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Traditional methods for evaluating hospital performance, such as regression or propensity score analysis, offer
population-level comparisons but lack the granularity required for patient-level insight. We propose a causal
framework based on virtual (digital) twins, enabling counterfactual outcome comparisons for individual patients
across hospitals. Using data from the American Association for Thoracic Surgery (AATS) Quality Gateway Adult
Cardiac Database, which includes 52,792 surgeries across 19 hospitals, we estimate patient-level causal effects
for adverse surgical outcomes. Our approach combines model-free variable priority screening, random forests

quantile classification (RFQ) for handling rare events, and isolation forests to assess treatment overlap and
exclude invalid counterfactuals. Building on prior work, we introduce graphical tools for overlap diagnostics and
counterfactual visualization at both the institutional and patient level. These tools reframe outcome modeling as
individualized causal inference and support transparent, patient-centered hospital benchmarking.

1. Introduction

Hospital performance is typically assessed using ranking systems,
such as the U.S. News Best Hospitals Honor Roll [9], and star-based
ratings, which are employed by organizations such as the Society of Tho-
racic Surgeons (STS), the Centers for Medicare and Medicaid Services,
and, more broadly, by consumer platforms for rating services [7]. While
these systems can incentivize quality improvement, they often lack the
granularity needed for real-time monitoring and individualized evalu-
ation. Within hospitals, quality officers frequently rely on unadjusted
outcome summaries and Mortality and Morbidity (M&M) conferences
[13], which, though informative, remain largely qualitative and lack a
systematic framework for patient-focused comparisons.

To address these limitations, the American Association for Thoracic
Surgery (AATS) introduced the AATS Quality Gateway (AQG) [1], an
initiative that integrates statistical and machine learning methods into
hospital quality assessment. Our study extends this effort by introduc-
ing a data-driven framework that supports patient level counterfactual
comparisons across hospitals, enabling individualized benchmarking be-
yond traditional aggregate approaches.

Achieving this level of individualized assessment requires robust
methods for causal inference using observational data. Propensity score
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methods [19,21] have been widely used to mitigate selection bias and
facilitate comparisons between treatment groups. These approaches typ-
ically estimate average treatment effects using matched or weighted
groups, but often fall short when the goal is to simulate outcomes for
specific patients or when treatment assignment depends on complex,
high-dimensional covariates.

To overcome the limitations of traditional population-level methods
and enable individualized causal inference, we adopt the virtual (or dig-
ital) twins framework, which simulates alternative outcomes for specific
patients. The term “virtual twin”, introduced by [6], was originally de-
veloped to estimate individual treatment effects from clinical trial data.
More recently, the related term “digital twin” has gained prominence
in biomedical contexts [8,4,15,12]. Both refer to the same underlying
concept: creating a synthetic copy of a patient to simulate what might
happen under a different exposure. While most applications compare
treatment A versus treatment B, the framework naturally generalizes to
our setting of comparing outcomes across hospitals. In our formulation,
a patient treated at one hospital (which we can think of as treatment A)
is virtually transferred to another (treatment B) by estimating their ex-
pected outcome using that hospital’s predictive model. This allows us to
ask: What would have happened if this patient had been treated at a different
hospital under similar conditions?
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To operationalize this framework, our analysis draws on a dataset
comprising 52,792 adult cardiac surgeries performed between July 2017
and January 2020 across 19 hospitals from three high-performing sys-
tems participating in the AATS Quality Gateway initiative [10]. The data
encompass a wide range of procedures, including coronary artery bypass
grafting, valve surgeries, and thoracic aortic interventions. Outcomes of
interest, previously modeled in related work [10,23], include operative
mortality, stroke, deep sternal wound infection, renal failure, prolonged
ventilation, cardiac reoperation, prolonged length of stay, and a com-
posite of major morbidity or mortality. In that earlier work, machine
learning techniques such as random forests quantile classification [18]
and model-free variable screening [16] were used to develop accurate
risk models for outcome prediction and risk stratification.

In this study, we extend these models by enabling individualized
benchmarking through estimates of how a patient’s outcome might have
differed had they received care at another hospital. Building on the vir-
tual twins framework, our contribution lies in assembling a practical
system that integrates machine learning, virtual twin causal inference,
and diagnostic tools for hospital-level performance evaluation. We intro-
duce graphical tools for overlap assessment and counterfactual visual-
ization, including hospital effect plots, isolation forests to detect regions
of poor overlap, and diagnostics to flag patients lacking valid compara-
tors. Together, these components enable individualized benchmarking
and offer a transparent framework for understanding institutional vari-
ability in surgical outcomes.

2. Methods and materials

A non-technical description of our approach is as follows. The goal
is to compare outcomes between hospitals in a way that mimics a con-
trolled experiment. Ideally, we would observe each patient receiving
treatment at multiple hospitals to directly measure differences in out-
comes. Since this is not possible, we use machine learning to create
“virtual twins” counterfactual predictions of what a patient’s outcome
would have been had they been treated at a different hospital. By com-
paring a patient’s actual outcome to their predicted counterfactual out-
come, we estimate the causal effect of hospital treatment. This approach
enables fair, patient-specific comparisons across institutions.

To implement our framework, we train machine learning models sep-
arately for each hospital. Specifically, treatment A denotes the hospital
under study, while treatment B serves as a comparator. Each hospital’s
model predicts outcomes under its care, enabling counterfactual estima-
tion across hospitals. While any machine learning method could be used
in principle, we adopt random forests (RF) [3] due to their flexibility,
ability to capture complex interactions, and built-in mechanism for out-
of-bag (OOB) prediction [2], which reduces overfitting and improves
generalizability.

A key challenge in this setting is class imbalance: most outcomes in
the AQG database are binary adverse events, such as operative mortality,
stroke, or renal failure, that occur infrequently [10,23]. To address this,
we employ random forest quantile classification (RFQ) [18], a modifica-
tion of RF specifically designed for imbalanced outcomes. RFQ satisfies
a dual optimality criterion and yields well-calibrated probability esti-
mates without the need for external adjustment, making it especially
well suited to rare event prediction in surgical outcomes.

Using RFQ, data from Hospital A is used to develop a predictive out-
come model specific to A, while a separate RFQ model is trained on data
from Hospital B to obtain a predictive outcome model specific to B, with
both models using the same dependent variables. Under the assumptions
of strong unconfoundedness and treatment overlap, unbiased estimates
of causal effect sizes can then be obtained. These assumptions, collec-
tively known as strongly ignorable treatment assignment [19], ensure
valid causal inference. A more detailed discussion of these assumptions
and our causal estimation procedure is provided below.
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2.1. Strong unconfoundedness

In causal inference, strong unconfoundedness, as defined by Ru-
bin [20], ensures the validity of causal effect estimation from obser-
vational data by assuming that treatment assignment is independent of
potential outcomes, conditional on observed covariates.

To formally define this, we use (X,Y’) to denote the covariate fea-
ture vector and Y for the binary outcome response. Let T denote the
treatment assignment, where 7' = A represents Hospital A, and T = B
represents Hospital B. Let Y (A) and Y (B) be the potential outcomes un-
der treatments A and B, respectively. These represent the two possible
outcomes a patient would have experienced if treated at either hospital.
While a patient’s outcome is only observed under their actual treatment
assignment, the other potential outcome remains unobserved and can
be conceptually regarded as the patient’s virtual twin.

The assumption of strong unconfoundedness states that:

{Y(A),Y(B)} LT |X.

This assumption implies that, conditional on X, the treatment assign-
ment 7T is independent of the potential outcomes. In other words, after
adjusting for all relevant confounding variables X, the assignment to
Hospital A or Hospital B is effectively randomized, enabling causal ef-
fect estimation from observational data.

While strong unconfoundedness is inherently untestable, it is more
likely to hold when many independent predictors are measured and
known to be informative for the outcome. The informativeness of pre-
dictors can be evaluated using variable selection techniques, such as
model-free variable priority screening [16], which is also employed for
assessing treatment overlap, discussed next. Previous work [10,23] iden-
tified a comprehensive set of predictive variables for surgical outcomes
in our database, providing empirical evidence supporting the plausibil-
ity of the strong unconfoundedness assumption.

2.2. Treatment overlap (the positivity condition)

The assumption of treatment overlap, also referred to as the positiv-
ity condition in causal inference, ensures that each patient has a nonzero
probability of receiving either treatment A or B, given their covariates.
This assumption prevents issues where certain covariate values are ex-
clusive to only one treatment group, which would make causal effect
estimation impossible for those subpopulations.

Formally, treatment overlap requires that the probability of receiv-
ing each treatment, known as the propensity score, satisfies:

O0<PT=A|X)<1 forall X.

Equivalently, this can be expressed as:

0<e(X)<1, whereeX)=P(T =A4|X)

denotes the propensity score. This condition ensures that for every co-
variate profile X, there exist patients treated at both Hospital A and
Hospital B. Without treatment overlap, there would be regions in the
covariate space where only one treatment is observed, making it impos-
sible to estimate counterfactual outcomes for patients in those regions.

Treatment overlap must be assessed for each patient. Traditionally,
this is evaluated using propensity score diagnostics, such as overlap
plots or standardized mean differences, or by fitting regression models,
such as logistic regression, with treatment assignment as the dependent
variable. However, we adopt a more robust, data-driven approach us-
ing isolation forests [14], an unsupervised anomaly detection method.
In isolation forests, anomalies are identified by randomly partitioning
data and detecting outliers based on tree split depth. Observations with
shorter path lengths are considered outliers, as they require fewer splits
to become isolated. A threshold, such as the 5th percentile of path
lengths, is used to flag anomalous cases. To enhance robustness, this
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process is repeated across multiple trees, generating a forest anomaly
score.

In more detail, the verification of treatment overlap using isolation
forests proceeds as follows. A key step is the selection of independent
variables that are predictive of the adverse outcome under study. This
ensures that the anomaly score is trained on features directly relevant
to the causal effect of interest, enhancing its ability to detect violations
of overlap.

1. Use model-free variable priority screening [16] to identify variables
most predictive of the outcome. These variables form the input fea-
ture set for evaluating overlap.

2. Train an isolation forest on hospital A’s data using the variables
from Step 1. The model is built in an unsupervised manner, without
using outcome values, to capture the distribution of covariates in
hospital A.

3. Apply the trained isolation forest to patients from hospital B to
compute anomaly scores. Patients with scores below a threshold
percentile of the hospital A distribution are flagged as “bad virtual
twins” indicating they are too dissimilar from hospital A patients
to reasonably assume overlap. These patients are excluded from the
causal comparison between hospital A and B.

2.3. Causal estimates

Causal estimates are defined as the predicted value from the outcome
model A compared with the predicted value from the outcome model B
for a patient from B that has an appropriate virtual twin in A. We can
describe this more formally using the following mathematical notation.

Let £={(x;,y;) : i=1,...,n} denote the training data, where x; is
the patient’s observed p-dimensional feature vector and y; € {0,1} is the
observed adverse binary outcome. For a specific hospital h € {1, ..., H},
we denote its training data as £, = {(xf.h), y?h)) ci=1,...,n"M}. In our
database, there are H = 19 hospitals, with a feature dimension of p =
367. The total sample size is n = 52,792, distributed across the hospitals
such that n=Y, n".

We are interested in evaluating the performance of hospital & rel-
ative to all hospitals in the system. Here, hospital /4 corresponds to
Hospital A described earlier. Performance is assessed using the over-
all hospital O = {1,..., H}, which represents the full dataset, including
hospital # itself, and corresponds to the previously defined Hospital B.
Since the analysis is repeated for each hospital A, defining the overall
hospital in this way ensures that every hospital is evaluated against a
common and comprehensive reference population, thus allowing for a
fair and consistent assessment of hospital performance.

2.3.1. Truerisk
The true risk for a hypothetical patient with covariate values x, if
treated at hospital 4, is defined as:

0, = P, (Y =1[X=x)

while the true risk for the same hypothetical patient, if treated at the
overall hospital O, is defined as:

6o(x)=Pp{Y =1|X=x}.
The causal effect for x is then defined as:

0,(x)
(X)) = ——

Bo(x)
representing the causal relative risk, where values less than one indicate
a better outcome if treated at hospital 4 compared to the overall hospital

performance.
2.3.2. Random forests estimated risk

Since these true risks are unknown, they must be estimated from
data. The hospital-specific risk predictors for 4 and O are obtained using
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RFQ trained on different datasets. The predictor for hospital 4, denoted
éh(-), is estimated from a random forest trained on hospital A’s data
Ly,. Similarly, the overall hospital predictor @O(-) is estimated using a
random forest trained on the entire dataset L.

For a hypothetical patient x, these estimators provide counterfactual
risk predictions: §,(x) represents the estimated risk if the patient x were
treated at hospital A, while 9O(x) provides the estimated risk under the
overall hospital model. The causal effect for x is then estimated as:

It is also convenient to work with the log relative risk:

log(#,(x)) = log(8),(x)) — log (8 (x))

where values less than zero indicate that patient x fares better at hospital
h on average.

2.3.3. Random forests OOB estimated risk

The previous discussion considered a hypothetical patient x, but in
practice, causal effects are provided for the training cases. To prevent
overfitting on this data, we use the out-of-bag (OOB) random forest
predictor for constructing these estimates. The OOB predictor is con-
structed by aggregating predictions from trees where a given training
point was not used in the bootstrap sample. Since each tree is trained on
a random subset of the data, approximately 37% of the observations are
excluded from each bootstrap sample and serve as OOB data. By averag-
ing predictions across these excluded trees, the OOB predictor provides
an estimate that is independent of the training point itself. This construc-
tion is a generalization of the leave-one-out cross-validation framework
[5], making it a robust method for reducing overfitting while maintain-
ing predictive accuracy.

Denoting the OOB predictor by 9Z(~) for hospital h and 9:3(-) for

the overall hospital, the causal effect for a training data point x’@ from
hospital 4 is estimated as:

A% (A
o:x™)

= PN
Oo(x’. )

(% log(#;(x{™)) = log(@;;(x\")) — log@3 ") (1)

On the other hand, for a training data point x?ih) from outside hospital
h, the causal effect is estimated as:

e m On™™) e - -
M) = ==, log(#(x{")) = log(@,(x{™")) — log(@(x{ "))
% (o (—h)
;")
(2)
Since x?ih) is not part of hospital A’s training data, it is treated as an

external test point for 9h, meaning the full sample trained estimator is
used rather than the OOB procedure.

2.3.4. Eliminating bad virtual twins: final estimated values

To be in compliance with treatment overlap, we only utilize causal
estimates from comparable virtual twins. In order to eliminate poor
matches, we use an isolation forest to compute an anomaly score that
quantifies the similarity of each observation to the training distribution
for a given hospital. Let ij,(-) be the anomaly score for hospital 4, trained
using its data £,. These scores are calibrated on the unit interval, with
lower values indicating greater deviation from the core structure of the
training data and hence poorer support.

We exclude causal estimates for which either the observed or virtual
twin falls in a low-density region of the corresponding hospital’s train-
ing distribution. Specifically, estimators (1) and (2) are used only when
ih(xgh)) < C and ih(xl(._h)) < C, where C is the anomaly score thresh-
old. In our analysis, we set C = 0.05, which corresponds to excluding
the 5 percent most anomalous observations as measured by the training
distribution for each hospital. This value was chosen as a conservative
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heuristic to reduce extrapolation risk in low-support regions, thereby
improving reliability of the causal estimates. We emphasize that C is a
tunable parameter, and its value can be modified in future applications
or subjected to sensitivity analysis as needed.

Thus, for hospital 4, we obtain causal relative risk values (similarly
log relative-risk values)

(e i, <oy, #a™) i, <) 3)

for the training data having compliant virtual twins. There can be a
maximum of »n such values, but typically this value is smaller and will
depend on the cutoff C.

2.4. Statistical analysis

Variable selection using model-free variable priority screening [16]
was implemented with the R-package varPro, available at https://
github.com/kogalur/varPro. The package also provides customized iso-
lation forest modeling which were employed for the treatment overlap
analysis. Random forest models, including RFQ, used for causal esti-
mates were performed using the CRAN R-package randomForestSRC
[11].

3. Results

Among the various adverse outcomes available in the data, we fo-
cus on operative mortality, a critical outcome of particular interest to
AQG. This choice ensures a concrete and clinically meaningful analysis,
reflecting the focus of prior work [10,23]. Below, we present the results
of this analysis, organized into subsections based on the granularity of
the findings.

3.1. Overall summary analysis

Summary results are provided conveniently in graphical format
given in Fig. 1. The top set of figures displays causal relative risk esti-
mates (3) for each hospital, stratified by overall risk, with boxplot widths
scaled to the sample size. Using the overall hospital O as a baseline, pa-
tient risk values were determined and grouped into percentiles: 0-50
(low risk), 50-75 (medium risk), and 75-100 (high risk). The “Overall”
category represents unstratified relative risk values.

The relative risk plots, akin to forest plots in meta-analyses but ro-
tated 90 degrees, use a symmetrical logarithmic scale. The distance from
1.0 to 2.0 matches that from 1.0 to 0.5, and similarly, the distance from
1.0 to 4.0 matches that from 1.0 to 0.25. This ensures an equivalent in-
terpretation above and below 1.0: values below 1.0 indicate a hospital
outperforming the average. We observe that hospitals 4 = 2,3 generally
outperform most hospitals, with their advantage increasing for high-risk
patients. Overall, these hospitals demonstrate superior performance.

The bottom set of figures displays the estimated density of the iso-
lation forest anomaly scores {i,(x;) : i =1,...,n} for each hospital h.
Smaller values indicate a lower probability of a valid virtual twin, high-
lighting potential violations of the treatment overlap assumption. Hospi-
tal 15 exemplifies this, showing a highly left-skewed density, suggesting
a substantial number of poor matches for the case study. In contrast, hos-
pital 4 = 1 serves as a good match, as its density remains low over small
anomaly scores, indicating better treatment overlap and comparability
for most of its patients.

3.2. Performance for select patient features

To further investigate differences between hospitals, Fig. 2 presents
standardized f values from an ANOVA. The analysis focuses on the
top three variables identified in the analysis filtering step: MELD Score
(Model for End-Stage Liver Disease), Number of Cardiac Procedures, and
Cardiac Status. The standardized log relative risk, defined as the log rel-
ative risk divided by the overall sample standard deviation, was used
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as the dependent variable. An ANOVA model was fit with terms for the
independent variable and hospital-specific intercepts. For the “Overal-
1” plot, only hospital intercepts were included, without an independent
variable. The displayed standardized f values represent the estimated
intercepts, providing insight into hospital-specific effects.

The standardized f values are stratified by risk, similar to the pre-
vious figure. Within each panel, hospitals are assigned a traditional
letter grade, ranging from high (A+, A, A-) to lower grades (B-, C+, C),
based on the percentile ranking of a hospital’s f value relative to other
hospitals within the same risk stratification. Thus, a grade of A in the
“Overall” low-risk group indicates hospitals that perform above average
within that group. A positive f is calibrated to indicate superior perfor-
mance relative to the baseline. However, a hospital can receive a high
grade, such as A-, even if its § value is near zero or slightly negative,
as grades are assigned based on relative rankings rather than absolute
values.

As before, hospitals h = 2,3 consistently receive the highest letter
grades. Their standardized § values are significantly larger and more
positive than those of other hospitals, both overall and across all three
independent variables.

3.3. Performance across a spectrum of features for finer resolution

To examine hospital performance at a finer patient level, Fig. 3
presents standardized f values for selected hospitals using all indepen-
dent variables identified from the analysis filtering step. The top panel
displays values for hospital 4 = 1, while the bottom panel shows values
for hospital 2 =19.

Hospital 2 = 1, a good performer with a large sample size, is immedi-
ately recognizable as all its # values are positive, with particularly large
values for high-risk patients. In contrast, hospital 4 = 19, with a smaller
sample size, exhibits a different pattern. From the top panel of Fig. 1,
we observe that while its overall performance is slightly worse than the
average hospital, it performs slightly better for high-risk patients. This
trend is mirrored in the bottom panel of Fig. 3, where nearly all stan-
dardized p values are negative (red) across groups, except for high-risk
patients, where they are mostly positive (blue).

3.4. Subgroup treatment strategies

Hospitals h = 2,3 were identified as high-performing institutions in
our analysis. Given their superior outcomes, we further examine their
relative performance in managing high-risk patients—those who stand
to benefit the most from treatment at a hospital equipped to handle com-
plex cases. Understanding how these hospitals perform for such patients
can provide critical insights into optimizing surgical care.

To investigate this, we focused on patients who underwent isolated
aortic valve replacement with more than one planned cardiac proce-
dure. This group represents a significantly high-risk population due to
their complex comorbidities, increased surgical burden, and heightened
risk of postoperative complications. Identifying the optimal hospital for
these patients could lead to substantial improvements in surgical out-
comes and overall survival.

Further restricting the analysis to those with comparable virtual
twins, we applied an ANOVA model with standardized log relative risk
as the dependent variable. Unlike our previous analysis, which compares
standardized log relative risk for a hospital against the overall average,
this approach evaluates the log relative risk between the two hospitals:

log(z,_,(x)) 1= log(65(x)) — log(6, (x).

The p coefficient is calibrated such that a positive value indicates bet-
ter mortality outcomes for hospital 4 =2 compared to h = 3, while a
negative value indicates better outcomes for hospital 4 = 3.

Fig. 4 displays the standardized g values from the ANOVA, with co-
efficients sorted from the largest positive to the largest negative for
the same variables as in Fig. 3. A clear pattern emerges: hospital h =2
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Fig. 1. Causal relative risk estimates and isolation forest anomaly scores for each hospital. The top figures present causal relative risk estimates, stratified by overall
risk and displayed as boxplots scaled to hospital size (wider boxplots indicate larger hospitals). Relative risk is categorized into percentiles: 0-50 (low risk), 50-75
(medium risk), and 75-100 (high risk), with “Overall” representing unstratified values. A symmetrical logarithmic scale ensures that values below 1.0 indicate a
hospital outperforming the average. The bottom figures display the density of isolation forest anomaly scores, where lower values suggest a lower probability of a
valid virtual twin. The thin vertical line at 0.05 is the cutoff C used to screen bad virtual twins.

generally outperforms hospital 4 = 3 for this specific population, as indi-
cated by the greater number of positive coefficients (displayed in blue).
However, several variables exhibit large negative coefficients (displayed
in red), suggesting that certain patient subgroups may experience better
outcomes at hospital 4 = 3.

Key patient characteristics influencing management strategies can
be identified by examining variables with large coefficient magnitudes
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(these being variables near the top and bottom of the figure). One such
variable is the preoperative MELD score for a patient and which was
previously identified as a top predictor in the analysis filtering step.
Originally developed to assess chronic liver disease severity and predict
survival in liver transplantation, the MELD score [17] is also a strong
predictor of postoperative complications in cardiac surgery, including
renal failure, prolonged ICU stay, and in-hospital mortality. The large
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Fig. 2. Standardized f values from an ANOVA for MELD Score, Number of Cardiac Procedures, and Cardiac Status, with standardized log relative risk as the dependent
variable. Estimates are stratified by overall risk, and hospitals are assigned letter grades (A+, A, A-, B+, B, B-, C+, C) based on their percentile ranking within each
stratification. A positive f indicates superior performance relative to the baseline. Hospitals & = 2,3 consistently receive the highest grades, with significantly larger

positive f values both overall and across the three independent variables.

positive coefficient suggests that patients with higher MELD scores fare
significantly better at hospital 4 = 2, possibly due to superior manage-
ment of comorbidities or perioperative care.

Another example is whether the patient opted for elective surgery. In
this case, we observe a large negative f value for this variable, indicating
that elective surgery patients experienced higher mortality at hospital
h = 2. This suggests that hospital # = 3 may have superior protocols or
preoperative management strategies for elective procedures, leading to
improved outcomes for these patients.

4. Discussion

A key challenge in hospital comparisons is case-mix variability. Tra-
ditional risk-adjusted outcomes assess a provider’s performance relative
to an average provider but do not ensure that hospitals treat compara-
ble patients. Recognizing this, STS reports ratings rather than rankings
to avoid misleading comparisons [22]. Our virtual twins framework
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addresses this concern directly by generating patient-specific counter-
factual predictions, allowing each patient to be compared only to their
virtual twin, an alternative version of themselves treated at a different
hospital. This ensures that hospitals are evaluated under matched case-
mix conditions, reducing bias from institutional differences.

In addition to improving fairness in benchmarking, virtual twins fit
within the broader goals of precision medicine. Because our approach
relies on predicted outcomes rather than observed adverse event rates, it
is less sensitive to small-sample noise and case-mix confounding. Com-
parisons are restricted to patients with valid matches, further enhancing
interpretability and robustness. At the point of care, these individualized
estimates could inform patient and surgeon decision-making by iden-
tifying hospitals with more favorable predicted outcomes for specific
profiles. At the system level, risk-adjusted performance can be stratified
by procedure type, patient subgroup, or institutional characteristics to
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Fig. 3. Standardized f values for hospital 42 =1 (top) and h = 19 (bottom) across all variables identified in the feature screening. Hospital 4 = 1, a large hospital with
good performance, has uniformly positive § values, with particularly high values for high-risk patients. In contrast, the smaller hospital 4 = 19 shows predominantly
negative f values (red) across groups, except for high-risk patients, where they are mostly positive (blue), reflecting its relatively better performance in this subgroup.

guide resource allocation and quality improvement. Hospitals can also
benchmark key risk factors against peers to identify strategic priorities.

As with all observational studies, our framework relies on assump-
tions that are necessary for valid causal inference but cannot be directly
verified from the data. Chief among these is the assumption of strong
unconfoundedness, which requires that all variables influencing both
treatment assignment and outcomes are adequately measured and in-
cluded in the models. Although our database contains a rich set of
preoperative and intraoperative features previously shown to be pre-

w
—_
e

dictive of surgical outcomes [10,23], unmeasured confounding remains
a potential source of bias. In particular, institutional factors such as
staffing, care coordination, or postoperative protocols, though partially
captured through hospital identifiers, may not be fully accounted for
through patient-level covariates alone. Likewise, our approach assumes
adequate treatment overlap, meaning that patients from different hos-
pitals share sufficiently similar covariate profiles to allow valid coun-
terfactual comparisons. While we employed diagnostic tools, including
variable importance screening and isolation forest analysis, to assess
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Fig. 4. Standardized f values from ANOVA modeling of high-risk patients
undergoing isolated aortic valve replacement with multiple planned cardiac
procedures. The f coefficients are sorted from largest positive to largest nega-
tive, where positive values (blue) indicate better mortality outcomes at hospital
h =2, and negative values (red) indicate better outcomes at hospital # = 3. Over-
all, hospital 4 = 2 demonstrates superior performance for this subgroup, though
certain patients exhibit better outcomes at hospital 4 = 3.

and filter poor overlap cases, the possibility of residual extrapolation
in low-density regions cannot be ruled out. As such, our results should
be interpreted as estimates of causal effects under the assumption of
no unmeasured confounding and adequate overlap, supported but not
guaranteed by the structure of the data.

While large-scale implementation presents challenges, AQG is ac-
tively working to embed virtual twins into its analytics pipeline. This
will allow the methodology to become a core component of modern
hospital quality assessment, promoting more transparent and patient-
centered evaluation across healthcare systems.

5. Conclusion

This study introduces a data-driven, patient-centered framework for
evaluating hospital performance using virtual twins methodology. By
integrating machine learning and causal inference techniques, our ap-
proach enables individualized counterfactual comparisons, moving be-
yond traditional risk-adjusted benchmarking. Virtual twins ensure eq-
uitable hospital comparisons by mitigating biases from case-mix dif-
ferences, providing a more transparent and interpretable assessment of
hospital performance.

Our methods incorporate random forest quantile classification to ad-
dress class imbalance in rare surgical outcomes and isolation forests to
assess treatment overlap, ensuring robust causal effect estimation. The
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framework is further enhanced by visualization tools that support both
high-level hospital assessments and granular patient-level insights.

Future work will refine predictive modeling, incorporate additional
clinical and institutional factors, and expand applications to broader
healthcare quality assessments. Although we focus here on hospital-level
comparisons, the same framework is readily extensible to alternative
exposures such as treatment strategies or provider types. In principle,
the structure we describe can accommodate any categorical exposure,
whether hospitals, treatments, providers, or care protocols, provided
that overlap and covariate support conditions are met. Enhanced in-
teractive visualization tools will improve accessibility and usability for
stakeholders.
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