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EXPONENTIAL POSTERIOR CONSISTENCY VIA
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Ž .Advances in Markov chain Monte Carlo MCMC methods now make
it computationally feasible and relatively straightforward to apply the
Dirichlet process prior in a wide range of Bayesian nonparametric prob-
lems. The feasibility of these methods rests heavily on the fact that the
MCMC approach avoids direct sampling of the Dirichlet process and is
instead based on sampling the finite-dimensional posterior which is ob-
tained from marginalizing out the process.

In application, it is the integrated posterior that is used in the Bayesian
nonparametric inference, so one might wonder about its theoretical prop-
erties. This paper presents some results in this direction. In particular, we
will focus on a study of the posterior’s asymptotic behavior, specifically for
the problem when the data is obtained from a finite semiparametric
mixture distribution. A complication in the analysis arises because the
dimension for the posterior, although finite, increases with the sample
size. The analysis will reveal general conditions that ensure exponential
posterior consistency for a finite dimensional parameter and which can be
slightly generalized to allow the unobserved nonparametric parameters to
be sampled from a generalized Polya urn scheme. Several interesting´
examples are considered.

Ž � .1. Introduction. Let f x � , y denote a density taken with respect to a
Ž .�-finite measure � on a measurable space XX , BB and let � denote its� , y

Ž .distribution, where � , y are parameters with real valued parameters in
� � YY � � d1 � � d2. Notice that X, � or y can be either univariate or
multivariate. Let G be some unspecified finite mixing distribution on YY0
with an unknown number of support points k � �, unknown distinct support

Ž .values y , . . . , y and unknown mixing probabilities p � p , . . . , p �,0, 1 0, k 0 0, 1 0, k
� k Ž .where p � 0 and Ý p � 1 we will also write y � y , . . . , y � for0, j j 0, j 0 0, 1 0, k

�the support vector . Then

k

� � �1 f x � f x � , G � f x � dG y � p f x � , yŽ . Ž . Ž .Ž . Ž . Ž .ÝH0 0 0 0, y 0 0, j 0 0, j
j�1

is a finite semiparametric mixture density with respect to �.
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Write X n for the data X , . . . , X and x n for the observed values x , . . . , x1 n 1 n
�this same superscript notation will also be used to represent other sequences

n Ž . n �of variables such as y � y , . . . , y � YY , for example . We assume that1 n
X , . . . , X are sampled independently from the distribution � having the1 n 0

Ž .finite semiparametric mixture density 1 . A popular nonparametric Bayesian
method for studying this problem is to assume that the mixing variables
Y , . . . , Y are conditionally independent given the distribution G, where G is1 n

Ž .distributed as a Dirichlet process Ferguson, 1973 . It is also a standard
practice to assume that the data are conditionally independent given the

n Ž .parameters and that the parameters Y � Y , . . . , Y and � are indepen-1 n
dent r.v.’s. Therefore, writing � for the prior distribution of � and � n for� Y

n Ž n.the prior distribution of Y , the joint distribution for � , Y factorizes as
� � � � � n. Furthermore, by integrating out G, and by the assumption of� Y
conditional independence, the Bayesian model implies the following hierar-
chical structure on the data:

�X � , Y � � , i � 1, . . . , n ,Ž .i i Ind � , Yi2Ž .
� , Y n � � � � � � n .Ž . � Y

The main goal of this paper will be to study the asymptotic behavior of the
Ž .posterior for � from the Bayesian hierarchical model 2 . In particular, the

paper will present general conditions which ensure that the posterior for �
lies in each open neighborhood of � with exponentially high probability. The0
analysis will also slightly generalize the method discussed above in which
Y , . . . , Y are assumed to be a sample from the Dirichlet process prior by1 n

Ž .allowing Y , . . . , Y to be a not necessarily exchangeable sample from a1 n
Žgeneralized Polya urn scheme an exact description of this mechanism is´

.given in Section 2 .
Ž .The reader should note carefully that the posterior analysis for � in 2 will

be based only on the prior for � and the distribution � n for the Polya urn´Y
scheme. The prior for G is left unspecified and plays no direct role in our
analysis of � . Furthermore, by focusing only on the finite-dimensional param-

Ž n. Ž .eters � , Y , we end up as a special case with the posterior that Bayesians
implicitly work with when they employ modern MCMC methods with the
Dirichet process prior. Indeed, the very success of these methods depends
upon hiding the Dirichlet process in the background while focusing instead

Ž n. �on the much simpler task of sampling the posterior of � , Y see Escobar
Ž . Ž .1994 and Escobar and West 1995, 1998 for the general method as well as

Ž . �MacEachern 1994, 1998 for a discussion of more refined MCMC techniques .
The posterior analysis presented here is based on methodology patterned

Ž . Ž . Ž .after Schwartz 1965 , Barron 1988 and Clarke and Barron 1990 . Related
Ž .material also appears in Barron, Schervish and Wasserman 1998 , and

Ž .Wasserman 1998 . These papers all consider the problem of exponential
Ž .posterior consistency in one way or another. Schwartz 1965 discusses the

Ž .problem for a general fixed parameter space, while Barron 1988 , and
Ž .Barron, Schervish and Wasserman 1998 study nonparametric problems

Ž .with emphasis on density estimation. Clarke and Barron 1990 focus specifi-
cally on posterior consistency in parametric problems. The methods used in
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these papers can be adapted quite readily to our semiparametric problem,
which will involve the analysis of a posterior whose dimension increases with
the sample size. It is important to note, however, that although this posterior
is finite-dimensional for a fixed sample size n, the problem considered here is
still infinite-dimensional. This follows because the Bayesian inference is for a
semiparametric mixture distribution, which is infinite-dimensional when the
number of mixture points k � � is unknown, as is studied here.

So far, very little seems to be known about the posterior consistency of the
Dirichlet process in Bayesian semiparametric problems, with the exception of

Ž .recent work by Diaconis and Freedman 1993 , Ghoshal, Ghosh and Ra-
Ž . Ž .mamoorthi 1997a, b and Shen 1995 . Posterior consistency is not always

guaranteed in infinite dimensional problems. Indeed, although the relatively
rich nature of the Dirichlet process prior would suggest that it yield a
well-behaved posterior, there is a considerable amount of literature surround-
ing examples involving inconsistent posteriors. These counterexamples have

� Ž .�included nonparametric problems Freedman and Diaconis 1983 as well as
� Ž . Ž .�semiparametric problems Diaconis and Freedman 1986a, b ; Doss 1985 .

Nevertheless, we will see that the finite semiparametric mixture is an
example of an important class of models where the use of the Dirichlet

Ž .process works quite well albeit indirectly . Indeed, we will see that the
posterior for � is exponentially consistent under fairly general conditions,
and that, furthermore, this consistency holds in the more general case when
the Y n are sampled from a generalized Polya urn scheme.´

The main result describing exponential consistency is given in Theorem 3
of Section 3. Section 4 contains several examples. Sections 5�7 contain the
proof of three lemmas that are needed in establishing Theorem 3. Several
places in these proofs use the relative entropy measure of information
Ž .sometimes called the Kullback�Leibler divergence number . To remind the
reader, if � and � are two distributions, then the relative entropy from � to

Ž . Ž .� is defined as K �, � � � log d��d� , where d��d	 and d��d	 are the
densities of � and � taken with respect to a common dominating measure 	.
Notice that the definition makes use of the linear functional notation for
expectation. This same notation will be used throughout the paper when
convenient, although more traditional notation will be used as well, as in
Ž . Ž .K �, � � H log d��d� d�. Also, as convenience dictates, sets will some-

times be used as indicator functions in order to facilitate the use of the linear
functional notation.

2. Generalized Polya urn scheme. Let Y �, . . . , Y � be a sequence of´ 1 n
i.i.d. r.v.’s with sample space YY and with distribution H whose density h is
taken with respect to Lebesgue measure. We say that Y , . . . , Y is a sample1 n
from a generalized Polya urn scheme if it is generated in the following´
fashion:

Y � Y � ,1 1

Y , with probability 1�
 � i�1 , j�1, . . . , i�1,Ž . Ž .j ii�1�Y Y �i �½ Y , with probability 
 ,i i

3Ž .
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for i � 2, 3, . . . , n. In particular, this implies that the distribution for Y n

satisfies
n i�11 � 
i

nd� y , . . . , y � h y dy 
 h y dy 	 � y , dy ,Ž . Ž . Ž . Ž .Ł ÝY 1 n 1 1 i i i s ii � 1i�2 s�1

Ž .where � y, � is the unit measure concentrated at y.
Ž .The sequence of values 0 � 
 � 1 in 3 are probabilities which reflect howi

likely it is for a new value Y � to be introduced into the sampling scheme. Ini
particular, when

H 1Ž .
4 
 � , i � 2, 3, . . . , n ,Ž . i H 1 	 i � 1Ž . Ž .

then the resulting Y n are exchangeable and describe a sample from the
� Ž .�Dirichlet process with parameter H Blackwell and MacQueen 1973 . The

Ž . �original Blackwell and MacQueen 1973 characterization described Y as ai
sequence sampled from a normalized finite positive measure H. However, it
has now become more common to use a proper distribution for H and to

Ž .replace H 1 by a constant A � 0, usually referred to as the precision
parameter. In our treatment we will always assume that H is a proper
distribution having the density h.

A sample Y n from a Dirichlet process prior, or more generally from a
generalized Polya urn scheme, is characterized by its relatively few distinct´
values. This is one of the fundamental reasons for its success in the finite
semiparametric mixture setting. The many ties induced by the Polya scheme´
make it appear as if Y n is an i.i.d. sample from a discrete distribution.
Furthermore, the Polya scheme also ensures that Y n has enough distinct´
values necessary to encompass the k distinct values of G . In particular, the0
expected number of distinct values equals D � 1 	 Ýn 
 , which guaran-n i�2 i

� Ž .tees a steady stream of new values as n increases see also Antoniak 1974 ,
�page 1161 . However, as we will see, an important assumption for exponen-

Ž . ntial consistency will also require that D � O log n in order to suppress Yn
Ž .from having too many distinct values. Notice that by 4 the condition holds

when the sampling is from a Dirichlet process.
Ž . nThe choice for 
 in 4 ensures that a sample Y from a Dirichlet processi

is an exchangeable sequence, but this is not true in general for the general-
Ž .ized Polya urn scheme 3 . Surprisingly, the exchangeability plays a limited´

role in the exponential consistency for � , although it does simplify the
verification of conditions needed for Theorem 3. From a modeling perspective,
nonexchangeability is certainly unappealing, but the results given here show
that consistency depends more upon the Polya mechanism generating the´
right number of distinct values for Y. This seems to be more important than
exchangeability in modeling the finite mixture distribution G.

3. Exponential posterior consistency for �. The hierarchical struc-
Ž . nture 2 implies that the Bayesian marginal density for X is

n n � n nm x � f x � , y d� � , yŽ . Ž .Ž .Hn n
�YY
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and that the posterior distribution for � is defined by
n � n n

nH f x � , y d� � , yŽ .Ž .U�YYn n�� U � YY x � ,Ž . nm xŽ .n

for each U in the Borel �-algebra for �.
Ž � . Ž .Note. We will always assume that f x � , y is measurable in x, � , y . Also,

here we are using a variation of the superscript notation discussed in the
n Ž n.introduction. For example, f or f x , represents the true joint density for0 0

X n with distribution � n, while0
n

n n� �f x � , y � f x � , yŽ . Ž .Ł i i
i�1

Ž n � n. nis the joint density for X � , y with joint distribution � � � � ��� �� , y � , y1

� .� , yn

The main goal of the paper will be to show that the posterior for �
concentrates on each open neighborhood of � with high probability. That0
is, for each  � 0, we will show that � lies outside the open set � �

� � � 4 Ž� : � � � �  with exponentially small posterior probability see Theo-0
.rem 3 for a precise statement . In particular, establishing the exponential

posterior consistency in the finite mixture problem will depend upon showing
that the posterior odds satisfies the inequality

n n n � n n� nH f X � , y d� � , y� � � YY X Ž .Ž .Ž . 
 �YY 5 � � exp r�Ž . Ž .nc n n n n n� �ž /c n� � � YY X H f X � , y d� � , yŽ .Ž .Ž . 
 �YY

Ž n.with small probability with respect to � . Here r � 0 and � � 0 is the0 n
exponential convergence rate satisfying

� � O n and ��1 log n � o 1 .Ž . Ž .n n

Ž . nThe integrals in 5 represent the Bayesian marginal densities for X
c Žwhen � is constrained to the sets � and � numerator and denominator, 

. Ž .respectively . In verifying that 5 occurs with small probability, we follow the
Ž .approach used in Clarke and Barron 1990 , which is to compare each of the

constrained Bayesian marginals to the true joint density f n. When the prior0
density for � is positive and continuous at � , and the modified Polya´0
sampling scheme is ‘‘rich enough,’’ we will see that the joint density matches
the Bayesian marginal constrained to � . If the true model � n can be 0
distinguished uniformly well from alternatives � n for � � � , then the� , y 

marginal constrained by �c will be exponentially smaller than the joint

density. In comparing the behavior of each of these marginals to f n, we will0
Ž .be led to the inequality 5 .

The conditions needed for the comparison involving the marginal con-
strained by � are as follows.

CONDITION C1.

Ž .i � is an interior point of � and y is an interior point of YY , for0 0, j
j � 1, . . . , k.
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Ž . � � Ž � .ii For a.a. x � , the first and second partial derivatives of log f x � , y0
with respect to � and y exist and are continuous in some open neighborhood
of � and some open neighborhood of y , for j � 1, . . . , k.0 0, j

Ž . Ž .iii The partial derivatives in ii can be bounded in absolute value by a
2Ž .square integrable function M � LL � .0

Ž . � Ž � . �iv � log f x � , y � �, for j � 1, . . . , k.0 0 0, j

CONDITION C2.

Ž .i � is absolutely continuous with respect to Lebesgue measure with a�

density that is positive and continuous at � .0
Ž .ii The density h is taken with respect to Lebesgue measure and is

positive and continuous at y , for j � 1, . . . , k.0, j
Ž . n Ž .iii Ý 
 � O log n .i�2 i

Condition C1 encourages a type of continuity for finite semiparametric
mixtures in a neighborhood of � . The precise form of continuity is given in0
Lemma 4 of Section 5 and is expressed in terms of the relative entropy.

Ž .Condition C2 i ensures that the prior density for � is well behaved locally
Ž . Ž .around � , while conditions C2 ii and iii ensure that the Polya urn scheme´0

n Ž .can generate Y values which approximately mimic values sampled from
Ž .G . In particular, Condition C2 iii is required so that the urn scheme is0

Žhindered from generating too many distinct values of Y remember that G is0
.a finite discrete distribution .

Conditions C1 and C2 will show that the marginal for X n, when � is
restricted to an open set around � , ‘‘locally matches’’ the joint density f n.0 0
Lemma 1 makes this assertion more precise. Its proof is given in Section 6.

LEMMA 1. If Conditions C1 and C2 hold, then for each r � 0,

n n � n n n� f X � , y d� � , y � exp �r� f XŽ . Ž . Ž .Ž .H0 n 0½ 5n
 �YY6Ž . 

� O ��1 log n .Ž .n

A second ingredient for consistency requires that � n can be distinguished0
exponentially well from the class

� n : � � �c � � , y � YY
�� 4� , y  n n n

� n Ž .for chosen subsets � � � and YY � YY . This is Condition C3 ii , givenn n
below, which amounts to establishing the existence of a uniformly exponen-

Ž .tially consistent test UEC test between a simple hypothesis and a composite
alternative hypothesis. Although this condition can sometimes be checked

Ž .directly in a particular problem see the first example in Section 4 , it is
usually easier to tackle the simpler problem of verifying the existence of a

Ž .uniformly consistent test UC test . This is stated as the alternative Condi-
Ž . ntion C3 ii * and requires that the Y are exchangeable.
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CONDITION C3.

Ž . � ni For each  � 0 there exists a sequence of subsets � � YY � � � YYn n
and an r � 0 so that eventually0

a � �  1 � exp �r � and b � n YY
�  1 � exp �r � .Ž . Ž . Ž . Ž . Ž . Ž .� n 0 n Y n 0 n

Ž . c cii Let � � � � � . Then for each  � 0 there exists sets A so that , n  n n
eventually, uniformly,

� n A  1 � exp �r � ,Ž . Ž .0 n 0 n

� n A � exp �r � where � , y n � �c � YY
� .Ž . Ž . Ž .� , y n 0 n  , n n

Ž . nii * The sample Y is exchangeable and for each 0 � � � 1 there exists a
Ž .test 0 � � � � X , . . . , X � 1 so that eventually, uniformly,n n 1 n

� n �  1 � � ,Ž .0 n

� n � � � where � , y n � �c � YY
� .Ž . Ž .� , y n  , n n

Ž .When Condition C3 holds, Lemma 2 which is given below states that the
marginal for X n cannot properly match f n when � is constrained by �c.0 

Ž .Condition C3 i is included in order to be able to restrict attention to
increasing subsets of � � YY n when constructing the required UEC or UC
test. In particular, the choice for YY

� will depend upon the model undern
study, and will typically be chosen to exclude values for y n which can make
the likelihood at � � � look similar to the value at � . The Polya urn scheme´0 0
should therefore sample values from these excluded y n values with small

Ž .Ž .probability, as indicated by Condition C3 i b . Remark 2 gives a simple
Ž .Ž .method for checking Condition C3 i b in certain cases. Lemma 2 also

Ž .provides a rate of comparison for the case when Condition C3 ii * is used in
Ž .place of Condition C3 ii . The result follows, using a straightforward modifi-

Ž .cation of ideas given in Schwartz 1965 , and will rely on the exchangeability
of Y n. The proof of the lemma is deferred until Section 7.

Ž . Ž .LEMMA 2. If Condition C3 i , ii holds, then there exists an r � � 0 such
that

n n � n n n �17 � f X � , y d� � , y  exp �r �� f X � O n .Ž . Ž . Ž . Ž . Ž .Ž .H0 n 0½ 5nc
 �YY

Ž . Ž . Ž .Alternatively, under Condition C3 i � ii *, the expression 7 holds with �n
Ž �1 . Ž �1 .replaced by � 	 and O n by O n	 , where n	 is the largest integer lessn 'than or equal to n .

Conditions C1, C2 and C3, coupled with Lemmas 1 and 2, lead to our main
result, which states that the posterior probability of �c is exponentially

small. Observe carefully that the weaker condition of a UC test leads to a
slower exponential rate of convergence.
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Ž . Ž .THEOREM 3. Suppose that Conditions C1, C2 and C3 i and ii hold.
Then for each  � 0, there exists an r � 0 so that

n c n � n �18 � � � � YY X  exp �r� � O � log n .� 4Ž . Ž .Ž . Ž .0  n n

Ž . Ž .Alternatively, under Conditions C1, C2 and C3 i � ii *, the posterior rate
Ž .8 holds with � replaced by � .n n	

Ž .PROOF. In order to prove 8 , it suffices to show that the probability of the
Ž .event 5 ,

n n � n n� f X � , y d� � , yŽ .Ž .H0 ½ n
 �YY

n � n n� exp r� f X � , y d� � , y ,Ž . Ž .Ž .Hn 5nc
 �YY

Ž .is of the same order as the right-hand side of 8 for some r � 0. Bound this
probability using the upper bound

n n n � n n� exp �r� � f X � exp r� f X � , y d� � , yŽ . Ž . Ž . Ž .Ž .H0 n 0 n½ 5nc
 �YY9Ž . 

	 � n B ,Ž .0 n

Ž .where 0 � r � � r � for the r � in Lemma 2 and where

n � n n nB � f X � , y d� � , y � exp �r � � f X .Ž . Ž . Ž .Ž .Hn n 0½ 5n
 �YY

nŽ . Ž �1 . Ž .By Lemma 1, � B � O � log n , while the first term in 9 , when0 n n
reexpressed, equals

n n n � n n10 � exp � r 	 r � � f X � f X � , y d� � , y .Ž . Ž . Ž . Ž .Ž .Ž . H0 n 0½ 5nc
 �YY

Ž . Ž . Ž �1 .By Lemma 2 under Condition C3 i , ii , this is of order O n when
nŽ .r � r � � r �. But this is smaller than � B , which becomes the dominating0 n

Ž �1 . Ž . Ž .term O � log n due to � � O n . This verifies 8 . Under Conditionn n
Ž . Ž . nŽ .C3 i � ii *, substitute � , for � and deduce by Lemma 1 that P B �n	 n 0 n
Ž �1 . Ž . Ž �1 .O � log n and by Lemma 2 that 10 is O n	 where r � r � � r �. �n	

REMARK 1. Inference in the semiparametric model is more difficult than
in the classical parametric problem, and so it is not surprising that the rate
given in Theorem 3 with � � n is slower than that given in the classicaln
problem. In both cases, the posterior probability of �c is exponentially small,

Ž . Ž �1 .exp �rn , but for the semiparametric model this occurs at a O n log np
Ž �1 . �rate by Theorem 3, while for the parametric case the rate is O n Clarkep

Ž . �and Barron 1990 , Proposition 6.3 .



´POLYA URN SCHEMES IN SEMIPARAMETRIC MIXTURES 2165

Ž �1 .The � � n, O n rate is the observed rate in the classical problem,n p
which is unlikely to be improved upon in the semiparametric mixture setting.

Ž �1 .Therefore, we might suspect that � � n with an O n log n rate is then p
lower bound to the rate, with the log n term representing the loss of infor-
mation associated with studying the infinite-dimensional problem. However,
whether this rate is achievable in each model is still unclear, and, in fact, a
different rate was seen in each of the examples given in Section 4.

REMARK 2. It follows straightforwardly that H is the marginal distribu-
Ž . �tion for each Y defined in the Polya scheme 3 . When YY is a product of sets´i n

n Ž .Ž .YY � YY � ��� � YY , Condition C3 i b can be easily checked by showing thatn n n
Ž . Ž .H YY  1 � exp �r� for some r � 0. This is a simple consequence ofn n

Bonferroni’s inequality,
n

�
n � 4� YY  1 � n 	 � Y � YY � 1 � n 	 nH YY ,Ž . Ž .ÝY n i n n

i�1

Ž .which is larger than 1 � exp �r � for some r � 0.0 n 0

Ž .REMARK 3. The assumption of exchangeability in Condition C3 ii * can be
� n Ž . Ž .removed when YY is a product of sets YY where H YY  1 � exp �r� forn n n n

Ž .Ž .some r � 0. Note that by Remark 2 this will also verify Condition C3 i b .

4. Examples of exponential posterior consistency. Here we present
several important examples of finite semiparametric mixtures for which the
exponential posterior consistency in Theorem 3 holds.

Ž .EXAMPLE Rasch semiparametric mixture . For the interested reader, an
overview of the Rasch model, as well as further references to other articles,

Ž .can be found in Lindsay, Clogg and Greggo 1991 . Briefly, though, the Rasch
model is an exponential model used in modeling 0�1 binary outcomes. One of
its many important uses is in item response studies where each individual i
elicits a binary response to each of L  2 different items or questions. If Xi, l
is the 0�1 binary response for individual i to question l, then X has thei, l
conditional density

exp � 	 y xŽ .Ž .l i i , l
�f x � , y �Ž .i , l i 1 	 exp � 	 yŽ .l i

Ž .for i � 1, . . . , n and l � 1, . . . , L. Here � � � , . . . , � is the vector of item1 L
response parameters measuring item difficulty, while Y � y is the uniquei i
ability parameter for individual i. It is assumed that the X are condition-i, l
ally independent, given the item difficulty parameter � and the individual
parameter y .i

A useful method for modeling heterogeneity among individuals is to as-
sume that the Y are independent random variables with an unknown finitei

� Ž .discrete distribution G see Lindsay, Clogg and Greggo 1991 for examples0
�and motivation . Such an assumption implies that the response values have a
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Ž .finite semiparametric mixture density. In particular, if X � X , . . . , Xi i, 1 i, L
is the vector of binary responses for individual i, then the X are independenti
r.v.’s with the Rasch semiparametric mixture density.

k L k

� � �f x � , G � p f x � , y � p f x � , y .Ž . Ž . Ž .Ý Ł Ýi 0 0, j i , l 0, j 0, j i 0, j
l�1j�1 j�1

A simple method to ensure that � is identified is to constrain � � 0 to act asL
a baseline, although this will not guarantee identification for the mixing
distribution G . Nevertheless, even though G is unidentified, Lindsay, Clogg0 0

Ž .and Greggo 1991 show that one can still apply nonparametric maximum
likelihood methods to estimate � properly and, to a lesser extent, recover
some partial information about the unknown mixing distribution. Here we
will show that the Bayesian method also leads to a useful method for
studying � . In particular, we will see that the posterior for � is exponentially
consistent.

L�1 � 4Under the baseline parameterization, � � � � 0 , while YY � � is
unconstrained. Condition C1 of Theorem 3 holds straightforwardly, while

ŽCondition C2 is satisfied by the appropriate choice of prior e.g., when � and�

.h are positive continuous densities . Therefore, in verifying the conditions for
Theorem 3, the only tricky part will be in deriving the uniform test required
by Condition C3. In this example, very little additional work is needed in
constructing a UEC test instead of a UC test. Therefore, we will verify

Ž .condition C3 ii in the proof of exponential consistency.
The method for constructing the UEC test involves conditioning on the

Ž . Lsufficient statistics S � S X � Ý X , for i � 1, . . . , n. If � denotesi i l�1 i, l X � S, �

Ž .the conditional distribution for X � S, � , then � has the conditionalX � S, �

density
exp � �xŽ .

f x � s, � � ,Ž .
Ý exp � �xŽ .� x : sŽ x .�s4

which is independent of y by sufficiency. Notice that the density equals one
when s equals zero or L, which occurs only for those observations which are
all equal to zero or all equal to one. We will avoid these observations because
they provide no information for � , and will instead base our UEC test on the
discordant observations only. Indeed, it happens that the analysis can be
simplified even further, by only having to consider those observations Xi
where S � 1.i

Let e denote the vector in � L whose lth coordinate equals one and is zerol
n � 4elsewhere. Also, let W � Ý S � 1 record the number of observationsn i�1 i

with S � 1. Then our UEC test is based on the modified empirical measurei
ˆ ˆ nŽ . Ž � .� � � � � X defined byn n

� 4e � B , if W � n	1 nnˆ �� B X �Ž .n �1 n½ � 4W Ý X � B , S � 1 , otherwise,n i�1 i i

Ž EE . � 4over the measurable space EE, 2 where EE � e : l � 1, . . . , L . Thus whenl
ˆW  n	, � is the empirical measure based on only those observations Xn n i
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ˆ Žfor which S � 1, while for W � n	, � is the degenerate measure at e thei n n 1
.choice for e is purely arbitrary and plays no special role in the analysis .1

For each � � 0, let

CC � � : K � ,� � � , � � �� 4Ž .� X � S�1, � X � S�1, � X � S�1, � 0

Ž EE .be a set of measures on EE, 2 . Then CC is a completely convex set of�

� Ž . �measures Csiszar 1984 , Definition 2.3 . Our test will be the indicator set´
ˆ ˆ� 4A � � � CC , which records whether � is a member of CC . In verifyingn n � n �

that this is a UEC test, we will show that A has exponentially largen
probability under � n and exponentially small probability, uniformly, over the0

� Ž n. c n4nset of alternatives � : � , y � � � YY .� , y 

No measure in CC puts mass 1 at e . Therefore, conditioning on Sn �� 1
Ž .S , . . . , S ,1 n

ˆn n� A � � � � CC , W  n	Ž . � 4� , y n � , y n � n

ˆn n n n� � � � � CC , W  n	 .� 4S �� , y X � S , � n � n

11Ž .

While integrating over Sn, we need only consider those values of Sn � sn for
which W  n	. For a fixed one of these sn values, the inner expectation ofn
the last expression is evaluated over the product space formed by the Wn

Ž n � n .values of X s , � for which s � 1. These values are i.i.d. from � ,i X � S�1, �

�Ž . �which allows us to exploit an inequality of Csiszar 1984 , Theorem 1 due to´
� Ž .� n nthe convexity of CC also see Barron 1989 . Thus, for each fixed S � s�

Ž .value, the inner expectation in 11 is bounded by

12 exp � K CC , � � exp �n	K CC , � ,Ž . Ž .Ž . Ž .Ý � X � S , � � X � S�1, �i iž /
� 4i , s �1i

where

K CC , � � inf K �, � .Ž . Ž .� X � S�1, � X � S�1, �
��CC�

By setting � � 0 we have ensured that � is identified in � . Hence, byL X � S�1, �

the continuity in � ,

K � , � � 0 if and only if � � � .Ž .X � S�1, � X � S�1, � 00

Therefore, for a small enough � � 0 there exists a � � � 0 so that
Ž . c Ž . Ž .K CC , � � � � for each � � � . Hence, from 11 and 12 ,� X � S�1, � 

13 � n A � exp �� �n	 for � , y n � �c � YY n .Ž . Ž . Ž . Ž .� , y n 

Ž .Similar reasoning as in 11 shows that

n ˆn n n14 � A � � � � � CC , W  n	 .Ž . Ž . � 40 n S �� , G X � S , � n � n0 0 0

� 4 � 4Let Z � X � e and � � � X � e be its expectation, for l �i, l i l 0, l X � S�1, � i l0

1, . . . , L. Then for a small enough � � � 0, the inner expectation on the
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Ž .right-hand side of 14 is larger than

n n� Z � � � � � W for l � 1, . . . , L ,Ž .ÝX � S , � i , l 0, l n0½ 5
� 4i : S �1i

Ž .where W  n	. The Z variables are i.i.d. Bernoulli � r.v.’s undern i, l 0, l
� Ž .� . Therefore, by Bennett’s inequality Shorack and Wellner 1996 ,X � S�1, � 0 �page 855 , each of the L probabilities in the previous expression will be

Ž .larger than 1 � exp �Cn	 for some C � 0. Hence, the inner expectation in
Ž . n14 occurs with exponentially high probability, uniformly over values for S

Ž .with W  n	. Conclude from this and 13 that A is a UEC test for � � n	n n n
Ž �1 .with the rate O n	 log n .p

Ž .EXAMPLE Weibull semiparametric mixture . There has been some recent
interest in studying the relationship between identification constraints for Y
and inference for � in the Weibull semiparametric mixture. This research has
mostly focused on how tail bounds on Y translate into rates of estimation

Ž .for � . Heckman and Singer 1984 used a moment constraint on Y to verify
consistency using nonparametric maximum likelihood estimation, while

Ž . Ž .Honore 1990 and Ishwaran 1996b constructed estimators having polyno-´
mial rates under more stringent moment conditions. An exact relationship
between the rate of estimation for � and tail bounds on Y is given in

Ž .Ishwaran 1996a . As we will see, the behavior of Y will also play a role in
the Bayesian approach, with the exponential posterior consistency for �
depending upon the tail behavior of the distribution of H used in the Polya´
urn scheme.

For convenience, we will work with a log-transform of the Weibull semi-
parametric mixture. Therefore, we will consider the i.i.d. r.v.’s

1��W 1i
X � log � log W � log Y ,Ž .i i iž /Y �i

Ž . Ž .where W � exp 1 are independent of Y � G . Hence, X � � , y has thei i 0
conditional density

f x � � , y � y� exp � x � y exp � x where x � � and � , y � �	� �	.Ž . Ž . Ž .Ž .
Ž .In applying Theorem 3, we will verify Condition C3 ii * by constructing a

UC test between � n and0

� n : � � �c , y � YY
� ,� 4� , y  n n

� n � �� � 4where YY will be the product of sets YY , with YY � n � Y � n chosenn n n
to control the tail behavior of Y. Later we will see that an appropriate choice
for 2� is �� � 1. The UC test will be based on the indicator set0

n
�1A � K � Z � K ,Ýn 1 i 1½ 5

i�1
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� Ž . 4where Z � X � �log K n �� are Bernoulli r.v.’s and K , K are positivei i 2 0 1 2
constants. By choosing K large enough and K small enough, we can make1 2

nŽ . Ž .n� A arbitrarily close to one and � A arbitrarily small, uniformly0 n � , y n
over �c � YY

�. n
Checking Conditions C1 and C2 is straightforward. Therefore, we can

Ž .Ž . �proceed to Condition C3. By Remark 2, Condition C3 i b holds for � � nn
Ž . Ž � .when H YY  1 � exp �rn for some r � 0. This condition is easily satis-n

fied by many continuous densities, and so we will assume it is true here. To
Ž . Ž n. c �

ndetermine the value of � A over � , y � � � YY , we will consider the� , y n  n
two cases when �  � 	  and � � � �  .0 0

When �  � 	  , Markov’s inequality gives the bound0

n n
�1

n n15 � A � � Z  K � K � Z .Ž . Ž . Ý Ý� , y n � , y i 1 1 � , y ii½ 5
i�1 i�1

However,
���� 016 � Z � 1 � exp �y K n .Ž . Ž .Ž .� , y i i 2i

Ž �Ž1 	� ..By 2� � �� , this is less than 1 � exp �Cn for some C � 0 when0
Ž .y � YY and �  � 	  . Therefore, the right-hand side of 15 is uniformlyi n 0

Ž .o 1 .
n � Ž .Now suppose that � � � �  . If 	 � Ý � Z , then 	  Cn by 160 n i�1 � , y i ni

Žand our choice for � . Hence, for � � � �  there exists some C � 0 a generic0
.constant such that

n n
�

n n n17 � A � � Z � 	 � K � 	 � � Z  C	 ,Ž . Ž . Ý Ý� , y n � , y i n 1 n � , y i n½ 5 ½ 5
i�1 i�1

� �where Z � Z � � Z . But by Bennett’s inequality Shorack and Wellneri i � , y ii
Ž . � Ž .1996 , page 855 , the right-hand side of 17 is no larger than

2C	Ž .n �2 exp � � 2 exp �Cn uniformly.Ž .ž /2	 1 	 C�3Ž .n

Ž . Ž n. c �
nTherefore, � A is arbitrarily small, uniformly over � , y � � � YY .� , y n  n

To choose K and K , note that1 2

Y �0
� Z � G 1 � exp � � 1 	 o 1 ,Ž .Ž .0 i 0 ž /K n n2

Ž . n Ž .where � � G Y �K � 0. Therefore, Ý Z � Poisson � under � . Hence0 0 2 i�1 i 0 0

� n A � � K�1 � Poisson � � K ,Ž . Ž .� 40 n 1 0 1

for each noninteger K � 1. By choosing K large enough and K small1 1 2
enough, we can make the right-hand side arbitrarily close to one. This verifies

Ž . Ž .that A is a UC test and establishes Condition C3 i � ii *. Consequently,n
� Ž �� .Theorem 3 can be applied with � � n	 for the rate O n	 log n .n p

Note. Here � depends upon  and therefore the size of the neighborhood
around � .0
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Ž .EXAMPLE Paired exponentials . Another interesting example is the semi-
Ž .parametric paired exponential model studied by Lindsay 1985 . This model

Ž . Ž Ž ..arises through data X � X , X � W �Y , W � � Y , where W , Wi i, 1 i, 2 i, 1 i i, 2 i i, 1 i, 2
Ž .are independent exp 1 r.v.’s, independent of Y � G . The parameter � isi 0

interpreted as the ratio of the hazard rates of a sample of paired exponential
variables.

Ž .The conditional density of X � � , y equalsi i

f x � � , y � y exp �y x � y exp �� y x for x � �	� �	,Ž . Ž . Ž .i i i i i , 1 i i i , 2 i

Ž . 	 	where � , y � � � � . Verifying Conditions C1 and C2 is straightforward.i
Ž .In verifying Condition C3 ii , one can simplify the problem by constructing a

UEC test based on the transformed data

X � Wi , 1 i , 1
Z � � , i � 1, . . . , n.i X Wi , 2 i , 2

By transforming the data, the construction of the UEC test is made simpler
because it will only require distinguishing � exponentially well from � ,Z �� Z ��0

over � � �c. The methodology for finding such a test is fairly straightforward.

�Ž .For example, apply the methods in Clarke and Barron 1990 , Proposition
�6.2 . Doing this will show that the posterior is exponentially consistent with

Ž �1 .� � n for the rate O n log n .n p

5. Continuity at � . Lemma 1 asserts a type of local matching between0
the Bayesian marginal and the true joint density. The lemma is essential in
the proof of the exponential consistency stated in Theorem 3 and relies on a
form of continuity for finite semiparametric mixtures at the true mixture � .0
This type of continuity can be expressed in terms of the relative entropy and

Ž .depends upon regularity conditions for the density f x � � , y , such as those
expressed in Condition C1. Here we give a statement and a proof of this local
continuity. The proof of Lemma 2 will be given in Section 6.

LEMMA 4. Suppose that Condition C1 holds and that � � YY k is an n
Ž k .shrinking open neighborhood of � , y and PP a set of probability vectors0 0 n

shrinking to p . Let � k be the distribution for the mixture density0 � , y , p

k
k� �q x � , y , p � p f x � , yŽ . Ž .Ý j j

j�1

k
k kwhere � , y � � � YY , p � 0, p � 1.Ž . Ýj j

j�1

18Ž .

Then, uniformly over � � YY k � PP ,n n n

2k k
k19 K � , � � O � � � , y � y , p � p .Ž . Ž . Ž .ž /0 � , y , p 0 0 0
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Furthermore,

20 K � , � � �Ž . Ž .0 � , yj

Ž .uniformly over � , y values in the neighborhood of Condition C1, for j �j
1, . . . , k.

Ž .PROOF. First, let us prove 19 . By definition, the relative entropy equals

f XŽ .0
kK � , � � � log .Ž .0 � , y , p 0 kž /�q X � , y , pŽ .

Ž k . Ž k .We can assume that � , y is close enough to � , y so that Condition C10 0
Ž .can be applied. Therefore, by Condition C1 ii , the first- and second-order

Ž � .partial derivatives for f x � , y exist for the � and y values of interest for
� �a.a. x � . Hereafter, ignore the set with measure zero where the derivatives0

Ž k k .may not exist. With � � � � � , y � y , p � p �, a two-term Taylor series0 0 0
Ž k .expansion around � , y , p gives0 0 0

f xŽ .0 2 k� �21 log � � �� x 	 � �V x � 	 � r x , � , y , p ,Ž . Ž . Ž . Ž .0 0kž /�q x � , y , pŽ .
where � is the vector of first-order partial derivatives and V is the matrix of0 0

Ž k .second-order partial derivatives, both evaluated at � , y , p . The remain-0 0 0
der term is defined by

2 k k� �� r x , � , y , p � � � V x , � , y , p � V x � ,Ž .Ž . Ž . 0

Ž k .where V x, � , y , p is the matrix of second-order partial derivatives evalu-
Ž k . Ž k .ated at some point between � , y , p and � , y , p .0 0 0

Ž .By Condition C1 iii , each element in V can be bounded in absolute value
2Ž .by an LL � function. For example, consider an element such as0

� 2 f xŽ .0
log kž /�� � q x � � , y , pŽ .s l

k 2��1k� �q x � � , y , p p f x � � , yŽ . Ž .Ý j j�� �s lj�1

k k� ��2 
k	 q x � � , y , p p f x � � , y p f x � � , y .Ž . Ž . Ž .Ý Ýj j j j��� ��s lj�1 j��1

Ž k . Ž .Because q x � � , y , p  p f x � � , y for each j, the right-hand side can bej j
bounded in absolute value by

2k k� � �
log f x � � , y 	 log f x � � , y log f x � � , yŽ . Ž . Ž .Ý Ýj j j�� � �� ��s l s lj�1 j�1

k k� �
	 log f x � � , y log f x � � , y .Ž . Ž .Ý Ýj j��� ��s lj�1 j��1
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Ž .By Condition C1 iii , this can be bounded by the � -integrable function0
Ž 2 . 2kM 	 k 	 k M . The other terms in V can be handled in a similar way

Žkeeping in mind that the p are close enough to p to ensure that they arej 0, j
.bounded away from zero . Therefore, by the dominated convergence theorem
Ž . � Ž .� Ž k .and the continuity of V x, � , � , � Condition C1 ii , � r X, � , y , p � 0 as0

� � 0.
Ž .Taking the � -expectation of the right- and left-hand sides of 21 gives0

� � 2
kK � , � � � � �� 	 � � �V � 	 o � .Ž . Ž . Ž .Ž .0 � , y , p 0 0 0 0

Ž .Both � �� and � �V � must be integrable by Condition C1 iii , which means0 0
Ž .that � � �� equals zero or it is the dominating term as � � 0. However,0 0
Ž k . Ž .because � , y is an interior point, it must be the case that � � �� � 0,0 0 0 0

Ž .otherwise the left-hand side a positive distance would be negative for
certain values of � .

Note. The components of � �� related to p must have zero expectation,0
because

�
� p � p � log q X � � , y , pŽ . Ž .0 0 0 0 0� pj j�1, . . . , k

k

� p � p f x � � , y d� x � 0.Ž . Ž .Ž .Ý Hj 0, j 0 0, j
j�1

Thus,

� � 2 � � 2
kK � , � � � � �V � 	 o � � O � uniformly.Ž . Ž . Ž .Ž .0 � , y , p 0 0

Ž .To prove 20 , first use the bound

k

22 K � , � � � log f X � � , y 	 � log f X � � , y .Ž . Ž . Ž .Ž . Ý0 � , y 0 0 j� , 0 0 jj
j��1

Ž .The sum on the right-hand side is finite by Condition C1 iv . To work out the
remaining term, apply a one-term Taylor series expansion to the integrand
� Ž .�this is justified by Condition C1 ii :

log f x � � , y � log f x � � , y 	 � � � , y � y �� x , � , y ,Ž . Ž . Ž . Ž .j 0 j , 0 0 j j , 0 j

Ž . Ž .where � x, � , y is the vector of first-order partial derivatives of log f x � � , yj j
Ž . Ž .evaluated at some point between � , y and � , y . This term can bej 0 0, j

Ž .bounded by a � -integrable function using Condition C1 iii . From this and0
Ž .Condition C1 iv , deduce that the Taylor series expansion is uniformly inte-

Ž .grable over the neighborhood of � , y values. Therefore, the right-hand sidej
Ž .of 22 is uniformly finite. �

6. Locally matched marginal. This section provides a proof of Lemma
1 and makes use of the local continuity expressed in Lemma 4 of Section 5.



´POLYA URN SCHEMES IN SEMIPARAMETRIC MIXTURES 2173

PROOF OF LEMMA 1. For each open set U � �, let

1
n n n n23 m x � U � f x � � , y d� � , yŽ . Ž . Ž . Ž .Hn n� UŽ . U�YY�

denote the density for the marginal when � is conditioned on � � U. Write�

Ž . Ž . nM �� U for its distribution. To verify 6 , first divide by f inside then 0
probability, invert both sides and then increase the bound by restricting � to

� � � �1�24the smaller set � � � : � � � � n . Now multiply both sides byn 0
Ž .� � , take logs and then increase the bound even further by taking the0 n

absolute value of the log ratio term involving the densities. Therefore,
Ž .the left-hand side of 6 is less than

nf XŽ .0n24 � log  r� 	 log � � .Ž . Ž .0 n � nn½ 5m X � �Ž .n n

Ž .The density for � is continuous and positive around � by Condition C2 i .� 0
Ž . Ž �d 1 �2 . Ž .Therefore, � � � O n recall that � is d -dimensional and� n 1

r� 	 log � �  C� for some C � 0,Ž .n � n n

�1 Ž . Žbecause � log n � o 1 hereafter C will be used for a generic positiven
. Ž .constant . Apply Markov’s inequality to 24 in order to obtain the upper

bound
nf XŽ .0�1 n �1 n25 C� � log � C� K � , M �� � 	 2 exp �1 ,Ž . Ž . Ž .Ž .n 0 n 0 n nnm X � �Ž .n n

where the last inequality follows by bounding the negative part of the
Ž . Ž . �log-ratio using the inequality u log u  �exp �1 this same trick is used in

Ž . Ž .�Clarke and Barron 1990 in their equation 6.3 .
Ž .To bound the relative entropy in 25 , we use a lower bound for m byn

restricting the range of integration for y n. We will restrict attention to the set
of y n values whose first k values are all different and constrained by

k k k k � � �1�2y � YY � y � YY : y � y � n for j � 1, . . . , k� 4n j 0, j

and whose last n � k values are chosen from the set of unique values
� 4y , . . . , y . That is, the last n � k values y , . . . , y are repetitions from1 k k	1 n
y k, for each y k � YY k. The key idea underlying this constraint to m is ton n
select a subset of YY n which occurs with nonnegligible probability, so that the
Y , . . . , Y values sampled from this set approximate an i.i.d. sample fromk	1 n

k Ž k k .G . In allowing only Y to be unique, we ensure that Y , . . . , Y � Y � y0 k	1 n
� 4are exchangeable r.v.’s with the discrete sample space y , . . . , y . Notice that1 k

these values lie in a shrinking neighborhood of the support points y for G .0, j 0
Ž .Call W , . . . , W a finite Polya sequence with a Polya SS distribution if W´ ´1 n 1

is sampled uniformly from the set of values SS , followed by W sampled2
� 4uniformly from SS � W , and so forth, ending with W sampled uniformly1 n

� 4 � 4from SS � W � ��� � W . In particular, when Y , . . . , Y are condi-1 n�1 k	1 n
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tioned to take only sampled values from a fixed set of y k values, then the
Ž k .conditioned sequence has a Polya y distribution. This is helpful because it´

allows us to exploit a well-known connection between finite Polya sequences´
and the Dirichlet distribution. In particular, Theorem 2.3 in Mauldin,

Ž .Sudderth and Williams 1992 implies that for the conditioned Y , there existsj
a random probability vector P such that

Y � y k , P � p � Bernoulli y k , p , j � k 	 1, . . . , n ,Ž .Ž .j ind k

P � Dirichlet 1, . . . , 1 ,Ž .k

Ž k . kwhere Bernoulli y , p is the discrete distribution with support y andk
Ž .probability vector p k-dimensional .

Therefore, by conditioning on y k and P � p and by restricting the values
for y n as described above, Y , . . . , Y must have the same distribution ask	1 n
an i.i.d. sample from a discrete distribution with support y k and probability
vector p. In particular, by restricting attention to our constrained set of Y n

values, we obtain the lower bound

m x n � �  C� d� � dH k y k f x k � � , y kŽ .Ž . Ž . Ž .H Hn n n � , n kYYn

n
k� dD p q x � � , y , p ,Ž . Ž .ŁH k i

i�k	1

Ž .where � � � �� � is the prior � conditioned on � � � , the mixture� , n � � n � n
Ž . Ž .density q is defined by 18 , D is the distribution for a Dirichlet 1, . . . , 1k k

and

C� � 
 ��� 
 1 � 
 ��� 1 � 
Ž . Ž .n 2 k k	1 n

is the probability that Y , . . . , Y are repetitions from the set of uniquek	1 n
values Y k.

Restrict p to values in

k
�1�2PP � p � p , . . . , p : � p � p �� n , p � 0, p � 1Ž . Ýn 1 k j 0, j j j½ 5

j�1

Ž n . k k kŽ k .in order to bound m x � � even further. Let H � H �H YY be then n n n
k k k Ž .distribution for H conditioned on y � YY and D � D �D PPn k , n k k n

the distribution for D conditioned on p � PP . Then,k n

m x n � �  C d� � dH k y k dD p f x k � � , y kŽ . Ž .Ž . Ž . Ž .HHHn n n � , n n k , n

n
k� q x � � , y , p ,Ž .Ł i

i�k	1

� kŽ k . Ž .where C � C H YY D PP .n n n k n
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Using the previous bound, Jensen’s inequality, and then Fubini’s theorem
to interchange the order of integration, we can bound the relative entropy

Ž .in 25 by

K � n , M �� �Ž .Ž .0 n n

� � n d� � dH k y k dD pŽ . Ž .Ž .HHH0 � , n n k , n

nf XŽ .0
� � log C lognk k n kf x � � , y Ł q x � � , y , pŽ . Ž .i�k	1 i

� d� � dH k y k dD pŽ . Ž .Ž .HHH � , n n k , n

k

k� K � , � 	 n � k K � , � � log CŽ . Ž .Ž .Ý 0 � , y 0 � , y , p ni
i�1

By Lemma 4, the first k relative entropy terms are uniformly finite, while
Ž �1 .kthe entropy term containing � is uniformly O n . Therefore,� , y , p

K � n , M �� � � C d� � dH k y k dD p � log CŽ . Ž . Ž .Ž . Ž .HHH0 n n � , n n k , n n

� C � log C .n

Ž . kBy Condition C2 iii and the continuity and positivity of H and D aroundk
k Ž . Ž . Ž .y and p , �log C � O log n . Hence, by 24 and 25 , we can bound the0 0 n

Ž .left-hand side of 6 by

O ��1 log n 	 O ��1 � O ��1 log n . �Ž . Ž . Ž .n n n

7. UC and UEC tests. This section provides a proof of Lemma 2. Being
Ž Ž . .able to substitute the simpler assumption of a UC test Condition C3 ii * in

� Ž .�place of the assumption of a UEC test Condition C3 ii is made possible by a
�Ž . �simple modification to a result given in Schwartz 1965 , Lemma 6.1 . Some

of these details are sketched below.

Ž . Ž . Ž .PROOF OF LEMMA 2. First we will prove 7 under Condition C3 i and ii .
Ž .To bound the left-hand side of 7 , divide both sides inside the set by

Ž c. Ž n.� � f X , take square roots and then apply Markov’s inequality. There-�  0
Ž . Ž c.fore, remembering the definition 23 for m �� � , we obtain the uppern 

bound
n cm X � � exp �r �� �2Ž .Ž .n  nn� 0 ( n c½ 5f XŽ . � �' Ž .0 � 

n cr �� m X � �Ž .n n n� exp �0( nž /2 f XŽ .0

26Ž .

r �� 1�2n 2n c� exp 1 � v � , M �� � ,Ž .Ž .0 n ž /2
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Ž .where v �, � is the total variation distance between distributions � and �,
1 � �v �, � � � � � � sup � �B � �B �Ž . 12

B�BB

� Ž .a similar inequality is used by Schwartz 1965 in the proof of her Theorem
Ž .� �1 Ž . Ž . Ž �1 .6.1 . Remembering that � log n � o 1 , we can show that 7 is O n byn
verifying that

27 v � n , M �� �c  1 � C exp �r � for 0 � r � � r ,Ž . Ž .Ž .Ž .0 n  0 n 0

Ž .where C � 0 represents a generic constant. This will prove 7 for any r �
constrained as above.

Ž .However, by Condition C3 ii , we know there exist sets A such thatn
eventually, uniformly,

� n A  1 � exp �r � ,Ž . Ž .0 n 0 n

� n A � exp �r � where � , y n � �c � YY
� .Ž . Ž . Ž .� , y n 0 n  , n n

Therefore,

v � n , M �� �c  � n A � M A � �cŽ .Ž . Ž .Ž .0 n  0 n n n 

 1 � exp �r �Ž .0 n

1
n

n� d� � , y � A 	 � BŽ . Ž . Ž .H � , y n nc �c� �Ž . 
 �YY�   , n n

28Ž .

� BŽ .n 1 � 2 exp �r � � ,Ž .0 n c� �Ž .� 

Ž c n. Ž c � .c Ž .where B � � � YY � � � YY . However, by condition C3 i ,n   , n n

� B � � n YY
� c 	 � �c � 2 exp �r � .Ž . Ž .Ž .Ž .n Y n � n 0 n

Ž . Ž . Ž . Ž . Ž �1 .Therefore, by 26 , 27 and 28 , the left-hand side of 7 is O n .
Ž . Ž . Ž . Ž .To prove a variation of 7 under Condition C3 i � ii *, replace � in 26n

Ž . Ž .and 27 by � . The proof in Lemma 6.1 of Schwartz 1965 can be easilyn	

extended to allow for independent, but not identically distributed r.v.’s.
Follow the same construction in the proof, but for convenience only use the
first m � n	2 observations X , . . . , X . Now block these values into n	1 m
groups, each of size n	. Using Schwartz’s method and applying Condition

Ž . ŽC3 ii * to each of these blocks, it easily follows that there exist sets A basedn
.only upon X , . . . , X and an r � � 0, such that eventually, uniformly,1 m

� n A � � m A  1 � exp �r� n	 ,Ž . Ž . Ž .0 n 0 n

n	�m c
n m� A � � A � exp �r � n	 where � , y � � � YY .Ž . Ž . Ž . Ž . Ž .� , y n � , y n  , n	 n	

Ž .Hence, following the same type of argument leading to 28 , we find that

v � n , M �� �c  1 � 2 exp �r � n	 � � B� �� �c ,Ž . Ž .Ž . Ž .Ž .0 n  n � 

� Ž c m. Ž c Ž � .n	.cwhere B � � � YY � � � YY . A similar argument as beforen   , n	 n	

shows that
n	� �

m� B � 1 � � YY 	 1 � � � .Ž . Ž . Ž .ž /n Y n	 � n	
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However, by Bonferroni’s inequality and the assumed exchangeability of Y n

n	� � �
m m� YY � � Y , . . . , Y � YY , . . . , Y , . . . , Y � YYŽ . Ž . Ž .ž /Y n	 Y 1 n	 n	 m�n		1 m n	

�
n	 1 � n	 	 n	� Y , . . . , Y � YY .Ž .Y 1 n	 n	

Ž . Ž � . Ž Ž ..Therefore, by Condition C3 i , � B � O n	 exp �r � andn 0 n	

v � n , M �� �c  1 � 2 exp �r � n	 � Cn	 exp �r � for some C � 0.Ž .Ž .Ž . Ž .0 n  0 n	

Ž .By choosing r � � 0 to be small enough, deduce that the left-hand side of 7
Ž �1 .is O n	 . �
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