assign

ment 𝑇 is independent of the potential outcomes. In other words, after 
adjusting for all relevant confounding variables 𝐗, the assignment to 
Hospital 𝐴 or Hospital 𝐵 is effectively randomized, enabling causal ef

fect estimation from observational data.

While strong unconfoundedness is inherently untestable, it is more 
likely to hold when many independent predictors are measured and 
known to be informative for the outcome. The informativeness of pre

dictors can be evaluated using variable selection techniques, such as 
model-free variable priority screening [16], which is also employed for 
assessing treatment overlap, discussed next. Previous work [10,23] iden

tified a comprehensive set of predictive variables for surgical outcomes 
in our database, providing empirical evidence supporting the plausibil

ity of the strong unconfoundedness assumption.

2.2. Treatment overlap (the positivity condition)

The assumption of treatment overlap, also referred to as the positiv

ity condition in causal inference, ensures that each patient has a nonzero 
probability of receiving either treatment 𝐴 or 𝐵, given their covariates. 
This assumption prevents issues where certain covariate values are ex

clusive to only one treatment group, which would make causal effect 
estimation impossible for those subpopulations.

Formally, treatment overlap requires that the probability of receiv

ing each treatment, known as the propensity score, satisfies:

0 < 𝑃 (𝑇 =𝐴 ∣𝐗) < 1 for all 𝐗.

Equivalently, this can be expressed as:

0 < 𝑒(𝐗) < 1, where 𝑒(𝐗) = 𝑃 (𝑇 =𝐴 ∣𝐗)

denotes the propensity score. This condition ensures that for every co

variate profile 𝐗, there exist patients treated at both Hospital 𝐴 and 
Hospital 𝐵. Without treatment overlap, there would be regions in the 
covariate space where only one treatment is observed, making it impos

sible to estimate counterfactual outcomes for patients in those regions.

Treatment overlap must be assessed for each patient. Traditionally, 
this is evaluated using propensity score diagnostics, such as overlap 
plots or standardized mean differences, or by fitting regression models, 
such as logistic regression, with treatment assignment as the dependent 
variable. However, we adopt a more robust, data-driven approach us

ing isolation forests [14], an unsupervised anomaly detection method. 
In isolation forests, anomalies are identified by randomly partitioning 
data and detecting outliers based on tree split depth. Observations with 
shorter path lengths are considered outliers, as they require fewer splits 
to become isolated. A threshold, such as the 5th percentile of path 
lengths, is used to flag anomalous cases. To enhance robustness, this 
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process is repeated across multiple trees, generating a forest anomaly 
score.

In more detail, the verification of treatment overlap using isolation 
forests proceeds as follows. A key step is the selection of independent 
variables that are predictive of the adverse outcome under study. This 
ensures that the anomaly score is trained on features directly relevant 
to the causal effect of interest, enhancing its ability to detect violations 
of overlap.

1. Use model-free variable priority screening [16] to identify variables 
most predictive of the outcome. These variables form the input fea

ture set for evaluating overlap.

2. Train an isolation forest on hospital 𝐴’s data using the variables 
from Step 1. The model is built in an unsupervised manner, without 
using outcome values, to capture the distribution of covariates in 
hospital 𝐴.

3. Apply the trained isolation forest to patients from hospital 𝐵 to 
compute anomaly scores. Patients with scores below a threshold 
percentile of the hospital 𝐴 distribution are flagged as ``bad virtual 
twins'' indicating they are too dissimilar from hospital 𝐴 patients 
to reasonably assume overlap. These patients are excluded from the 
causal comparison between hospital 𝐴 and 𝐵.

2.3. Causal estimates

Causal estimates are defined as the predicted value from the outcome 
model 𝐴 compared with the predicted value from the outcome model 𝐵
for a patient from 𝐵 that has an appropriate virtual twin in 𝐴. We can 
describe this more formally using the following mathematical notation.

Let L = {(𝐱𝑖, 𝑦𝑖) ∶ 𝑖 = 1,… , 𝑛} denote the training data, where 𝐱𝑖 is 
the patient’s observed 𝑝-dimensional feature vector and 𝑦𝑖 ∈ {0,1} is the 
observed adverse binary outcome. For a specific hospital ℎ ∈ {1,… ,𝐻}, 
we denote its training data as Lℎ = {(𝐱(ℎ)

𝑖
, 𝑦

(ℎ)
𝑖
) ∶ 𝑖 = 1,… , 𝑛(ℎ)}. In our 

database, there are 𝐻 = 19 hospitals, with a feature dimension of 𝑝 =
367. The total sample size is 𝑛 = 52,792, distributed across the hospitals 
such that 𝑛 =

∑
ℎ 𝑛

(ℎ).
We are interested in evaluating the performance of hospital ℎ rel

ative to all hospitals in the system. Here, hospital ℎ corresponds to 
Hospital 𝐴 described earlier. Performance is assessed using the over

all hospital 𝑂 = {1,… ,𝐻}, which represents the full dataset, including 
hospital ℎ itself, and corresponds to the previously defined Hospital 𝐵. 
Since the analysis is repeated for each hospital ℎ, defining the overall 
hospital in this way ensures that every hospital is evaluated against a 
common and comprehensive reference population, thus allowing for a 
fair and consistent assessment of hospital performance.

2.3.1. True risk
The true risk for a hypothetical patient with covariate values 𝐱, if 

treated at hospital ℎ, is defined as:

𝜃ℎ(𝐱) = 𝑃ℎ{𝑌 = 1 ∣𝐗 = 𝐱}

while the true risk for the same hypothetical patient, if treated at the 
overall hospital 𝑂, is defined as:

𝜃𝑂(𝐱) = 𝑃𝑂{𝑌 = 1 ∣𝐗 = 𝐱}.

The causal effect for 𝐱 is then defined as:

𝜏ℎ(𝐱) =
𝜃ℎ(𝐱) 
𝜃𝑂(𝐱)

representing the causal relative risk, where values less than one indicate 
a better outcome if treated at hospital ℎ compared to the overall hospital 
performance.

2.3.2. Random forests estimated risk
Since these true risks are unknown, they must be estimated from 

data. The hospital-specific risk predictors for ℎ and 𝑂 are obtained using 

RFQ trained on different datasets. The predictor for hospital ℎ, denoted 
𝜃̂ℎ(⋅), is estimated from a random forest trained on hospital ℎ’s data 
Lℎ. Similarly, the overall hospital predictor 𝜃̂𝑂(⋅) is estimated using a 
random forest trained on the entire dataset L .

For a hypothetical patient 𝐱, these estimators provide counterfactual 
risk predictions: 𝜃̂ℎ(𝐱) represents the estimated risk if the patient 𝐱 were 
treated at hospital ℎ, while 𝜃̂𝑂(𝐱) provides the estimated risk under the 
overall hospital model. The causal effect for 𝐱 is then estimated as:

𝜏ℎ(𝐱) =
𝜃̂ℎ(𝐱) 
𝜃̂𝑂(𝐱)

.

It is also convenient to work with the log relative risk:

log(𝜏ℎ(𝐱)) = log(𝜃̂ℎ(𝐱)) − log(𝜃̂𝑂(𝐱))

where values less than zero indicate that patient 𝐱 fares better at hospital 
ℎ on average.

2.3.3. Random forests OOB estimated risk
The previous discussion considered a hypothetical patient 𝐱, but in 

practice, causal effects are provided for the training cases. To prevent 
overfitting on this data, we use the out-of-bag (OOB) random forest 
predictor for constructing these estimates. The OOB predictor is con

structed by aggregating predictions from trees where a given training 
point was not used in the bootstrap sample. Since each tree is trained on 
a random subset of the data, approximately 37% of the observations are 
excluded from each bootstrap sample and serve as OOB data. By averag

ing predictions across these excluded trees, the OOB predictor provides 
an estimate that is independent of the training point itself. This construc

tion is a generalization of the leave-one-out cross-validation framework 
[5], making it a robust method for reducing overfitting while maintain

ing predictive accuracy.

Denoting the OOB predictor by 𝜃̂∗
ℎ
(⋅) for hospital ℎ and 𝜃̂∗

𝑂
(⋅) for 

the overall hospital, the causal effect for a training data point 𝐱(ℎ)
𝑖

from 
hospital ℎ is estimated as:

𝜏∗
ℎ
(𝐱(ℎ)

𝑖
) =

𝜃̂∗
ℎ
(𝐱(ℎ)

𝑖
) 

𝜃̂∗
𝑂
(𝐱(ℎ)

𝑖
)
, log(𝜏∗

ℎ
(𝐱(ℎ)

𝑖
)) = log(𝜃̂∗

ℎ
(𝐱(ℎ)

𝑖
)) − log(𝜃̂∗

𝑂
(𝐱(ℎ)

𝑖
)) (1)

On the other hand, for a training data point 𝐱(−ℎ)
𝑖

from outside hospital 
ℎ, the causal effect is estimated as:

𝜏∗
ℎ
(𝐱(−ℎ)

𝑖
) =

𝜃̂ℎ(𝐱
(−ℎ)
𝑖

) 

𝜃̂∗
𝑂
(𝐱(−ℎ)

𝑖
)
, log(𝜏∗

ℎ
(𝐱(−ℎ)

𝑖
)) = log(𝜃̂ℎ(𝐱

(−ℎ)
𝑖

)) − log(𝜃̂∗
𝑂
(𝐱(−ℎ)

𝑖
)).

(2)

Since 𝐱(−ℎ)
𝑖

is not part of hospital ℎ’s training data, it is treated as an 
external test point for 𝜃̂ℎ, meaning the full sample trained estimator is 
used rather than the OOB procedure.

2.3.4. Eliminating bad virtual twins: final estimated values

To be in compliance with treatment overlap, we only utilize causal 
estimates from comparable virtual twins. In order to eliminate poor 
matches, we use an isolation forest to compute an anomaly score that 
quantifies the similarity of each observation to the training distribution 
for a given hospital. Let 𝑖ℎ(⋅) be the anomaly score for hospital ℎ, trained 
using its data Lℎ. These scores are calibrated on the unit interval, with 
lower values indicating greater deviation from the core structure of the 
training data and hence poorer support.

We exclude causal estimates for which either the observed or virtual 
twin falls in a low-density region of the corresponding hospital’s train

ing distribution. Specifically, estimators (1) and (2) are used only when 
𝑖ℎ(𝐱

(ℎ)
𝑖

) < 𝐶 and 𝑖ℎ(𝐱
(−ℎ)
𝑖

) < 𝐶 , where 𝐶 is the anomaly score thresh

old. In our analysis, we set 𝐶 = 0.05, which corresponds to excluding 
the 5 percent most anomalous observations as measured by the training 
distribution for each hospital. This value was chosen as a conservative 
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heuristic to reduce extrapolation risk in low-support regions, thereby 
improving reliability of the causal estimates. We emphasize that 𝐶 is a 
tunable parameter, and its value can be modified in future applications 
or subjected to sensitivity analysis as needed.

Thus, for hospital ℎ, we obtain causal relative risk values (similarly 
log relative-risk values)

{𝜏∗
ℎ
(𝐱(ℎ)

𝑖
) ∶ 𝑖ℎ(𝐱

(ℎ)
𝑖

) < 𝐶}, {𝜏∗
ℎ
(𝐱(−ℎ)

𝑖
) ∶ 𝑖ℎ(𝐱

(−ℎ)
𝑖

) < 𝐶} (3)

for the training data having compliant virtual twins. There can be a 
maximum of 𝑛 such values, but typically this value is smaller and will 
depend on the cutoff 𝐶 .

2.4. Statistical analysis

Variable selection using model-free variable priority screening [16] 
was implemented with the R-package varPro, available at https://

github.com/kogalur/varPro. The package also provides customized iso

lation forest modeling which were employed for the treatment overlap 
analysis. Random forest models, including RFQ, used for causal esti

mates were performed using the CRAN R-package randomForestSRC 
[11].

3. Results

Among the various adverse outcomes available in the data, we fo

cus on operative mortality, a critical outcome of particular interest to 
AQG. This choice ensures a concrete and clinically meaningful analysis, 
reflecting the focus of prior work [10,23]. Below, we present the results 
of this analysis, organized into subsections based on the granularity of 
the findings.

3.1. Overall summary analysis

Summary results are provided conveniently in graphical format 
given in Fig. 1. The top set of figures displays causal relative risk esti

mates (3) for each hospital, stratified by overall risk, with boxplot widths 
scaled to the sample size. Using the overall hospital 𝑂 as a baseline, pa

tient risk values were determined and grouped into percentiles: 0-50 
(low risk), 50-75 (medium risk), and 75-100 (high risk). The ``Overall'' 
category represents unstratified relative risk values.

The relative risk plots, akin to forest plots in meta-analyses but ro

tated 90 degrees, use a symmetrical logarithmic scale. The distance from 
1.0 to 2.0 matches that from 1.0 to 0.5, and similarly, the distance from 
1.0 to 4.0 matches that from 1.0 to 0.25. This ensures an equivalent in

terpretation above and below 1.0: values below 1.0 indicate a hospital 
outperforming the average. We observe that hospitals ℎ = 2,3 generally 
outperform most hospitals, with their advantage increasing for high-risk 
patients. Overall, these hospitals demonstrate superior performance.

The bottom set of figures displays the estimated density of the iso

lation forest anomaly scores {𝑖ℎ(𝐱𝑖) ∶ 𝑖 = 1,… , 𝑛} for each hospital ℎ. 
Smaller values indicate a lower probability of a valid virtual twin, high

lighting potential violations of the treatment overlap assumption. Hospi

tal 15 exemplifies this, showing a highly left-skewed density, suggesting 
a substantial number of poor matches for the case study. In contrast, hos

pital ℎ = 1 serves as a good match, as its density remains low over small 
anomaly scores, indicating better treatment overlap and comparability 
for most of its patients.

3.2. Performance for select patient features

To further investigate differences between hospitals, Fig. 2 presents 
standardized 𝛽 values from an ANOVA. The analysis focuses on the 
top three variables identified in the analysis filtering step: MELD Score 
(Model for End-Stage Liver Disease), Number of Cardiac Procedures, and 
Cardiac Status. The standardized log relative risk, defined as the log rel

ative risk divided by the overall sample standard deviation, was used 

as the dependent variable. An ANOVA model was fit with terms for the 
independent variable and hospital-specific intercepts. For the ``Overal

l'' plot, only hospital intercepts were included, without an independent 
variable. The displayed standardized 𝛽 values represent the estimated 
intercepts, providing insight into hospital-specific effects.

The standardized 𝛽 values are stratified by risk, similar to the pre

vious figure. Within each panel, hospitals are assigned a traditional 
letter grade, ranging from high (A+, A, A-) to lower grades (B-, C+, C), 
based on the percentile ranking of a hospital’s 𝛽 value relative to other 
hospitals within the same risk stratification. Thus, a grade of A in the 
“Overall'' low-risk group indicates hospitals that perform above average 
within that group. A positive 𝛽 is calibrated to indicate superior perfor

mance relative to the baseline. However, a hospital can receive a high 
grade, such as A-, even if its 𝛽 value is near zero or slightly negative, 
as grades are assigned based on relative rankings rather than absolute 
values.

As before, hospitals ℎ = 2,3 consistently receive the highest letter 
grades. Their standardized 𝛽 values are significantly larger and more 
positive than those of other hospitals, both overall and across all three 
independent variables.

3.3. Performance across a spectrum of features for finer resolution

To examine hospital performance at a finer patient level, Fig. 3
presents standardized 𝛽 values for selected hospitals using all indepen

dent variables identified from the analysis filtering step. The top panel 
displays values for hospital ℎ = 1, while the bottom panel shows values 
for hospital ℎ = 19.

Hospital ℎ = 1, a good performer with a large sample size, is immedi

ately recognizable as all its 𝛽 values are positive, with particularly large 
values for high-risk patients. In contrast, hospital ℎ = 19, with a smaller 
sample size, exhibits a different pattern. From the top panel of Fig. 1, 
we observe that while its overall performance is slightly worse than the 
average hospital, it performs slightly better for high-risk patients. This 
trend is mirrored in the bottom panel of Fig. 3, where nearly all stan

dardized 𝛽 values are negative (red) across groups, except for high-risk 
patients, where they are mostly positive (blue).

3.4. Subgroup treatment strategies

Hospitals ℎ = 2,3 were identified as high-performing institutions in 
our analysis. Given their superior outcomes, we further examine their 
relative performance in managing high-risk patients—those who stand 
to benefit the most from treatment at a hospital equipped to handle com

plex cases. Understanding how these hospitals perform for such patients 
can provide critical insights into optimizing surgical care.

To investigate this, we focused on patients who underwent isolated 
aortic valve replacement with more than one planned cardiac proce

dure. This group represents a significantly high-risk population due to 
their complex comorbidities, increased surgical burden, and heightened 
risk of postoperative complications. Identifying the optimal hospital for 
these patients could lead to substantial improvements in surgical out

comes and overall survival.

Further restricting the analysis to those with comparable virtual 
twins, we applied an ANOVA model with standardized log relative risk 
as the dependent variable. Unlike our previous analysis, which compares 
standardized log relative risk for a hospital against the overall average, 
this approach evaluates the log relative risk between the two hospitals:

log(𝜏2∼3(𝐱)) ∶= log(𝜃3(𝐱)) − log(𝜃2(𝐱)).

The 𝛽 coefficient is calibrated such that a positive value indicates bet

ter mortality outcomes for hospital ℎ = 2 compared to ℎ = 3, while a 
negative value indicates better outcomes for hospital ℎ = 3.

Fig. 4 displays the standardized 𝛽 values from the ANOVA, with co

efficients sorted from the largest positive to the largest negative for 
the same variables as in Fig. 3. A clear pattern emerges: hospital ℎ = 2
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Fig. 1. Causal relative risk estimates and isolation forest anomaly scores for each hospital. The top figures present causal relative risk estimates, stratified by overall 
risk and displayed as boxplots scaled to hospital size (wider boxplots indicate larger hospitals). Relative risk is categorized into percentiles: 0-50 (low risk), 50-75 
(medium risk), and 75-100 (high risk), with ``Overall'' representing unstratified values. A symmetrical logarithmic scale ensures that values below 1.0 indicate a 
hospital outperforming the average. The bottom figures display the density of isolation forest anomaly scores, where lower values suggest a lower probability of a 
valid virtual twin. The thin vertical line at 0.05 is the cutoff 𝐶 used to screen bad virtual twins.

generally outperforms hospital ℎ = 3 for this specific population, as indi

cated by the greater number of positive coefficients (displayed in blue). 
However, several variables exhibit large negative coefficients (displayed 
in red), suggesting that certain patient subgroups may experience better 
outcomes at hospital ℎ = 3.

Key patient characteristics influencing management strategies can 
be identified by examining variables with large coefficient magnitudes 

(these being variables near the top and bottom of the figure). One such 
variable is the preoperative MELD score for a patient and which was 
previously identified as a top predictor in the analysis filtering step. 
Originally developed to assess chronic liver disease severity and predict 
survival in liver transplantation, the MELD score [17] is also a strong 
predictor of postoperative complications in cardiac surgery, including 
renal failure, prolonged ICU stay, and in-hospital mortality. The large 
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Fig. 2. Standardized 𝛽 values from an ANOVA for MELD Score, Number of Cardiac Procedures, and Cardiac Status, with standardized log relative risk as the dependent 
variable. Estimates are stratified by overall risk, and hospitals are assigned letter grades (A+, A, A-, B+, B, B-, C+, C) based on their percentile ranking within each 
stratification. A positive 𝛽 indicates superior performance relative to the baseline. Hospitals ℎ= 2,3 consistently receive the highest grades, with significantly larger 
positive 𝛽 values both overall and across the three independent variables.

positive coefficient suggests that patients with higher MELD scores fare 
significantly better at hospital ℎ = 2, possibly due to superior manage

ment of comorbidities or perioperative care.

Another example is whether the patient opted for elective surgery. In 
this case, we observe a large negative 𝛽 value for this variable, indicating 
that elective surgery patients experienced higher mortality at hospital 
ℎ = 2. This suggests that hospital ℎ = 3 may have superior protocols or 
preoperative management strategies for elective procedures, leading to 
improved outcomes for these patients.

4. Discussion

A key challenge in hospital comparisons is case-mix variability. Tra

ditional risk-adjusted outcomes assess a provider’s performance relative 
to an average provider but do not ensure that hospitals treat compara

ble patients. Recognizing this, STS reports ratings rather than rankings 
to avoid misleading comparisons [22]. Our virtual twins framework 

addresses this concern directly by generating patient-specific counter

factual predictions, allowing each patient to be compared only to their 
virtual twin, an alternative version of themselves treated at a different 
hospital. This ensures that hospitals are evaluated under matched case

mix conditions, reducing bias from institutional differences.

In addition to improving fairness in benchmarking, virtual twins fit 
within the broader goals of precision medicine. Because our approach 
relies on predicted outcomes rather than observed adverse event rates, it 
is less sensitive to small-sample noise and case-mix confounding. Com

parisons are restricted to patients with valid matches, further enhancing 
interpretability and robustness. At the point of care, these individualized 
estimates could inform patient and surgeon decision-making by iden

tifying hospitals with more favorable predicted outcomes for specific 
profiles. At the system level, risk-adjusted performance can be stratified 
by procedure type, patient subgroup, or institutional characteristics to 
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Fig. 3. Standardized 𝛽 values for hospital ℎ= 1 (top) and ℎ= 19 (bottom) across all variables identified in the feature screening. Hospital ℎ= 1, a large hospital with 
good performance, has uniformly positive 𝛽 values, with particularly high values for high-risk patients. In contrast, the smaller hospital ℎ= 19 shows predominantly 
negative 𝛽 values (red) across groups, except for high-risk patients, where they are mostly positive (blue), reflecting its relatively better performance in this subgroup.

guide resource allocation and quality improvement. Hospitals can also 
benchmark key risk factors against peers to identify strategic priorities.

As with all observational studies, our framework relies on assump

tions that are necessary for valid causal inference but cannot be directly 
verified from the data. Chief among these is the assumption of strong 
unconfoundedness, which requires that all variables influencing both 
treatment assignment and outcomes are adequately measured and in

cluded in the models. Although our database contains a rich set of 
preoperative and intraoperative features previously shown to be pre

dictive of surgical outcomes [10,23], unmeasured confounding remains 
a potential source of bias. In particular, institutional factors such as 
sta�ing, care coordination, or postoperative protocols, though partially 
captured through hospital identifiers, may not be fully accounted for 
through patient-level covariates alone. Likewise, our approach assumes 
adequate treatment overlap, meaning that patients from different hos

pitals share sufficiently similar covariate profiles to allow valid coun

terfactual comparisons. While we employed diagnostic tools, including 
variable importance screening and isolation forest analysis, to assess 
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Fig. 4. Standardized 𝛽 values from ANOVA modeling of high-risk patients 
undergoing isolated aortic valve replacement with multiple planned cardiac 
procedures. The 𝛽 coefficients are sorted from largest positive to largest nega

tive, where positive values (blue) indicate better mortality outcomes at hospital 
ℎ = 2, and negative values (red) indicate better outcomes at hospital ℎ= 3. Over

all, hospital ℎ= 2 demonstrates superior performance for this subgroup, though 
certain patients exhibit better outcomes at hospital ℎ= 3.

and filter poor overlap cases, the possibility of residual extrapolation 
in low-density regions cannot be ruled out. As such, our results should 
be interpreted as estimates of causal effects under the assumption of 
no unmeasured confounding and adequate overlap, supported but not 
guaranteed by the structure of the data.

While large-scale implementation presents challenges, AQG is ac

tively working to embed virtual twins into its analytics pipeline. This 
will allow the methodology to become a core component of modern 
hospital quality assessment, promoting more transparent and patient

centered evaluation across healthcare systems.

5. Conclusion

This study introduces a data-driven, patient-centered framework for 
evaluating hospital performance using virtual twins methodology. By 
integrating machine learning and causal inference techniques, our ap

proach enables individualized counterfactual comparisons, moving be

yond traditional risk-adjusted benchmarking. Virtual twins ensure eq

uitable hospital comparisons by mitigating biases from case-mix dif

ferences, providing a more transparent and interpretable assessment of 
hospital performance.

Our methods incorporate random forest quantile classification to ad

dress class imbalance in rare surgical outcomes and isolation forests to 
assess treatment overlap, ensuring robust causal effect estimation. The 

framework is further enhanced by visualization tools that support both 
high-level hospital assessments and granular patient-level insights.

Future work will refine predictive modeling, incorporate additional 
clinical and institutional factors, and expand applications to broader 
healthcare quality assessments. Although we focus here on hospital-level 
comparisons, the same framework is readily extensible to alternative 
exposures such as treatment strategies or provider types. In principle, 
the structure we describe can accommodate any categorical exposure, 
whether hospitals, treatments, providers, or care protocols, provided 
that overlap and covariate support conditions are met. Enhanced in

teractive visualization tools will improve accessibility and usability for 
stakeholders.
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