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Use of Hundreds of Electrocardiographic Biomarkers for
Prediction of Mortality in Postmenopausal Women

The Women’s Health Initiative

Eiran Z. Gorodeski, MD, MPH*; Hemant Ishwaran, PhD*; Udaya B. Kogalur, PhD;
Eugene H. Blackstone, MD; Eileen Hsich, MD; Zhu-ming Zhang, PhD; Mara Z. Vitolins, DrPH, RD;

JoAnn E. Manson, MD, DrPH; J. David Curb, MD; Lisa W. Martin, MD;
Ronald J. Prineas, MD, PhD; Michael S. Lauer, MD

Background—Simultaneous contribution of hundreds of electrocardiographic (ECG) biomarkers to prediction of long-term
mortality in postmenopausal women with clinically normal resting ECGs is unknown.

Methods and Results—We analyzed ECGs and all-cause mortality in 33 144 women enrolled in the Women’s Health
Initiative trials who were without baseline cardiovascular disease or cancer and had normal ECGs by Minnesota and
Novacode criteria. Four hundred and seventy-seven ECG biomarkers, encompassing global and individual ECG
findings, were measured with computer algorithms. During a median follow-up of 8.1 years (range for survivors, 0.5
to 11.2 years), 1229 women died. For analyses, the cohort was randomly split into derivation (n�22 096; deaths, 819)
and validation (n�11 048; deaths, 410) subsets. ECG biomarkers and demographic and clinical characteristics were
simultaneously analyzed using both traditional Cox regression and random survival forest, a novel algorithmic
machine-learning approach. Regression modeling failed to converge. Random survival forest variable selection yielded
20 variables that were independently predictive of long-term mortality, 14 of which were ECG biomarkers related to
autonomic tone, atrial conduction, and ventricular depolarization and repolarization.

Conclusions—We identified 14 ECG biomarkers from among hundreds that were associated with long-term prognosis
using a novel random forest variable selection methodology. These biomarkers were related to autonomic tone, atrial
conduction, ventricular depolarization, and ventricular repolarization. Quantitative ECG biomarkers have prognostic
importance and may be markers of subclinical disease in apparently healthy postmenopausal women. (Circ Cardiovasc
Qual Outcomes. 2011;4:521-532.)

Key Words: electrocardiography � epidemiology � women � prognosis

Among postmenopausal women, quantitative electro-
cardiographic (ECG) biomarkers have a prognostic

value.1–4 Prior studies focused on single ECG measures such
as QRS width,5 small groups of measures such as ventricular
repolarization abnormalities,1,2 and categories of findings
such as minor and major ECG abnormalities.3 Modern digital
ECG software is able to abstract hundreds of quantitative
measures from a standard 12-lead ECG. To date, there have
been no studies exploring the prognostic value of such a large
number of ECG measures in a nonparsimonious manner.

Risk stratification based on use of hundreds of quantitative
ECG biomarkers presents several unique challenges, which

make use of traditional regression methods difficult. First,
ECG measures are highly correlated, making their simulta-
neous use in a regression model problematic. Second, ECG
measures may have nonlinear effects that require complex
transformations. Third, manual identification of 2-way and
3-way interactions among hundreds of variables is challeng-
ing. Fourth, regression models with hundreds of variables
may be overfit, consequently performing poorly in testing
scenarios. Random forest methodology, a nonparametric
decision tree-based approach, has been proposed as a cutting-
edge analytic method to address these issues.6–8 Recently,
random forest methodology has been extended to deal with
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time-to-event data, an approach termed random survival
forests (RSF).8

The objective of the present study was to evaluate the
prognostic importance of quantitative ECG biomarkers in
postmenopausal women without known cardiovascular dis-
ease or cancer who had normal baseline resting ECGs, using
a data-rich model. We studied women with normal ECGs
because they have been shown to have a lesser risk of
mortality than those with major or minor ECG abnormalities.3

We used RSF methodology to classify women into subgroups
of risk and to identify clinical and ECG predictors of
mortality. With this approach, numerous decision trees were
developed and used to (1) identify the most important
predictors (ie, variable selection) and (2) construct risk
stratification models.

WHAT IS KNOWN

● Prior studies demonstrated that among postmeno-
pausal women, single ECG measures, or small
groups of ECG measures, are prognostic of long-
term mortality.

● Simultaneous contribution of hundreds of ECG mea-
sures to prediction of mortality in this population has
not been studied.

WHAT THE STUDY ADDS

● We used RSFs, a novel machine-learning statistical
approach, to demonstrate that among apparently
healthy postmenopausal women with clinically nor-
mal ECGs, ECG biomarkers related to autonomic
tone, atrial conduction, and ventricular depolariza-
tion and repolarization have long-term prognostic
significance.

Methods
Study Population
The Women’s Health Initiative Clinical Trial (www.whiscience.org/about)
enrolled 68 132 postmenopausal women (online-only Data Supple-
ment Figure 1) aged 50 to 79 years into randomized trials testing 3
prevention strategies (hormone therapy, dietary modification, or
calcium/vitamin D). Eligible women had a choice of enrolling into 1,
2, or all 3 components. At baseline, demographic and clinical
characteristics, physical measures, and a standard 12-lead ECG were
collected. Exclusion criteria were component specific and were
related to competing risks, safety reasons, and adherence or retention
reasons.9

We focused only on those women who had available a baseline
ECG of good quality and without arm lead reversal. We excluded
women who had any minor or major ECG abnormalities3 according
to Minnesota10,11 or Novacode12 criteria. The remaining 35 774
women had ECGs with sinus rhythm, normal AV conduction, no
evidence of old myocardial infarction as suggested by Q waves,
normal QRS duration, normal ventricular repolarization, no left atrial
enlargement, no right ventricular hypertrophy, no right atrial enlarge-
ment, and no fascicular block.

We further excluded 2510 women who had suspected or known
cardiovascular disease (history of angina, prior percutaneous coro-
nary intervention, prior coronary artery bypass graft, peripheral
arterial disease, prior carotid endarterectomy, aortic aneurysm, or
stroke) or a history of cancer (breast, ovarian, colon, cervical, liver,

lung, brain, bone, or stomach cancer or leukemia, lymphoma, or
Hodgkin disease). Finally, 120 women had missing outcome values
and were excluded. The final sample included 33 144 women
without known cardiovascular disease or cancer with normal base-
line 12-lead ECGs.

ECG Analysis
Standard 12-lead ECGs were recorded at baseline using standardized
procedures.1,3,13 These ECGs were processed at a central laboratory
(EPICORE Center; University of Alberta; Edmonton, Alberta, Can-
ada [and later at EPICARE; Wake Forest University; Winston-
Salem, NC]) and classified by Minnesota code and Novacode criteria
with the use of the Marquette 12-SL program, 2001 version (General
Electric; Menomonee Falls, WI).1,2 Software also abstracted contin-
uous duration and voltage measures by lead for the median beats in
each lead, all of which were recorded simultaneously for 10 seconds.

Four hundred and seventy-seven ECG measures abstracted by the
Marquette program were studied, encompassing both global and
individual ECG measures. Global measures included ventricular rate,
median PR duration, median QT duration, median QTc interval,
median P-wave axis, median QRS axis, and median T-wave axis.
Two measures of ultrashort heart rate variability were studied: SD of
the mean value of RR intervals over a 10-second recording (SDNN)
and the square root of the mean value of the squares of the
differences among all adjacent RR intervals (RMS-SD).

The Marquette program assigned to biphasic (ie, first inflection
above or below baseline and second inflection in opposite polarity)
P waves and T waves 2 sets of variables, where the second set was
termed prime, which is different from and not to be confused with
the term prime used in clinical ECG interpretation, which refers to
wave notching.

Individual ECG measures were as follows:

● P-wave measures included P-wave and P�-wave amplitudes, in-
trinsicoid times (ie, time from onset to peak), durations, and areas
in all 12 leads.

● Q-wave measures included Q-wave amplitudes, intrinsicoid times,
durations, and areas in all 12 leads.

● R-wave measures included R-wave and R�-wave amplitudes,
intrinsicoid times, durations, and areas in all 12 leads.

● S-wave measures included S-wave and S�-wave amplitudes, in-
trinsicoid times, durations, and areas in all 12 leads.

● QRS complex measures included QRS intrinsicoid times (time
from onset of QRS complex to middle of QRS complex) in all 12
leads.

● ST-segment measures included beginning of ST-segment ampli-
tudes (at J point), middle of ST-segment amplitudes (at J�1/16
average RR interval), end of ST-segment amplitudes (at J
point�1⁄8 average RR interval), and ST-segment amplitudes at J
point�60 ms in all 12 leads.

● T-wave measures included T-wave and T�-wave amplitudes,
intrinsicoid times, and areas in all 12 leads.

Amplitudes were recorded to the nearest 100th of a millivolt and
times recorded to the nearest millisecond.

Outcome
All-cause mortality, a clinically relevant and unbiased end point,14

was recorded centrally by the Women’s Health Initiative clinical
coordinating center.15

Statistical Analysis

Random Survival Forests
RSF analysis8 used all-cause mortality for the outcome. Candidate
predictor variables included all 477 ECG measures described previ-
ously in addition to 22 baseline demographic and clinical predictors
(Table 1).
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Derivation and Validation Subsets
Two thirds of the women were randomly selected for primary
analysis (derivation cohort, 22 096; deaths, 819), and the remainder
were selected for external validation (validation cohort, 11 048;
deaths, 410). When randomly selecting the derivation and validation
cohorts, we stratified according to event type (death or censoring) to
ensure a similar event rate in both cohorts. The mortality rates in
these cohorts were similar (online-only Data Supplement Figure 2).

Forest Analysis
Using the derivation cohort, an RSF of 1000 trees was constructed,
with each tree from an independent and unique bootstrap sample of
the data (Figure 1A). At each node of the tree, we randomly selected
a subset of candidate variables (Figure 1B). For example, the
variable occupying the level 0 branch/node was chosen through a
“competition” of 22 randomly selected variables; the number of
variables randomly selected is the square root of the number of total
candidate variables (in this case the square root of 499, which is
�22). For each of the 22 variables, we split the bootstrap sample into
2 groups, constructed Kaplan-Meier survival curves, and calculated
a log-rank statistic. The variable whose split yielded the highest
log-rank value “won the competition” and was thus chosen to occupy
the node. We split categorical variables according to their natural
categories and continuous variables at 10 randomly selected cut
points.

For each subsequent node of the tree, we repeated the same
process: random selection of candidate variables, splitting of each
variable with construction of survival plots and calculation of
log-rank statistic, and selection of the best splitting variable. The
process continued down each branch of the tree until we reached a
unique subset that contained no fewer than 3 deaths,8 (ie, a
terminal node). This approach yielded extensively grown trees
having, on average, 143 terminal nodes, where each terminal node
included a group of women having similar characteristics and
survival outcomes.

Maximal Subtrees for Identification of
Predictive Variables
As we have described elsewhere,16 the most important variables for
prediction were identified as those that most frequently split nodes
nearest to the trunks of the trees (ie, the root node). Figure 2
demonstrates a random tree with color coding of maximal subtrees.
A maximal subtree for a variable v is the largest subtree whose
lowest branch is split using v (ie, no other parent branches of the
subtree are split using v). There may be no maximal subtree, or there
may be several. The shortest distance from the tree trunk to the root
of a maximal subtree of v is the minimal depth of v. For example in
Figure 2, income splits the tree trunk and has a minimal depth of 0,
whereas age occupies the root of 2 yellow subtrees with minimal

Table 1. Baseline Characteristics

Characteristic
Derivation

(n�22 096)
Validation

(n�11 048)

Age, y 61 (50–79) 61 (50–79)

Ethnicity

White 18 395 (83) 9172 (83)

Black 1792 (8) 925 (8)

Hispanic 975 (4) 511 (5)

American Indian 94 (0) 31 (0)

Asian/Pacific Islander 541 (2) 270 (2)

Unknown 299 (1) 139 (1)

Smoking

Never smoked 11 436 (52) 5738 (52)

Past smoker 9018 (41) 4463 (40)

Current smoker 1642 (7) 847 (8)

Hypertension 5715 (26) 2839 (26)

Treated diabetes 628 (3) 344 (3)

Systolic blood pressure, mm Hg 124 (113–135) 124 (113–135)

Diastolic blood pressure, mm Hg 75 (70–81) 75 (70–81)

Body mass index, kg/m2 27.5 (24.3–31.3) 27.4 (24.4–31.5)

Statin use 1116 (5) 538 (5)

Other antihyperlipidemic
medication use

1304 (6) 634 (6)

Aspirin use 4013 (18) 1987 (18)

Bilateral oophorectomy 3370 (17) 1936 (18)

Hysterectomy 8430 (38) 4308 (39)

Waist-to-hip ratio 0.80 (0.76–0.85) 0.80 (0.76–0.85)

Pregnancy

Never pregnant 1864 (8) 929 (8)

1 1534 (7) 751 (7)

2–4 13 129 (59) 6550 (59)

5� 5569 (25) 2818 (26)

HRT Usage status

Never used 10 210 (46) 5089 (46)

Past user 3763 (17) 1810 (16)

Current user 8123 (37) 4149 (38)

Income

�$10,000 807 (4) 373 (3)

$10 000-$19 999 2285 (10) 1206 (11)

$20 000-$34 999 4997 (23) 2446 (22)

$35 000-$49 999 5198 (24) 2575 (23)

$50 000-$74 999 4410 (20) 2233 (20)

$75 000-$99 999 2023 (9) 1012 (9)

$100 000-$149 999 1288 (6) 639 (6)

�$150 000 623 (3) 285 (3)

Unknown 465 (2) 279 (3)

Alcoholic drinks per week 0.4 (0–2.7) 0.4 (0–2.7)

Marital status

Never married 908 (4) 463 (4)

Divorced/separated 3490 (16) 1813 (16)

(Continued)

Table 1. Continued

Characteristic
Derivation

(n�22 096)
Validation

(n�11 048)

Widowed 3270 (15) 1685 (15)

Presently married/living as
married

14 428 (65) 7087 (64)

Medical insurance 20 716 (94) 10 372 (94)

Education

0–8 y 293 (1) 158 (1)

Some high school 715 (3) 342 (3)

High school diploma/GED 3958 (18) 1871 (17)

School after high school 8714 (39) 4283 (39)

College degree or higher 8416 (38) 4394 (40)

Data are presented as n (%) or median (25th to 75th percentile), except for
age, which is presented as median (range). GED indicates general educational
development.
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depths of 3 and 6, respectively. The most predictive variables are
those whose minimal depth (averaged over the forest) is smaller than
a threshold value determined under the null hypothesis that a variable
is unrelated to the survival distribution.16 For variables like age in
which there are �1 maximal subtrees, we used only the lowest value
of minimal depth for calculating average minimal depth across the
forest. We have previously shown that this variable approach
successfully identifies the strongest predictors, with no loss of
overall model accuracy because of excessive parsimony.16

Construction of Prediction Models
We constructed 8 different prediction models using the derivation
cohort: model 1, RSF using all 499 demographic, clinical, and ECG
variables; model 2, Cox regression using all 499 variables; model 3,
L1-penalized Cox regression using all 499 variables; model 4,
Akaike information criterion-penalized Cox regression; model 5,
RSF using the 20 variables identified by the maximal subtree
algorithm; model 6, Cox regression using the 20 variables identified
by the maximal subtree algorithm; model 7, L1-penalized Cox
regression using the top-100 RSF variables with lasso parameter
selected by 10-fold cross-validation; and model 8, Akaike informa-
tion criterion-penalized Cox regression using the top-50 RSF vari-
ables. The choices of 100 variables for model 7, and 50 variables for
model 8, were arbitrary but necessary for these penalized Cox
regression methods to converge.

Validation of Prediction Models
Predictive accuracy for all models was assessed using Harrell
concordance index both internally (using out-of-bag cross-validation
in the derivation cohort) and externally (using the validation cohort).
We assessed the individual predictiveness of the top variables
identified by the maximal subtrees algorithm by constructing a

sequence of nested models and then calculating measures of discrim-
ination (Harrell concordance index) and calibration (continuous
ranked probability score,17 defined as the area under the prediction
error curve using the Brier score) for each. Values were calculated
using out-of-bag cross-validation. We investigated interactions
among our top-20 variables using linkage hierarchical clustering
analysis. Specifics regarding methods and results can be found in the
online-only Data Supplement.

Missing Data Imputation
Data were missing on 32 of the 499 variables, although very few of
these data were missing (maximum amount missing for a variable,
14.3%; average missed per variable, 1.5%). Missing data were
imputed using the forest method8 such that imputed data were not
guided by outcomes (ie, survival behavior of patients did not bias
imputation).

Computational Methods
Data assembly was performed with SAS version 9.1.3 (SAS
Institute Inc; Cary, NC) software. Analyses were performed using
R version 2.7.2 (www.r-project.org), using the publically avail-
able RSF library18,19 written by 2 of the authors (H.I., U.B.K.). I1
penalization was performed using the coxnet function in the
glmnet library (http://cran.r-project.org/web/packages/glmnet),
and Akaike information criterion penalization and fitting
was performed using stepAIC from the MASS library
(http://cran.r-project.org/web/packages/MASS).

Results
Characteristics and Outcomes
Table 1 shows the baseline characteristics of the derivation
and validation cohorts. Global ECG measures are shown in

A

B

Bootstrap sample 2

Boostrap sample 1

Bootstrap sample B

Tree 1

Tree 2

Tree B

Entire cohort

*   Each terminal node contains a group of women that have unique characteristics, and a survival  

At open circles randomly selected subset of demographic, clinical, or ECG variables compete 
to split node. Amongst these, single variable that discriminates between event/non-event best 
chosen to permanently split node.

Legend

curve demonstrating their outcome.

*

** *

**

*

Bootstrap sample n

Level 0 node

Level 1 nodes

Level 2 nodes

Level 3 nodes

Level 4 nodes Figure 1. Approach to constructing a random sur-
vival forest. A, One thousand bootstrap samples of
women were derived from the full cohort. B, Each
sample was then used to construct a unique and
independent decision tree.
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Table 2, and all other individual ECG measures are shown in
Table 3.

During a median follow-up of 8.1 years (range for survi-
vors, 0.5 to 11.2 years), 1229 (3.7%) women died. Causes of
death included cardiovascular diseases (251, 20%), cancer
(664, 54%), homicide/suicide (13, 1%), accident/injury (42,
3%), and other/unknown (259, 21%).

Identification of Predictors
In the derivation cohort using all demographic, clinical, and
ECG predictors, the 20 variables identified by RSF that were
most predictive of long-term all-cause mortality (Figure 3)
were the following:

● ECG variables representing autonomic tone, including
ventricular variability (SDNN, RMS-SD) and ventricular
rate.

● ECG variables representing atrial conduction, including
P-wave durations (P-wave intrinsicoid duration in leads V3
and V4, P-wave duration in lead V2), P-wave areas
(P-wave area in lead V2), P-wave amplitude (P-wave
amplitude in lead I), and P-wave axis (median of all leads).

● ECG variables representing ventricular depolarization and
repolarization, including QT duration (median of all leads).

● ECG variables representing ventricular repolarization, in-
cluding T-wave areas (T-wave area in lead I, T-wave area
in lead aVL), T-wave amplitude (T-wave amplitude in lead
I), and T-wave axis (median in all leads).

● Traditional variables, including age, waist-to-hip ratio,
smoking, income, systolic blood pressure, and body mass
index.

External Validation
We used the validation subset (n�11 048) to externally
validate 8 RSF and Cox prediction models (Table 4). The Cox
regression models (models 2 to 4) using all 499 variables did
not converge. The RSF and Cox regression models con-
structed with covariates selected by various variable selection
methods demonstrated similar discriminative accuracy in the
derivation and validation data sets. Hazard ratios and 95%
CIs derived from Cox model (model 6) are shown in
online-only Data Supplement Table 1.

We assessed the individual contribution of 20 variables (6
demographic/clinical variables and 14 ECG variables) se-
lected by RSF variable selection method to discrimination (C

Income

Treated diabetes

Ventricular rate

Age

Smoking

QT
duration

Systolic
BP

Age

P-wave 
duration 
(lead V2)

0

1

2

33

4

5

66

5

66

77

4

5

6

77

6

7

88

7

5

2

33

4

55

4

55

1

2

3

4

5

6

7

88

7

88

99

1010

6

5

4

5

66

5

6

77

6

3

44

2

WHR

Smoking

BMI

WHR

WHR

P-wave area
(lead aVL)

P-wave
duration

(lead V2)

Smoking

WHR

WHR

WHR

P-wave area
(lead aVL)

P-wave area
(lead V4)

P-wave
amplitude
(lead I)

T-wave
amplitude
(lead I)

Age

Income

BMI

Smoking

Systolic
BP

T-wave
axis

Ventricular
rate

T-wave area
(lead I)

SDNN

Figure 2. Example of 1 decision tree from the forest. Depth of a branch (node) is indicated by numbers 0 to 10. Highlighted are maxi-
mal subtrees (ie, largest subtree whose lowest branch is split using the variable of interest) for the variables income (blue) and age (yel-
low). Income has 1 maximal subtree at minimal depth 0. Age has 2 maximal subtrees at minimal depths 3 and 6.

Table 2. Global ECG Measures

Derivation
(n�22 096)

Validation
(n�11 048)

Ventricular rate, beats/min 65 (59–71) 65 (59–71)

Median PR duration, ms 158 (144–172) 156 (144–172)

Median QT duration, ms 400 (382–418) 400 (382–418)

Median QTc interval, ms 413 (406–423) 413 (406–423)

Median P-wave axis, ° 54 (42–65) 55 (42–65)

Median QRS axis, ° 27 (8–48) 27 (8–48)

Median T-wave axis, ° 40 (28–51) 40 (28–51)

SDNN, ms 16 (11–25) 17 (11–25)

RMS-SD, ms 17 (11–26) 17 (11–26)

Data are presented as median (25th-75th percentile). ECG indicates
electrocardiographic; RMS-SD indicates square root of the mean value of the
squares of the differences among all adjacent RR intervals; SDNN, SD of the
mean value of RR intervals over a 10-second recording.

Gorodeski et al Electrocardiographic Biomarkers and Mortality 525

 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


Table 3. Lead-Specific ECG Quantitative Measures

I II III aVL aVR aVF V1 V2 V3 V4 V5 V6

P-wave amplitude, �V

Q1 63 92 39 �24 �112 63 24 39 48 53 53 48

Q2 78 117 58 �14 �97 87 34 53 63 63 63 58

Q3 92 141 83 53 �83 112 48 73 78 78 73 73

P-wave duration, ms

Q1 98 98 67 52 98 96 39 80 98 98 98 98

Q2 106 106 98 90 106 104 46 102 106 106 106 106

Q3 114 114 110 106 114 112 55 110 114 114 114 114

P-wave area, �V�ms

Q1 156 254 60 �34 �317 151 27 80 135 148 148 140

Q2 200 330 132 �10 �271 229 50 122 172 183 181 170

Q3 247 404 212 102 �227 305 76 163 210 221 216 203

P-wave intrinsicoid duration, ms

Q1 50 44 28 26 46 36 20 26 34 38 44 46

Q2 60 50 40 44 54 46 26 34 42 46 52 54

Q3 66 58 50 64 62 54 32 40 52 58 66 66

P�-wave amplitude, �V

Q1 0 0 �24 0 0 0 �48 0 0 0 0 0

Q2 0 0 0 0 0 0 �34 0 0 0 0 0

Q3 0 0 0 34 0 0 0 0 0 0 0 0

P�-wave duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 59 0 0 0 0 0

Q3 0 0 27 48 0 0 68 0 0 0 0 0

P�-wave area, �V�ms

Q1 0 0 �16 0 0 0 �81 0 0 0 0 0

Q2 0 0 0 0 0 0 �51 0 0 0 0 0

Q3 0 0 0 31 0 0 0 0 0 0 0 0

P�-wave intrinsicoid duration, ms

Q1

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 64 68 0 0 64 0 0 0 0 0

Q-wave amplitude, �V

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 24 0 0 24 0 0 0 0 0 0 0 34

Q3 53 43 68 63 688 39 0 0 0 0 48 63

Q-wave duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 13 0 0 13 0 0 0 0 0 0 0 15

Q3 18 16 21 19 51 16 0 0 0 0 16 18

Q-wave area, �V�ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 10 0 0 10 483 0 0 0 0 0 0 15

Q3 27 20 44 32 871 18 0 0 0 0 23 33

Q-wave intrinsicoid duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 6 0 0 8 32 0 0 0 0 0 0 8

Q3 10 10 14 12 36 10 0 0 0 0 10 12

(Continued)
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Table 3. Continued

I II III aVL aVR aVF V1 V2 V3 V4 V5 V6

R-wave amplitude, �V

Q1 600 590 73 249 14 219 73 273 551 937 1005 800

Q2 781 771 156 439 34 410 126 424 815 1201 1240 996

Q3 991 976 375 664 63 629 195 629 1123 1503 1503 1215

R-wave duration, ms

Q1 48 47 20 40 6 39 20 28 40 42 42 48

Q2 63 60 29 55 15 52 24 34 45 47 49 63

Q3 74 75 51 68 20 70 28 40 50 52 59 72

R-wave area, �V�ms

Q1 673 637 38 264 0 215 44 215 583 974 1040 907

Q2 913 895 116 514 16 458 88 374 882 1271 1327 1161

Q3 1209 1208 411 820 38 766 152 603 1217 1624 1678 1457

R-wave intrinsicoid duration, ms

Q1 26 28 12 24 8 24 12 18 26 28 28 28

Q2 34 34 23 32 12 32 14 22 30 32 34 36

Q3 38 40 40 40 42 40 18 28 34 36 38 40

R�-wave amplitude, �V

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

R�-wave duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

R�-wave area, �V�ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

R�-wave intrinsicoid duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

S-wave amplitude, �V

Q1 0 0 0 0 0 0 527 644 405 190 24 0

Q2 0 19 141 0 590 53 712 874 605 346 131 0

Q3 73 131 415 126 844 175 917 1132 825 527 263 63

S-wave duration, ms

Q1 0 0 0 0 0 0 52 40 30 23 7 0

Q2 0 7 26 0 40 15 59 48 38 33 27 0

Q3 27 28 51 34 66 34 65 56 45 40 36 25

S-wave area, �V�ms

Q1 0 0 0 0 0 0 693 676 300 115 9 0

Q2 0 8 92 0 0 25 977 1035 537 267 87 0

Q3 47 96 466 97 943 150 1289 1455 834 472 218 42

S-wave intrinsicoid duration, ms 0 0 0 0 0 0 40 46 52 52 46 0

Q1

Q2 0 30 38 0 0 44 42 50 54 56 56 0

Q3 58 60 50 54 40 58 46 54 58 60 60 58

(Continued)
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Table 3. Continued

I II III aVL aVR aVF V1 V2 V3 V4 V5 V6

S�-wave amplitude, �V

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

S�-wave duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

S�-wave area, �V�ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

S�-wave intrinsicoid duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

QRS intrinsicoid duration, ms

Q1 34 36 38 34 36 38 40 42 34 34 34 36

Q2 38 38 44 40 38 42 42 48 38 36 38 38

Q3 40 42 48 44 40 46 46 52 50 40 40 42

ST-segment at J-point amplitude, �V

Q1 4 4 �15 �5 �35 �5 �20 �10 �15 �10 �5 4

Q2 14 19 4 4 �20 14 �5 14 9 9 9 19

Q3 29 39 24 24 �10 29 9 39 29 29 29 34

Middle ST-segment amplitude, �V

Q1 4 9 �5 �5 �35 4 14 43 29 14 9 4

Q2 14 24 9 4 �20 14 24 63 48 34 19 14

Q3 29 39 19 14 �10 29 39 92 78 53 39 24

End ST-segment amplitude, �V

Q1 19 24 �10 4 �59 9 9 73 63 39 29 14

Q2 34 43 9 14 �44 24 29 112 97 68 48 29

Q3 53 63 24 29 �25 43 48 161 141 102 78 48

ST 60 ms after J-point amplitude, �V

Q1 7 12 �4 �3 �32 4 12 43 31 17 9 4

Q2 17 24 7 4 �21 16 25 67 53 35 23 14

Q3 28 39 19 14 �11 27 40 96 79 56 39 26

T-wave amplitude, �V

Q1 166 209 �29 48 �297 112 �92 219 273 263 234 180

Q2 219 263 53 92 �244 156 �34 332 380 366 317 239

Q3 278 327 112 141 �200 209 63 458 507 483 415 312

T-wave area, �V�ms

Q1 930 1198 �68 221 �1654 609 �392 1392 1662 1531 1305 985

Q2 1204 1506 236 465 �1377 872 �101 2036 2268 2065 1734 1294

Q3 1518 1836 607 738 �1127 1185 351 2755 2966 2697 2255 1666

T-wave intrinsicoid duration, ms

Q1 102 106 72 88 104 104 62 82 94 98 102 104

Q2 114 116 106 108 116 118 100 96 106 112 114 116

Q3 126 128 124 124 128 130 120 110 118 124 126 128

(Continued)
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index) and calibration (continuous ranked probability score)
in sequential nested RSF models, where the first model used
only age; the second, age and waist-to-hip ratio; the third,
age, waist-to-hip ratio, and smoking; and so forth. Figure 4
shows that these performance measures stabilized in the
range of 15 to 20 variables, near the size of the model
identified by the primary analysis (Figure 3, Table 4).

Discussion
Among 33 144 postmenopausal women without known car-
diovascular disease or cancer and with normal resting ECGs
by Minnesota and Novacode criteria, we found that 20
variables were independently predictive of long-term mortal-

ity, 14 of which were ECG biomarkers representing auto-
nomic tone (ventricular rate and variability), atrial conduction
(P-wave durations and areas), ventricular depolarization (QT
duration), and ventricular repolarization (T-wave axis, ampli-
tude, and areas). Selected plots demonstrating adjusted pre-
dicted survival for an ECG biomarker from each 1 of these 4
categories are shown in Figure 5 (all others are shown in
online-only Data Supplement Figure 3). Further, we found
that parsimonious prediction models incorporating these ECG
measures along with demographic and clinical characteristics
selected by an RSF variable selection procedure yielded
better predictive accuracy than the nonparsimonious RSF
model using all variables (Table 4). Finally, the parsimonious

Table 3. Continued

I II III aVL aVR aVF V1 V2 V3 V4 V5 V6

T�-wave amplitude, �V

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

T�-wave area, �V�ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

T�-wave intrinsicoid duration, ms

Q1 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 0 0 0 0 0 0 0

P-wave intrinsicoid duration indicates time from P onset to peak of P; P�-wave intrinsicoid duration, time from P� onset to peak of P�, where P� is a second deflection
of the P wave that is opposite in polarity to the original P wave; Q1, 25th percentile; Q2, 50th percentile or median; Q3, 75th percentile; Q-wave intrinsicoid duration,
time from Q onset to peak of Q; QRS intrinsicoid duration, time from onset of QRS complex to middle of QRS complex; R-wave intrinsicoid duration, time from Q onset
to peak of R; R�-wave intrinsicoid duration, time from Q onset to peak of R�; S-wave intrinsicoid duration, time from Q onset to peak of S; S�-wave intrinsicoid duration,
time from Q onset to peak of S�; T-wave intrinsicoid duration, time from end of ST segment to peak of T; T�-wave intrinsicoid duration, time from end of ST segment
to peak of T�, where T� is a second deflection of the T wave that is opposite in polarity to the original T wave.
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RSF model populated by the RSF variable selection proce-
dure was sparser (ie, containing fewer covariates) than
parsimonious regression models populated by various other
variable selection approaches but performed similarly well in
terms of prediction (Table 4). Although other investigators
have reported on the predictive utility of ECG findings in
women,1–3 we are, to our knowledge, the first to use an
algorithmic approach to simultaneously assess hundreds of
digitally measured ECG variables without the bias of
preselection.

Use of hundreds of ECG measures for prediction modeling
presents a unique challenge. Many of these variables are
highly correlated, may have complex interactions that are

difficult to detect, and may have nonlinear associations with
outcome. Traditional regression and variable selection meth-
ods perform poorly under these types of conditions and tend
to produce biased results.6 Our findings confirm these chal-
lenges. When we attempted to use standard Cox modeling,
we were unable to generate models that converged (Table 4).
Additionally, for the penalized Cox regression modeling
(model 7 and model 8), it was necessary to restrict the
selection of the model variables in an arbitrary manner in
order for these methods to converge. To address these
challenges, we used RSF methodology both for risk modeling
and for variable selection.

Machine learning, the scientific discipline from which RSF
methodology is derived, is a field concerned with the design
and development of algorithms that allow computers to
change behavior based on data.20 This approach assumes that
“nature produces data in a black box whose insides are
complex, mysterious, and at least, partly unknowable.”6 As
such, instead of attempting to model data from the black box
(ie, traditional regression), machine learning is concerned
with iterative algorithms, such as RSF, that are intensely
focused on prediction.

Unlike classification and regression trees where only a
single tree is constructed, RSF uses a large number of
survival trees for prediction and variable selection.8 Growing
extensive trees with hundreds of decision branches is a
general principle of random forest methodology.7 Doing so
yields trees with low bias (ie, prediction models that better
estimate the predictor being estimated). To ensure low
variance (ie, amount of variation within predicted results),

Table 4. C Index Values

No.
Variables
in Model

Derivation
Cohort

Validation
Cohort

n … 22 097 11 048

Deaths, n (%) … 819 (3.7) 410 (3.7)

Prediction models using all
covariates

Model 1 RSF 499 0.6815 0.6710

Model 2 Cox 499 Did not converge …

Model 3 L1-penalized Cox 499 Did not converge …

Model 4 AIC-penalized Cox 499 Did not converge …

Prediction models using
covariates selected by
variable selection methods

Model 5 RSF 20 0.6992 0.6934

Model 6 Cox 20 0.6954 0.6975

Model 7 L1-penalized Cox 59 0.7003 0.6978

Model 8 AIC-penalized Cox 22 0.7005 0.6980

Models 1–4 used all 499 demographic, clinical, and ECG variables available.
Models 5 and 6 used 20 variables selected by RSF variable selection method
(demographic/clinical: age, waist-to-hip ratio, smoking, income, systolic blood
pressure, body mass index; ECG: SDNN, ventricular rate, T-wave area 	lead I
,
P-wave intrinsicoid duration 	leads V3, V4
, P-wave duration 	lead V2
, T-wave
amplitude 	lead I
, RMS-SD, T-wave axis, P-wave axis, P-wave amplitude 	lead
I
, T-wave area 	lead aVL
, QT duration, P-wave area 	lead V2
). Model 7 used
59 variables selected by lasso approach from the top-100 RSF variables
(demographic/clinical: age, waist-to-hip ratio, smoking, systolic blood pres-
sure, income, body mass index, hypertension, education, diastolic blood
pressure, marital status, alcoholic drinks per week, treated diabetes; ECG:
SDNN, P-wave intrinsicoid duration 	leads I, aVL, V2, V4, V5, V6
, ventricular
rate, P-wave duration 	leads I, aVL, V2, V3, V6
, RMS-SD, T-wave axis, P-wave
axis, R-wave duration 	leads aVF, V1, V4
, P-wave area 	leads I, V1
, QRS
intrinsicoid duration 	lead I
, T-wave intrinsicoid duration 	leads I, III, aVL
,
P-wave amplitude 	leads I, aVL, V5
, T-wave area 	leads aVR, V3
, R-wave
amplitude 	leads II, V1, V5, V6
, R-wave intrinsicoid duration 	leads II, aVF, V1,
V3, V4
, P�-wave area 	lead V1
, R-wave area 	leads III, aVL, V3, V6
, T-wave
amplitude 	lead V1
, QTc duration, P�-wave amplitude 	lead V2
). Model 8 used
22 variables selected by AIC stepwise approach from the top-50 RSF variables
(demographic/clinical: age, waist-to-hip ratio, smoking, systolic blood pres-
sure, income, body mass index, hypertension, education, marital status; ECG:
ventricular rate, P-wave duration 	lead V2
, T-wave axis, P-wave axis, R-wave
duration 	lead V4
, P-wave area 	lead I
, P�-wave intrinsicoid duration 	lead
aVL
, QRS intrinsicoid duration 	lead I
, T-wave area 	leads aVR, aVL
, P-wave
amplitude 	lead I
, R-wave intrinsicoid duration 	lead aVF
, R-wave area 	lead
V5
). AIC indicates Akaike information criterion; RSF, random survival forest.
Other abbreviations as in Table 2.
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trees must be decorrelated, which is accomplished by intro-
ducing 2 forms of randomization when growing a tree (Figure
1). First, trees are grown using independent bootstrap samples
of data. Second, each tree is grown by randomly selecting a
subset of candidate variables for splitting at each node. Using
this 2-stage randomization yields a stable and accurate
inference and resolves the instability of classification and
regression trees.21 Random forest has been shown to be
accurate and comparable to state-of-the-art predictors, such as
bagging,22 boosting,23 and support vector machines.24 Fur-
ther, random forest has been shown to be highly effective in
problems involving large numbers of correlated vari-
ables.7,16,25–27 Examples in the literature include genetics,28,29

environmental science,30 and rheumatology.31

We believe that RSF analysis may have potential future
applications in clinical practice. The RSF prediction model
can be stored as an object in the statistical software to be used
at a later time on external data sets. This is possible because
the random seed chain used to generate the original model is
stored. Thus, once a model is generated, it can be used
repeatedly on test data sets and will yield identical results if
repeated on the same data set. Further, if the original data are
used on the restored model, the results will be identical to that
of the original analysis. Moreover, this applies even when the
training and test data have missing values because we also
store the seed chain used to impute missing data values. Thus,
when the model is restored, the seed chain used to impute
data is reinitialized, and the original forest and its imputation

mechanism are reproduced exactly as before. These proper-
ties may allow RSF to be used as a prediction tool in clinical
settings. It is technologically feasible to create Web-based or
even hand-held RSF calculators for use in practice.

The present study has several important limitations. First,
the Women’s Health Initiative clinical trials enrolled mostly
white, highly educated women and, therefore, may have
limited generalizability. Second, many of the clinical vari-
ables were by self-report, and data regarding standard blood
biomarkers were lacking. Lastly, we did not have an external
data set (replication cohort) with which to validate our
prediction models, although we attempted to do so by setting
a portion of our data aside for validation. We are not aware of
a similar cohort of postmenopausal women with detailed
ECG data to allow such replication and validation. It is
possible that several other National Heart, Lung, and Blood
Institute cohorts, including the Framingham Heart Study,
may soon digitize ECG data and make it available to
investigators.

In summary, we found that ECG biomarkers representing
autonomic tone, atrial conduction, and ventricular depolar-
ization and repolarization were independently predictive of
long-term mortality in postmenopausal women who had no
known cardiovascular disease or cancer and had normal
ECGs by standard clinical criteria. These findings suggest
that further research will be necessary to identify underlying
pathophysiological mechanisms and potential therapeutic im-
plications. Additionally, we introduced RSF, a machine-
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learning approach to data analysis, which may be of utility in
other complex data problems in cardiovascular medicine.
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Supplemental Methods 

 

Interactions 

 

We investigated interactions between our top 20 variables by using a modified version 

of minimal depth.  For each variable v, we determined its minimal depth.  We then 

calculated the "relative minimal depth" for each of the other 19 variables to v by 

counting the number of splits needed until that variable split for the first time under v.  A 

variable with a small minimal depth relative to v is highly associated with v because it 

indicates a variable with a tendency to split whenever v does.1  The relative minimal 

depth for each variable was determined by averaging over the forest.  This resulted in 

19 values for each variable.  These values were converted to a distance matrix and 

complete linkage hierarchical clustering was applied to this matrix. 

 

Supplemental Figure 4 displays the dendrogram from the hierarchical clustering 

analysis (for convenience, the bottom part of the figure displays the minimal depth for 

each variable rounded to the nearest integer).  This figure identifies three to four distinct 

clusters.  The "top" cluster identified by the clustering algorithm is age (green cluster on 

the extreme left).  Its height in the dendrogram and the fact that its minimal depth is by 

far the smallest of all variables suggests that all variables must in some way interact 

with it.  On the right-hand side systolic blood pressure (blue cluster) and smoking, waist-

to-hip ratio, and SDNN (orange cluster) comprise two near similar clusters that appear 

primarily to be a clinical effect. These variables must be interrelated to one another. 

 Finally, the large cluster in the middle (red cluster) is predominantly ECG-based.  

These variables must also be interrelated.  

 

As an example, Supplemental Figure 5 illustrates how survival depends upon age and 

the three variables in the orange cluster. Plotted on the left vertical axis is 10-year 

predicted survival against age on the bottom horizontal axis.  Each panel is conditioned 

by waist-to-hip ratio (top horizontal axis) and SDNN (right vertical axis).  Red and blue 

curves are survival stratified by smoking behavior, with blue indicating smoking.  In all 
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panels, survival decreases with increasing age and with smoking.  One can see an 

interaction involving the remaining two variables, with survival being generally worse for 

patients with large waist-to-hip ratios and with low SDNN values. 
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Supplemental Table 1. Hazard ratios and 95% confidence intervals (for 1 standard deviation of difference 
in continuous variables) amongst 20 variables identified by random survival forest  
 
 Hazard Ratio Lower 95% CI Upper 95% CI 

Age 1.70 1.58 1.83 
Waist-to-hip ratio 1.06 1.00 1.11 
Smoking 1.58 1.42 1.76 
Income 0.83 0.77 0.90 
Systolic blood pressure 1.13 1.06 1.21 
SDNN 0.98 0.86 1.12 
Ventricular rate 1.24 1.09 1.40 
T-wave area (lead I) 0.72 0.55 0.94 
P-wave intrinsicoid time (lead V4) 1.02 0.94 1.10 
P-wave duration (lead V2) 0.92 0.85 0.99 
T-wave amplitude (lead I) 1.07 0.85 1.34 
RMS-SD 0.98 0.87 1.11 
T-wave axis (median of all leads) 1.30 1.13 1.49 
P-wave axis (median of all leads) 1.04 0.99 1.09 
Body mass index 1.11 1.04 1.19 
P-wave amplitude (lead I) 0.97 0.89 1.05 
T-wave area (lead avL) 1.43 1.15 1.79 
QT duration (median of all leads) 1.14 1.00 1.29 
P-wave intrinsicoid duration (lead V3) 0.98 0.90 1.06 
P-wave area (lead V2) 1.01 0.92 1.10 
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Post-menopausal women enrolled in the Women’s 
Health Initiative Clinical Trial  (n = 68,132) 

Excluded due to prior CVD or cancer (n = 2,510)

Studied (n = 33,144)

Excluded as baseline ECG unavailable (n = 993),
or due to poor quality ECG tracing or arm lead 
reversal (n = 819)

Supplemental Figure 1.

Women with normal ECGs (n = 35,774)

Excluded for any minor or major ECG 
abnormalities according to Minnesota or Novacode 
criteria (n = 30,546)

Excluded due to missing outcome values (n = 120)

5 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


Years

S
ur

vi
va

l

0 1 2 3 4 5 6 7 8 9 10

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

22096 21995 21839 21653 21475 21285 21065 18475 12122 6001 2265 Derivation

11048 10983 10918 10828 10729 10643 10532 9273 6054 2985 1047 Validation

Derivation

Validation

Log−rank P-value=0.96

Supplemental Figure 2.  

6 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


20 40 60 80

85
90

95
10

0

T−wave axis (median of all leads)

P
re

di
ct

ed
 S

ur
vi

va
l

0 200 400 600 800 1000

85
90

95
10

0

P−wave axis (median of all leads)

P
re

di
ct

ed
 S

ur
vi

va
l

0 20 40 60 80 100 120

85
90

95
10

0

P−wave intrinsicoid time (lead V4)

P
re

di
ct

ed
 S

ur
vi

va
l

0 50 100 150 200 250 300 350

85
90

95
10

0

Root mean square difference RR−int.

P
re

di
ct

ed
 S

ur
vi

va
l

0 50 100 150 200 250 300

85
90

95
10

0

Std. dev. normal to normal RR−int.

P
re

di
ct

ed
 S

ur
vi

va
l

500 1000 1500 2000 2500 3000 3500

85
90

95
10

0

T−wave area (lead I)

P
re

di
ct

ed
 S

ur
vi

va
l

SDNN (ms) T-wave area (lead I) (μV * ms)

RMS-SD (ms)

P-wave axis (median of all leads) (degrees)T-wave axis (median of all leads) (degrees)

P-wave intrinsicoid time (lead V4) (ms)

Supplemental Figure 3. 

5-year

8-year

10-year

7 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


−50 0 50 100 150 200

85
90

95
10

0

P−wave amplitude (lead I)

P
re

di
ct

ed
 S

ur
vi

va
l

0 500 1000 1500 2000 2500

85
90

95
10

0

T−wave area (lead avL)

P
re

di
ct

ed
 S

ur
vi

va
l

0 20 40 60 80 100

85
90

95
10

0

P−wave intrinsicoid duration (lead V3)

P
re

di
ct

ed
 S

ur
vi

va
l

0 100 200 300 400

85
90

95
10

0

P−wave area (lead V2)

P
re

di
ct

ed
 S

ur
vi

va
l

P-wave amplitude (lead I) (μV) T-wave area (lead avL) (μV * ms)

P-wave area (lead V2) (μV * ms)P-wave intrinsicoid duration (lead V3) (ms)

Supplemental Figure 3.  (continued) 

8 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


   
   

AG
E

   
   

V
E

N
TR

IC
U

LA
R

 R
AT

E

   
   

R
O

O
T 

M
E

A
N

 S
Q

U
A

R
E

 D
IF

FE
R

E
N

C
E

 R
R

−I
N

T.

   
   

T−
W

AV
E

 A
R

E
A

 (L
E

A
D

 I)

   
   

B
O

DY
 M

A
S

S
 IN

D
E

X

   
   

T−
W

AV
E

 A
X

IS
 (M

E
D

IA
N

 O
F 

A
LL

 L
E

A
D

S
)

   
   

P
−W

AV
E

 IN
TR

IN
S

IC
O

ID
 D

U
R

AT
IO

N
 (L

E
A

D
 V

3)

   
   

P
−W

AV
E

 D
U

R
AT

IO
N

 (L
E

A
D

 V
2)

   
   

P
−W

AV
E

 A
M

P
LI

TU
D

E
 (L

E
A

D
 I)

   
   

T−
W

AV
E

 A
M

P
LI

TU
D

E
 (L

E
A

D
 I)

   
   

T−
W

AV
E

 A
R

E
A

 (L
E

A
D

 A
V

L)

   
   

IN
C

O
M

E

   
   

P
−W

AV
E

 A
X

IS
 (M

E
D

IA
N

 O
F 

A
LL

 L
E

A
D

S
)

   
   

P
−W

AV
E

 IN
TR

IN
S

IC
O

ID
 T

IM
E

 (L
E

A
D

 V
4)

   
   

Q
T 

D
U

R
AT

IO
N

 (M
E

D
IA

N
 O

F 
A

LL
 L

E
A

D
S

)

   
   

P
−W

AV
E

 A
R

E
A

 (L
E

A
D

 V
2)

   
   

S
Y

S
TO

LI
C

 B
LO

O
D

 P
R

E
S

S
U

R
E

   
   

S
M

O
K

IN
G

   
   

W
A

IS
T−

TO
−H

IP
 R

AT
IO

   
   

S
TD

. D
E

V.
 N

O
R

M
A

L 
TO

 N
O

R
M

A
L 

R
R

−I
N

T.

M
in

im
al

 D
ep

th

6

10

11

12

13

14

Supplemental Figure 4. 

9 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


80
90

10
0

50 60 70 80 50 60 70 80

80
90

10
080

90
10

0

50 60 70 80 50 60 70 80

80
90

10
0

Age

10
−y

ea
r S

ur
vi

va
l (

%
)

1.0 1.5 2.0
Waist−to−hip ratio

50
10

0
15

0
20

0
25

0
30

0
S

td
. d

ev
. n

or
m

al
 to

 n
or

m
al

 R
R

−i
nt

.

Supplemental Figure 5. 

10 at Case Western Reserve University on February 6, 2012circoutcomes.ahajournals.orgDownloaded from 

http://circoutcomes.ahajournals.org/


Supplemental Figure Legends 

 

Supplemental Figure 1. CONSORT diagram. 

 

Supplemental Figure 2. Kaplan-Meier plot comparing outcomes between derivation 

and validation cohorts. 

 

Supplemental Figure 3. Adjusted-predicted survival (%) at 5, 8, and 10 years. 

 

Supplemental Figure 4. Dendrogram presenting results of hierarchical clustering 

analysis. 

 

Supplemental Figure 5. RSF-estimated 10-year survival as a function of age, SDNN, 

and WHR for smokers (blue) and non-smokers (red). Smoothed curves are loess curves 

of the estimated survival for each individual. 
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