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The "leapfrog" hybrid Monte Carlo algorithm is a simple and effective MCMC 
method for fitting Bayesian generalized linear models with canonical link. The algorithm 
leads to large trajectories over the posterior and a rapidly mixing Markov chain, hav- 

ing superior performance over conventional methods in difficult problems like logistic 
regression with quasicomplete separation. This method offers a very attractive solution 
to this common problem, providing a method for identifying datasets that are quasicom- 
plete separated, and for identifying the covariates that are at the root of the problem. 
The method is also quite successful in fitting generalized linear models in which the link 
function is extended to include a feedforward neural network. With a large number of 
hidden units, however, or when the dataset becomes large, the computations required in 

calculating the gradient in each trajectory can become very demanding. In this case, it is 
best to mix the algorithm with multivariate random walk Metropolis-Hastings. However, 
this entails very little additional programming work. 

Key Words: Bayesian hierarchical models; Feedforward neural networks; Leapfrog 
algorithm; Markov chain Monte Carlo; Random walk Metropolis-Hastings. 

1. INTRODUCTION 

Quasicomplete separation is a common problem in logistic regression, occurring 
when a hyperplane separates part of the data into the two classification groups, with the 

remaining data lying along the hyperplane itself. Often what happens in practice, is that 
it is only a small subset of the data over which the two classification groups are perfectly 
separated, and usually this is due to the effect of a small subset of covariates. Unfortu- 

nately, as is well known, this kind of separation precludes the existence of the maximum 
likelihood estimator, and although perfectly valid inference is possible using conditional 
methods (Mehta and Patel 1995), valid inference is not possible based on maximum 
likelihood estimation applied to the full likelihood. The presence of quasicomplete sep- 
aration is also a computational problem, because traditional iterative methods based on 
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maximizing the likelihood function will fail to converge. See Albert and Anderson (1984) 
and also Santner and Duffy (1986) for more details. 

However, a Bayesian approach in this setting will not have the theoretical difficulties 
seen with maximum likelihood estimation, as long as we are careful to work with a proper 
prior. The difficulty, though, is in posterior exploration. With quasicomplete separation, 
groups of parameters can become highly correlated, and this can lead to slow mixing 
over the posterior by conventional Markov chain Monte Carlo (MCMC) methods. For 

example, methods such as random walk Metropolis-Hastings, or rejection based Gibbs 

sampling methods such as those used by Zeger and Karim (1991), Gilks and Wild (1992), 
and Dellaportas and Smith (1993) will all perform poorly in this setting. 

A very promising MCMC method for handling problems like this is hybrid Monte 
Carlo, which has a long history of successful applications in physics. For example, 
Rossky, Doll, and Friedman (1978); Duane and Kogut (1986); Duane, Kennedy, Pendle- 
ton, and Roweth (1987); Horowitz (1991); and Neal (1994). Although variations of 
this method have been applied in physics for quite some time, the method seems to 
have been largely overlooked in statistics, excepting some recent applications to neural 
networks (Neal 1996; Gustafson 1997), and posterior exploration of covariance matri- 
ces (Daniels 1998). 

One goal of this article is to study the performance of hybrid Monte Carlo in logistic 
regression problems with quasicomplete separation. The variation of hybrid Monte Carlo 
that we study is based on the "leapfrog" algorithm presented in Duane et al. (1987). 
As we will see, this method leads to a rapidly mixing Markov chain in this challenging 
problem, but in fact the method is also a very competitive and simple approach for fitting 
any Bayesian generalized linear model with a canonical link. The computationally most 

demanding aspect of the leapfrog algorithm is the repeated evaluation of the gradient of 
the log of the posterior. However, with a canonical link, we end up with a gradient with 
a simple expression that is relatively inexpensive to calculate. 

A second goal of this article is to apply the leapfrog algorithm in Bayesian general- 
ized linear models which have been extended to include a neural network link function. 
A neural network link offers a flexible adaptive method for exploring covariate effects 

beyond the usual canonical (linear predictor) model. The hybrid Monte Carlo method is 
an ideal candidate for posterior sampling in these models. Indeed, conventional methods 
such as random walk Metropolis-Hastings tend to do very poorly in neural network mod- 
els (Neal 1996), while rejection sampling methods for generalized linear models (Gilks 
and Wild 1992; Dellaportas and Smith 1993) cannot even be applied because of the 

non-log-concavity introduced by the neural networks. Furthermore, adaptive rejection 
Metropolis sampling (Gilks, Best, and Tan 1995) will be difficult to implement because 
of the high dimensions involved and will mix slowly because of the high correlation 
between parameters. 

Briefly, Section 2 formally introduces the Bayesian generalized linear model and 
Section 3 describes the leapfrog hybrid Monte Carlo algorithm (Duane et al. 1987), 
which is the method used in the quasicomplete separation example of Section 4 and the 
Poisson regression neural network example of Section 5. A discussion is given in Section 
6 along with some computational strategies. 
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2. BAYESIAN GENERALIZED LINEAR MODELS 

In classical generalized linear models (Nelder and Wedderbur 1972; McCullagh 
and Nelder 1989), we observe responses Yi and K-dimensional covariates xi, where the 
conditional responses (Yi Oi, s) are assumed to be independent random variables with 
the one parameter exponential family density, 

-YiOi - P(Ai) 
f(Yi I Oi 5) = exp Y- ) +c(yi, ) , i = ... ,n. (2.1) 

- a() 

The classical model assumes that the mean E(Yi) = ,'(Oi) is related to the intercept 0o 
and covariate parameter 3 through I (E(Yi)) = 3o + /'xi, where I : /'(() - JR is a 
monotone differentiable link function, and 6O 0 is the natural parameter space for Oi. 
The monotonicity of I and ju' ensures invertibility, which allows the canonical parameter 
to be related to (3o, /3) through the smooth invertible transformation Oi = il- (30o+3'xi), 
where f is the inverse for ,'. In particular, the canonical link model corresponds to the 
case when pl-l(u) = u is the identify function, so that 

i = 3o +/ 'xi. (2.2) 

The Bayesian generalized linear model follows by placing a hierarchical prior on the 

parameters (3o,/3) in (2.1). A particularly convenient selection is to use normal priors 
with conjugate priors for hyperparameters 

(o I bo, o) N(bo, ro) 

(3 b, W) NK(b, W) 

(bo Bo) N(0,Bo) 

(b B) NK(0, BI) 

('o1 I 1, S2) gamma(s, s2) 

(W-1 V, v) Wishart(V- ,v). (2.3) 

The choice of constants in (2.3) are chosen to induce noninformative priors. For 

example, to encourage the priors for /0 and 3 to be flat we select Bo and B to be 

large constants (such as 100 or 1,000). The priors for (3o0,) are then completed using 
noninformative priors for ao and W as well. For example, by choosing sl = .01, s2 = 100 
and V = 31, v = K + 2. The choice for V and v ensures that the prior mean for W is 

V, which gives a reasonable trade-off between noninformativeness of W and the amount 
of influence the data can have on its posterior. 

Up to this point, it has been tacitly assumed that ?, and hence, a(Q), is a known 
constant value. However, X can also be introduced as a parameter into the generalized 
linear model as a method for modeling overdispersion (Mallick and Gelfand 1994), 
although we do not pursue this topic here. 

As mentioned in the introduction, the Bayesian generalized linear model is tradition- 

ally fit using rejection based Gibbs sampling methods such as in Zeger and Karim (1991), 
Gilks and Wild (1992), or Dellaportas and Smith (1993). However, normal approxima- 
tion rejection sampling as in Zeger and Karim (1991) will not work properly in logistic 
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regression problems with quasicomplete separation because of the non-normality of the 

posterior and the singularity of the Fisher information matrix. Furthermore, univariate 
one coordinate at a time rejection sampling, as in Gilks and Wild (1992) or Dellaportas 
and Smith (1993), will lead to a slowly mixing chain, as will multivariate random walk 

Metropolis-Hastings, as we will see. Instead, we now introduce the hybrid Monte Carlo 
method as an alternative approach. 

3. HYBRID MONTE CARLO 

Hybrid Monte Carlo is an elaborate Markov chain Monte Carlo method designed to 

suppress the random walk nature exhibited in traditional Markov chain simulation meth- 
ods (such as the random walk Metropolis-Hastings algorithm). The method is designed to 

promote rapid mixing of the Markov chain, and is especially suited to problems involving 
complex densities where exploration by a random walk may be too slow. Variations of 
this method have been studied in the physics literature for quite some time, in particular 
by Rossky, Doll, and Friedman (1978); Duane (1985); Duane and Kogut (1986); Duane 
et al. (1987); Kennedy (1990); as well as Horowitz (1991) and Neal (1994). 

In this article we will concern ourselves with the "leapfrog" hybrid Monte Carlo 
algorithm outlined in Duane et al. (1987, equations 18-21) and which has been studied 

extensively by Neal (1996, chap. 3) in applications to Bayesian neural network models. 
The method applies to a K-dimensional random vector U whose density Tr with respect 
to Lebesgue measure is known up to a normalizing constant and is everywhere strictly 
positive and differentiable. The success of the method depends upon suppressing a ran- 
dom walk exploration of the density by using information about its shape to encourage 
movement towards higher probability regions. In particular, information about ir is in- 

corporated through the K-dimensional gradient vector A(u) = log7r(u)/Ou for log7r 
(which exists and is well defined by the positivity and differentiability assumed for 7r). 

The hybrid Monte Carlo algorithm works by combining a stochastic step with a 

preset number of deterministic steps in a sophisticated discretization of Hamiltonian 
dynamics. In the special case where only one deterministic step is used, it is called the 
Langevin algorithm, which is a discrete time approximation to the Langevin diffusion 

process. In continuous time t, call Ut a Langevin diffusion process for 7r with variance 
62 if it satisfies the stochastic differential equation 

dUt = S dBt + - (Ut)dt, (3.1) 

where Bt is K-dimensional standard Brownian motion. 
The hybrid algorithm works by augmenting the parameter of interest U with a multi- 

variate K-dimensional "momentum" variable, Z. In practice, however, it is unnecessary 
to keep track of the value of Z from one step of the chain to the next. A physical 
interpretation for Z and a more careful discussion of the discrete time approximations 
can be found in Duane et al. (1987), as well as Kennedy (1990) and Neal (1994; 1996, 
chap. 3). Here we merely indicate the steps involved in applying the hybrid algorithm. 
In particular, each step in the Markov chain simulation for 7 involves executing the 
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following steps, where we suppose that U* is the current value in the Markov chain for 
U. 

3.1 HYBRID MONTE CARLO ALGORITHM ("LEAPFROG" ALGORITHM) 

1. Simulate Z* - NK(O, I). Let Uo = U, and Zo = Z, + -A(U.)/2. 
2. For= l,...,L,let 

Ul - Ul1 + ZI_ 1 

Z1 = Zl_l +Z 1 A(U1 ), 

where 81 = S for I < L, otherwise 5L = S/2. 
3. Move from the current value of (U,, Z,) to (U, Z)new, where 

(U, Z) _ w (UL, ZL) with probability p 

(U,, Z,) with probability 1 - p, 

and 

p = min( exp ( -( ZZL - ZZ*)) ,1. 

The algorithm is designed to generate an ergodic Markov chain with equilibrium 
distribution 7r?NK (0, I), where NK (0, I) is the stationary distribution for the momentum 
variable Z. As mentioned earlier, the value for Z is superfluous, although it plays a 
critical role in Step 1 by introducing a stochastic transition designed to make the chain 
irreducible and aperiodic. Step 2 provides the deterministic discrete time approximation 
to the Hamiltonian dynamics, and combined with the Metropolis acceptance rule in Step 
3, ensures that detailed balance is satisfied. 

The case where the number of leapfrog steps L equals one is referred to as the 

Langevin algorithm, otherwise the algorithm is more generally referred to as the leapfrog 
algorithm. The Langevin algorithm is an example of Metropolis-Hastings. In this case, 
the proposal from the current step U* is towards a new point defined by 

Unew = Uo + 0Zo = U* + 6 (* + 2-A(U,)) = U + SZ* + -A(U*), 

where Z* ~ NK(0, I). This is the discrete approximation to the diffusion (3.1). 
Even with one leapfrog step, the Langevin algorithm already enjoys considerable 

advantages over the random walk Metropolis-Hastings algorithm (Roberts and Rosenthal 

1995). As pointed out by Neal (1996, chap. 3), however, it is only when L is reasonably 
large that the benefits of hybrid Monte Carlo can be fully exploited. In practice, L 
should be chosen large enough so that the dynamics in Step 2 generate a candidate state 

(UL, ZL) almost independent of the initial state (U*, Z*). However, the candidate state 
should also be accepted with high probability, which involves tuning the step size 6; with 
smaller steps resulting in higher acceptance rates, but with less exploration. Therefore, 
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in principle, L and 6 should be chosen large enough to promote a large trajectory, while 
still retaining a high acceptance rate. Often what occurs in practice is that, for a fixed L, 
there is some critical value for 6, that when exceeded will result in very low acceptance 
rates. Selecting 6 to equal this critical value generally leads to rapid exploration. 

The leapfrog algorithm can also be extended to allow a different 6 step size for 
each of the K coordinates of U. This can be useful when there is substantial difference 
in the variances of the marginal distributions for U, which can occur in the Bayesian 
generalized linear model when covariates are measured on different scales. To reduce 
this problem, it is usually a very good idea to rescale all covariates so they have zero 
mean and variance one. This will also help in reducing correlation between parameters. 

The extension is straightforward, and involves replacing the 6 in the leapfrog algo- 
rithm with the K x K matrix 6D-1/2, for some diagonal matrix D with diagonal entries 
dk. In particular, the usual leapfrog algorithm corresponds to D = I, while the general 
case generates steps of size 6/dk for U. 

3.2 SIMULATIONS 

To demonstrate the effectiveness of hybrid Monte Carlo, the leapfrog algorithm 
was applied to the stationary distribution 7r defined by U - NK(0, ), where E = 

(1 - p)I + pll' is an equicorrelation matrix with correlation p. Although it is easy to 
simulate 7 directly, the two cases studied here-(1) K = 10, p = .95 and (2) K = 40, 
p = .75-are interesting because they pose challenging problems to conventional Markov 
chain simulation methods. 

Random walk Metropolis-Hastings was used as a comparison, and was based on a 
simultaneous update of all parameters using a NK (0, e21) transition kernel. A simultane- 
ous update is preferable to a coordinate-by-coordinate Gibbs sampling approach, which 

performs poorly here because of the much smaller width in the conditional distribution 
of each coordinate compared to its corresponding marginal. Most of the computational 
work in applying the leapfrog algorithm is usually spent in computing the gradient A. 
Here it has a simple expression A(u) = --1u; but this is not always the case (see 
Equation (5.8) for the neural network model as comparison). In general, mixing over 

algorithms is a useful strategy for reducing this computational burden while retaining 
some of the advantage of hybrid Monte Carlo. Mixing is carried out at each iteration 

by selecting either the leapfrog algorithm with probability p or some alternative cheaper 
algorithm(s) with probability 1- p. Here we will investigate mixtures of 10% hybrid 
Monte Carlo with 90% Metropolis-Hastings. 

Figure 1 contains plots of the first two coordinates of U obtained from hybrid Monte 
Carlo, Metropolis, and from the mixture sampling. In all cases, zero was selected for the 
initial value of the chain. For K = 10 and p = .95, the hybrid Monte Carlo sampling 
used L = 10 leapfrog steps with an acceptance rate of roughly 70%. A burn in of 100 
iterations was used before sampling every fifth iteration for 2,500 iterations. Even with 
this small number of iterations, we see that the chain has used large steps in exploring 
a substantial amount of the posterior (at least for the first two coordinates). To test 

convergence, the values (U - U)'E-'(Um - U) were compared to a X2 distribution 
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using the Kolmogorov-Smirnov distance (U and E are the K-dimensional sample mean 
and variance matrix obtained from the simulation values Urn). The p value from the test 
was .187, indicating convergence. Furthermore, the average first three autocorrelations 
for the sampled values Um were .31, .14, and .03. 

In comparison, the Metropolis based exploration did more poorly, with parts of the 

posterior still left unexplored. This was based on a 1,000-iteration burn in, followed by 

35 -2.5 -1.5 -0.5 0.5 1.5 2.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 

-3.5 -25 -1.5 -05 0.5 1.5 2.5 3.5 

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 35 -3.5 -2.5 -15 -0.5 0.5 1.5 2.5 3.5 

Figure 1. Simulation history of the first two coordinates from 500 sampled points. For clarity, only each fifth 
iteration is plotted. Stationary distribution is NK (O, S), where S =(1-p)I + p 11'. Left column corresponds 
to K = 10, p = .95 while the right column is for K = 40 and p = .75. From top to bottom, simulation 
was via: (a) hybrid Monte Carlo; (b) Metropolis-Hastings; (c) 10% mixture of hybrid Monte Carlo and 90% 
Metropolis-Hastings. Note the superimposed theoretical 95% and 99% bivariate normal contours. 
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a 31% acceptance rate over 25,000 iterations subsampled every 50th iteration (because 
each trajectory in the leapfrog algorithm involves 10 deterministic steps, the Metropolis 
exploration was based on 10 times as many iterations as a crude way of equating the 
overall computational time required in both methods). For Metropolis, the Kolmogorov- 
Smimov test had a p value of .56, but there was high autocorrelation even with the use 
of a 50 iteration lag (.93, .91, and .90). Mixing the Metropolis with hybrid Monte Carlo 

improved matters. The same parameters in each of the algorithms were used, with a bum 
in of 500 iterations followed by 10,000 iterations subsampled each 20th iteration. As 
we can see, the algorithm occasionally inherits a large step from the hybrid algorithm 
which helped in exploring the posterior and in reducing the autocorrelations (.61, .37, 
.19). Although these results are significantly better than Metropolis alone, they are less 

impressive than those observed with hybrid Monte Carlo. Given the simplicity of the 

gradient, hybrid Monte Carlo alone would have to be the preferred algorithm. 
Similar results were seen for the case K = 40 and p = .75. Here the leapfrog 

algorithm used L - 100 steps with a 20-iteration bum in and a 76% acceptance rate 
over 500 samples. Metropolis-Hastings used a 2,000-iteration bum in followed by 30% 

acceptance over 50,000 iterations subsampled each 100th iteration (we used 100 times 
as many iterations to equate computational times). The mixture algorithm used a 200 
iteration bum in followed by 5,000 iterations subsampled every 10th iteration. 

4. HYBRID MONTE CARLO APPLIED TO THE 
GENERALIZED LINEAR MODEL 

The leapfrog hybrid Monte Carlo algorithm is applied to the Bayesian generalized 
linear model within a Gibbs sampling framework. In this strategy we first update (/o0, /) 
using the hybrid Monte Carlo method, followed by updates to all hyperparameters, which 
are straightforward to carry out thanks to our choice of conjugate priors. 

The target density 7r in the step for (p, /o I bo, b, o, W) is proportional to 

n 
yOi - 

7r(00 I bo, oo)7r(/ b, W) exp , ( i)+ -C(yi, ) 
i-i-- a() 

which is strictly positive and differentiable in the parameters by our choice of priors. To 

apply the hybrid algorithm we must calculate the (K + 1)-dimensional gradient vector 
A = (log7r)' for (3o,)). With a canonical link (2.2), we get the following simple 
expressions 

A\(A0) = >Yi- -(0-bo) 
i 1 

n 

A(3) = EXiYi-W-( 3-b), (4.1) 
i=l 

where yi = yi- / (0i). Notice that it will be convenient to keep track of 0 = (0o,..., 0n) 
in the hybrid Monte Carlo update, since its value will be needed to compute the gradient 
defined by (4.1). 
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Table 1. Study of Osteosarcoma. Classification of 46 patients into groups that are relapse free for 
at least three years (1), or less than three years (0). Covariates of interest are lymphocytic 
infiltration (high = 1), sex (male = 1), and osteoblastic pattern (yes = 1). 

Relapse free Lymphocytic Osteoblastic 
time infiltration Sex pattern Frequency 

1 0 0 0 3 
1 0 0 1 2 
1 0 1 0 4 
1 0 1 1 1 
1 1 0 0 5 
1 1 0 1 3 
1 1 1 0 5 
1 1 1 1 6 
0 1 0 1 2 
0 1 1 0 4 
0 1 1 1 11 

After completing the hybrid Monte Carlo update, we finish off by updating each 

hyperparameter. This completes one iteration in the Gibbs cycle. As mentioned earlier, 
the sampling for hyperparameters are straightforward because of conjugacy. Specifically, 
we need to perform the following simple simulations: 

(bo I o, o, Bo) N Bo , Bo* 

(b 3,W,B) NK(AW-1, A) 

(0'01 3o, bo, sl, 2) gamma s + - ) 

(W-1 f , b,V,v) ~ Wishart((V*)-l,v+l), 

where Bo = (1/0o + 1/Bo)-1, A = (W-1 + I/B)-1, s = (1/s2 + (/o - bo)2/2)-1, 
and V* = V + (3 - b)( - b)'. 

4.1 LOGISTIC REGRESSION WITH QUASICOMPLETE SEPARATION 

Goorin et al. (1987) studied 46 patients with nonmetastatic osteosarcoma in an 

attempt to quantify tumor recurrence times. Patients were classified into two groups 
consisting of those that experienced recurrence within three years and those that were 

recurrence free. Covariates used in predicting the dichotomized relapse free time were: 

sex, lymphocytic infiltration of the primary tumor and presence of osteoblastic pattern 
in the primary tumor. Table 1 contains the data of interest, which also appears in Mehta 

and Patel (1995). 
As noted by Goorin et al. (1987), as well as by Mehta and Patel (1995), a classical 

logistic regression analysis of relapse free time will fail due to the quasicomplete sepa- 
ration present in the data. Indeed, if we look at Table 1 we see that all patients who are 

free of lymphocytic infiltration are also relapse free. Because of this, the data points are 

quasicompletely separated (Albert and Anderson 1984), with the quasicomplete separated 

points made up of those patients with lymphocytic infiltration (these are the points lying 

along the separating hyperplane). As mentioned in the introduction, this precludes the 
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Table 2. Median values or point estimates (in square brackets) and 95% credible or confidence in- 
tervals for parameters using logistic regression by maximum likelihood estimation (MLE), 
hybrid Monte Carlo (HMC), random walk Metropolis-Hastings (RWMH), and a 10% mixture 
of HMC with 90% RWMH (MIX). Parameter estimates for the MLE are based on the last 
iteration using Fisher's method of scoring, which fails to converge because of the quasi- 
complete separation of data points. The Wald confidence intervals are derived from the 
observed Fisher information, but are unavailable for lymphocytic infiltration because of the 
singularity of the information matrix. The last row in the table is obtained using exact condi- 
tional inference (ECI) (Mehta and Patel 1995). Because of the parameterization used, only 
the parameters for sex and osteoblastic pattern are directly comparable. 

Lymphocytic Osteoblastic 
Method Intercept infiltration Sex pattern 

HMC (3.9,[17.2],54.3) (-52.3,[-14.4],-1.4) (-4.9,[-1.9],.29) (-3.4,[-1.3], .45) 
RWMH (4.4,[15.1],31.3) (-28.7,[-12.7],-2.1) (-4.3,[-1.9],-.005) (-2.9,[-1.3],.20) 

MIX (4.4,[16.9],52.5) (-50.5,[-14.5],-2.0) (-4.8, [-1.9], .18) (-3.4,[-1.3], .43) 
MLE (25.8,[27.7],29.6) [-25.6] (-3.4,[-1.6], .15) (-2.7, [-1.2], .29) 
ECI (-4.0,[-1.5], .36) (-2.9, [-1.2], .51) 

existence of the maximum likelihood estimator and, in particular, if /0 and /1 represent 
the intercept and lymphocytic infiltration parameters, then the likelihood is maximized 
as /0o oo along the line do + /3 = c, for some constant c. Indeed, this phenomenon can 
be observed by looking at Table 2, which contains the results from fitting the logistic 
regression model using the PROC GENMOD procedure in SAS 6.11 (SAS Institute Inc., 
1996). Although the procedure failed to converge, we see that the parameter estimates for 
the intercept and lymphocytic infiltration parameters are large positive and large negative 
numbers, as expected. 

There are no theoretical problems in implementing our Bayesian approach since 
we will select proper priors. As a benchmark comparison for the leapfrog algorithm 
we used multivariate random walk Metropolis-Hastings with a simultaneous update for 
all parameters. A mixture of the two algorithms was also tried, with 90% mixing for 

Metropolis and 10% mixing for hybrid Monte Carlo. Flat and noninformative priors were 
used for (/o, /, bo, b, (ro, W) by choosing Bo = B = 1,000, sl = .01, s2 = 100, V = 31, 
and v = K + 2 = 5. Table 2 contains the parameter estimates and credible intervals 
based on the three simulation methods, while Figure 2 contains the chain histories for the 

parameters corresponding to the intercept term and the lymphocytic infiltration covariate. 
The linear relationship between parameter values for the intercept and the lymphocytic 
term is what creates problems for the maximum likelihood estimator, and as we can see 
from Figure 2, also challenges the Metropolis random walk exploration of the posterior 
(middle plot). The likelihood is highest along a straight line which, combined with the 
small sample size and choice of flat priors, attenuates the region around this line where 
the posterior will have high probability. This is what makes conventional random walk 
Markov chain exploration difficult, and by even mixing with only 10% hybrid Monte 
Carlo, we can see a vast improvement (bottom plot). 

The top of Figure 2 corresponds to the hybrid Monte Carlo algorithm, which used 
a 1,000-iteration burn in before sampling the next 25,000 values every 10th iteration. 
The algorithm used L = 100 leapfrog steps with a step size of .15, which led to an 
overall acceptance rate of approximately 82%. As we can see, the large number of steps 
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L and high acceptance rate allowed the Markov chain to use large steps in exploring the 
posterior, especially in the more difficult lower right region. In contrast, the random walk 
Metropolis algorithm led to much less movement in the chain, with very little of the lower 
right region of the posterior being explored. This was based on a 25,000-iteration burn 
in, with subsampling every 100th iteration over 250,000 iterations. The algorithm was 
based on a multivariate normal transition kernel with mean zero and standard deviation 
.35, leading to an overall acceptance rate of about 29%. As just mentioned, mixing the 
Metropolis with hybrid Monte Carlo substantially improved matters. Mixing was based 
on the same parameters in each of the algorithms, while using a burn in of 2,500 iterations 
followed by 75,000 iterations subsampled each 30th iteration. 

Even with the large number of iterations used, the Metropolis-Hastings algorithm has 
yet to fully explore the posterior. In particular, this leads to narrower credible intervals 
for parameters than those based on hybrid Monte Carlo. For example, the Metropolis- 
based exploration found sex to be nearly significant at the 5% level, while for hybrid 
Monte Carlo gender was not significant. Furthermore, the intervals obtained by hybrid 
Monte Carlo agree much more closely to the confidence intervals obtained using exact 
conditional inference (Mehta and Patel 1995). Exact conditional inference is a method 
for providing valid frequentist confidence intervals and tests even when the data contain 
a quasicomplete separation. 

Another consequence of limited posterior exploration is that it fails to alert us to 
the problem of quasicomplete separation. With hybrid Monte Carlo, we observe a non- 
normally distributed posterior and a broad range of posterior values for the intercept 
and lymphocytic infiltration parameters. These are clear signals of the separation, but 
with Metropolis, even after 250,000 iterations, the posterior still appears to be bivariate 
normal (Figure 2), and in practice things would probably be worse because we would 
not have used so many iterations. However, by adding 10% hybrid mixing we get pretty 
much the same exploration as with hybrid Monte Carlo alone. This did, however, require 
more iterations, and given the simplicity of the gradient, the leapfrog algorithm seems 
to be the best choice here. 

5. FEEDFORWARD NEURAL NETWORKS 

5.1 NEURAL NETWORK LINK FUNCTIONS 

Let ~b: 1R - e3 be some prespecified monotone differentiable function and let gj be 
a real valued function. Define 

Oi=ao-+ ae ( E ij(43o,j+;'Xi)), for i=1,...,n. (5.1) 

The representation (5.1) extends the generalized linear model (2.1) described by canon- 
ical parameters Oi = il-1 (3o + /3'xi), by introducing, on the right-hand side, what is 
commonly referred to as a feedforward neural network with one hidden layer and J 
hidden units. In neural network parlance, the covariates xi in (5.1) are referred to as 
input signals, parameters (cj, 3j) are weights, ao0 and 30,j are referred to as bias terms, 
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while the canonical parameters Oi are called output units. In principle, networks like (5.1) 
can be fit for any number of hidden units J, and for any choice of possibly different 
"activation functions" gj. However, in this article we will only consider the class of 

logistic activation functions, 

gj(u) g(u) = (1 +exp(-u)) , for j = 1,...,J, 

where the number of hidden units J will be determined by data exploration. The logistic 
activation is a popular choice in neural network models, and for us it has the added 

appeal of a convenient closed-form expression for its derivative. This will be a useful 
feature when we apply the leapfrog hybrid Monte Carlo algorithm. 

The representation (5.1) also describes the usual link function as a special case. For 

example, let ao = 0, J = 1, cl = 1, g (u) = u, and X = fl-1. In the case of a canonical 

link, l (u) = il- (u) = u and 

O = /0,1 +? flXi. 

Neural networks like (5.1) generate a rich class of functions, even for the case 
of similar activation functions. Indeed, by employing logistic activations, it is possi- 
ble to uniformly approximate any continuous function on a compact set by using a 

large enough number of hidden units (Cybenko 1989; Funahashi 1989; Homik Stinch- 
combe, and White 1989). However, the theoretical problem with neural networks is not 
in their richness, but rather with their lack of identification in parameters. Recently, 
Sussmann (1992), as well as Hwang and Ding (1997), showed that feedforward net- 
works similar to (5.1) are only identified up to sign equivalences. Two parameters, 
(3o,j, 3j) and (/o,j', /j'), are called sign equivalent if either (3o,j, 3j) = (3o,j', 3j') 
or (3o,5j, 3j) =-(30,j', 3j). Therefore, because of the complexity of the network (5.1), 
and the possibility of permutation and sign indeterminacies, exploring the posterior be- 
comes challenging for conventional Markov chain Monte Carlo methods. This is the 
reason we explore the use of hybrid Monte Carlo. 

5.2 HIERARCHICAL PRIORS 

The hierarchical prior structure for (aj, /3j, /3) in the neural network model (5.1) 
will employ normal priors with conjugate priors for hyperparameters. Hierarchical priors 
like these have been used with great success in neural network models (MacKay 1992; 
Neal 1996) and furthermore will greatly simplify our Gibbs sampling. Following the 
same style as in (2.3), we select 

(caj aj, Tj) ~ N(aj,Tj) 

(o,j I bo,j, o,j) ~ N(boj, o,j) 

(3j I bj,Wj) - NK(bj,Wj) 

(aj | Aj) N(0, Aj) 

(boj Bo,j) N(O,Bo,j) 

(bj I Bj) NK(0, BI) 
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(-l tlit2) 
~ gamma(tl,t2) 

(J0I 81,S2) - gamma(si,s2) 

(W 1 Vj, vj) ~ Wishart(V-1, vj). (5.2) 

To ensure that Oi E E we must also select a suitable prior for CEo. In some settings, 
E) = R+, or JR-, but the majority of applications are for E = IR, such as in the binomial 
or Poisson generalized linear model. When Q = R, a convenient choice for ao is 

(ao Iro) ~ N(0, 70), (5.3) 

where T0 is some reasonably large value, such as 5. 
The choice of constants in (5.2) will depend upon the model of interest. As mentioned 

in Section 3, when fitting the canonical model (2.2) we like to work with noninformative 

priors for (/0,1,31). However, in the general feedforward network (5.1), it is generally 
a good strategy to avoid using very flat priors. For example, in a network with many 
hidden units J, it is important to choose a prior for aj that will suppress large values, 
otherwise Oi can become very large, which can lead to very large or very small mean 
values IE(Yi) = J'(Oi) (in a Poisson regression E(Y) = exp(Oi)). One good strategy is 
to select Aj = 1/J, tl = .1, and t2 = 10. It is also best to select a reasonably flat prior 
for 3j, for example, let Bj = 3. Furthermore, to avoid having the logistic functions peak 
at their 0 and 1 limit values, the prior for o3,j should not be too flat; a good choice is 
to let Bo,j = 1. Like the canonical link case, we use noninformative priors for ao,j and 

Wj by choosing sl = .01, s2 = 100, and Vj = 31, vj = K + 2. 

5.3 HYBRID MONTE CARLO FOR NEURAL NETWORK LINKS 

As in the canonical link model, the leapfrog hybrid Monte Carlo algorithm is applied 
to the generalized neural network model (5.1) within a Gibbs sampling framework. In 
this strategy we first update the conditional parameter for ao, which is then followed 

by an update for the remaining conditional parameters in the lower hierarchy of (5.2). 
The updates for the lower level parameters in (5.2) use the hybrid Monte Carlo method, 
which can also be applied in the update for a0 when its prior is strictly positive and 
differentiable. We will present the case for ao specified by (5.3) in the following discus- 
sion, otherwise another method such as Metropolis-Hastings will have to be used. After 

completing these updates, we then update all hyperparameters. 
Let a = (ai,..., a)', /3o = (3o,1, ..., 3o,j)', and 3 = (/1,..., /J)'. Upgrade the 

notation for hyperparameters in the same way. For example, let W = (W1,..., Wj)' be 
the matrix of stacked inverse Wishart matrices. The hybrid Gibbs sampler starts by first 

simulating 

(ao I a,o0, 3, 7o), (5.4) 

(a I ao,o, , , a,r), (5.5) 

(3o I ao, a, 3,bo, ao), 
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and 

(3 I a0o,a,b3o,b,W). (5.7) 

Each of the four steps are completed using hybrid Monte Carlo, with each step in (5.5)- 
(5.7) involving a simultaneous update for all parameters. In theory, the four steps could 
be combined into one large step involving a simultaneous update for all parameters. 
In practice, however, this is likely to be computationally infeasible because of the large 
number of gradients involved and the strong possibility of numerical overflow. This same 

problem may also occur in the step for f when there are a large number of hidden units 
J. To avoid this, the step can be broken into simultaneous updates for each of the J 
different 3j parameters. 

The target density 7r in each of the steps (5.4)-(5.7) is proportional to 

n - 

7r(ao I ro)71(a a, T)7r(/o bo, Uo)7r(3 b, W) I exp Yii - (i) + C(Yi,) 
i=l - a() 

which, as in the canonical link case, is strictly positive and differentiable in the parameters 
by our choice of priors, and because of the smoothness of the neural network (5.1). To 
apply the hybrid algorithm we must calculate the gradient vector A = (log 7r)' in each 
of the steps (5.4)-(5.7). This gives a 1, J, J and (J x K)-dimensional vector for A(ao), 
A(a), A(30) and A(/), respectively. Letting Di = yi - t'(0i), as before, these are 
defined by 

n 

A((ao) - Yi - 

i=l 
(5.8) 

n J 
I1 

A(aj) = gj(O,j +-jXi)! Eajgj(,j+ i) - 
(j 

- 
aj) 

i=l- j=l 

= (a xj ) = ia E i( Y /3j o, /3 + Xi>) ( 1aiij + - x/ -b), 
nJ \ 

i- 110 AX(~o.j): .3 a yig;'o.j + f3^ 
' 

-3(3o,j + ~ }i) 
- --(3o,j - bo.j) 

i=1 j=l 

A(0j) - aj E XiYig;(3O,j + x i)' 
a gj(/o,j + j Xi) |- W-1 (Oj 

- bj ), 
i=l j1 j 

forj = 1,...,J. 
After completing the hybrid Monte Carlo updates (5.4)-(5.7), we complete one 

iteration in the Gibbs cycle by sampling hyperparameters. As in the canonical link case, 
this is straightforward because of conjugacy: 

(aj I aj,Tj,Aj) 

(bo,j I 0o,j, ao,j, Bo,j) 

N(Aj ', Aj) 
3 

N(Bo,j ', Bo j) 

NAo,j A) 
NK(A Wl-'3, A) (bj I \3j, Wj, Bj) 



H. ISHWARAN 

(T-1 I cj,aj, tl,t2) ~ gamma(tl + -,t2) 1 2 

(o,J 1 3o,j, boj, sl,, s2) ~ gamma(sl + S2 ) 

(W 1[ I j, bj, Vj, vj) - Wishart((Vj*)-l,vj + 1), 

where A* = (/Irj + 1/Aj)-1, Bo,j = (l/ao,j + 1/Bo,j)-, A = (W-1 + I/Bj)-' 
2 = (1/t2 + (oj - a)2/2) -, s2= (1/2 + (0O,j -bo,j)2/2)-1, and V* Vj + (3j - 

bj)(j - bj)'. 

5.4 POISSON REGRESSION WITH NEURAL NETWORK LINK 

Here we revisit the Poisson regression analysis of nesting horseshoe crabs in Agresti 
(1996, chap. 4), which is based on the data from the larger study of Brockmann (1996). 
Each female horseshoe crab in the study had one male crab companion, and in total 
there were 173 male-female couples in the data considered here (Agresti 1996, tab. 4.2). 
In some cases, however, a couple also attracted unattached male crabs, called satellites, 
who competed with the attached male for fertilization of eggs laid by the female. The 
number of satellite males for each female is assumed to be a Poisson random variable 
with a mean which depends upon features of the female crab. 

The covariates considered are the carapace width of the female in centimeters, as 
well as the females' color, which belonged to one of the four categories: medium light, 
medium, medium dark, and dark in color. Color is a proxy for age, with older crabs 

tending to be darker. As indicated by Agresti (1996), satellites are attracted to younger 
females, and therefore it is reasonable to introduce color as a quantitative linear effect 
in the model. For convenience, the width measurement was standardized to have zero 
mean and variance one. 

The effect of width and age of the female on the mean number of satellites was 
studied using the neural network model (5.1) with J = 10 logistic activations and by 
selecting L(x) = x. The selection for the prior was based on the strategy outlined in 
Section 5.2 with model fitting via the Gibbs sampler described in Section 5.3. Because 
of the relatively high number of hidden units, the hybrid step (5.7) for 3 was broken into 
simultaneous updates, one for each of the 10 different 3j parameters. 

The choice for the number of hidden units, J = 10, was determined through informal 
data exploration, with the final choice representing a compromise between flexibility and 

avoiding overfitting the model. For example, the median value for the log-likelihood with 
10 hidden units was -452.7, which was almost identical to the value -451.5 obtained by 
fitting the same model, but with J = 20 hidden units. The goodness-of-fit measured by 
Ei(yi - [i)2/ti, was also similar between the two models, with median values 250.8 
and 251.6 for the models with J = 10 and J = 20 units, respectively. Furthermore, 
an inspection of residuals revealed no important differences between the two models. 
A more formal model selection mechanism could be based on the Bayes factor (e.g., 
Raftery 1996) or through automatic relevance determination (ARD) (Neal 1996, chap. 
4). 

Figures 3 and 4 contain the predicted values and confidence intervals computed 
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Figure 3. Predicted values from Poisson regression using 10 hidden units with logistic activations. Values are 
computed from each 50th iteration of the 2,500 sampled parameter values. From left to right, top to bottom, 
plots are for crabs that are medium light, medium, medium dark, and dark in color. 

from the output of the Gibbs sampler. The output consisted of 2,500 sampled values, 
which were subsampled each fourth iteration following an initial 1,000 iteration bum-in, 
and were based on acceptance rates in the range of 85%-95% for the different updates 
using L = 50 leapfrog steps. The run time per iteration was noticeably longer than for the 
logistic regression example of Section 4. This is not surprising given the complexity of the 
gradients (5.8), and in fact with a larger dataset and more hidden units, the computational 
requirements would soon become too demanding. This point will be addressed in the 
discussion. 

The first and fourth plot in each of Figures 3 and 4 correspond to the medium light 
and dark female crabs. The larger variability seen in these plots is due to the small number 
of crabs with these color types (the breakdown was 6.9%, 54.9%, 25.4%, and 12.7% for 
medium light, medium, medium dark, and dark crabs, respectively). Nevertheless, the 
four plots suggest that satellite males are attracted to larger females across all color 
types. This relationship appears to be linear, although there seems to be some kind of 
thresholding effect for large width values. This should be compared to the predicted 
values from maximum likelihood estimation, which with a log-link, generates predicted 
values that appear quadratic in width, especially for medium and medium dark crabs 
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Figure 4. The 5%-50%-95% quantiles for predicted values as in Figure 3, but calculated from the complete 
2,500 sampled parameter values. Circles indicate average observed values, while heavy dashed lines are pre- 
dicted values using maximum likelihood estimation with a log-link. As in Figure 3, plots from left to right, top 
to bottom, are for crabs that are medium light, medium, medium dark, and dark in color. 

(which make up most of the data). This illustrates the limitation in using a prespecified 
link function. 

The plots also show, as expected, that satellites are more strongly attracted to the 

younger females, which can be seen by comparing predicted values at fixed widths across 
the four colors (and hence age groups). For example, the median predicted value at the 
baseline average width was approximately 4, 3, 2, and 1.5 for the four different age 
groups. 

6. DISCUSSION 

The leapfrog hybrid Monte Carlo method (Duane et al. 1987) is an effective method 
for fitting the Bayesian generalized linear model with canonical link. The simplicity of 
the gradient in the case of a canonical link makes it easy to implement the algorithm and 
reduces the amount of computation required in each trajectory. Conventional methods 
like random walk Metropolis-Hastings require less computation per iteration, but the 
additional cost of using hybrid Monte Carlo is more than offset by the rapid mixing of 
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the Markov chain. The benefit of rapid mixing is especially pronounced when the model 
contains parameters that are highly correlated. The example of Section 4 illustrates this 

point. There we considered logistic regression with only three covariates, but where two 

parameters were highly correlated due to quasicomplete separation of the data. Ran- 
dom walk Metropolis and rejection sampling based algorithms perform very poorly in 
this example, while hybrid Monte Carlo rapidly explores the posterior. Even in such a 
low-dimensional problem, conventional MCMC methods have difficulty identifying qua- 
sicomplete separation, and the problem only becomes worse when there is quasicomplete 
separation with a large number of covariates. This is the more common scenario, and we 
cannot rely on conventional methods for dealing with this problem. The hybrid Monte 
Carlo method, however, works very effectively on these problems, even with up to 20-30 
covariates (in the author's experience). To identify quasicomplete separation with a large 
number of covariates, the strategy is to first standardize covariates (see point 1 below) 
and then run the leapfrog algorithm, looking for parameters whose posteriors have large 
standard deviations with a wide range of values in relation to other parameters. These are 

usually the problematic covariates, and are a signal that quasicomplete separation exists. 
There are several things to keep in mind when implementing the leapfrog hybrid 

Monte Carlo algorithm: 
1. It is usually a good idea to standardize all covariates to have zero mean and 

variance one. This avoids the problem of having to select different step sizes 
6 for each covariate, and furthermore, it will reduce the correlation between 

parameters, thus encouraging faster mixing. 
2. Selecting the step size 3 and number of leapfrog steps L in a trajectory can some- 

times be tricky when the sampler first starts. Furthermore, these values usually 
need to be retuned after a few hundred iterations because the likelihood surface 
and the gradient can sometimes change dramatically as the Markov chain moves 
over the parameter space. Therefore, it is a good idea to start off the sampler by 
using random walk Metropolis-Hastings for the first several hundred iterations. 
This does not entail very much additional programming work because the leapfrog 
algorithm contains a Metropolis component which can easily be modified into the 

required Metropolis-Hastings step. 
3. The gradient for the neural network link model is fairly complex, and with a 

large number of hidden units and/or a large dataset, the computations required for 
a single trajectory can become quite expensive. When this happens, it is a good 
idea to mix hybrid Monte Carlo with a simpler MCMC method, like random walk 

Metropolis-Hastings. This reduces the computational burden and we occasionally 
benefit by a large step from hybrid Monte Carlo. As mentioned in point 2, there 
is very little additional programming needed to introduce a Metropolis-Hastings 
mixing step. 
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