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Abstract

In the field of organ transplantation, the accurate assessment of donor organ

quality is necessary for efficient organ allocation and informed consent for

recipients. A common approach to organ quality assessment is the development

of statistical models that accurately predict posttransplant survival by integrating

multiple characteristics of the donor and allograft. Despite the proliferation of

predictive models across many domains of medicine, many physicians may

have limited familiarity with how these models are built, the assessment of how

well models function in their population, and the risks of a poorly performing

model. Our goal in this perspective is to offer advice to transplant professionals

about how to evaluate a prediction model, focusing on the key aspects of

discrimination and calibration. We use liver allograft assessment as a paradigm

example, but the lessons pertain to other scenarios too.
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INTRODUCTION

In the field of organ transplantation, like other areas of
medicine, there has been an interest in developing and

implementing predictive models. In kidney transplanta-
tion, the kidney donor risk index (DRI), which is meant
to summarize allograft quality, is integrated directly into
organ allocation and other real-time measures of organ

Abbreviations: C-index, concordance index; DRI, donor risk index; OPTN, Organ Procurement and Transplantation Network.
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quality. Although scores have been developed in the
fields of lung and liver transplantation, they have not
been implemented into clinical practice.[1–5]

In liver transplantation, the liver DRI was developed
in 2006 but was never implemented into clinical
practice.[2–5] There have been efforts to develop a
better liver donor risk score, including the ID2EAL
score.[6] While ID2EAL had superior discrimination
compared to the DRI, it too had limitations preventing
it from being implemented in clinical practice.[6–10] Given
the limitations of available liver donor risk scores, liver
transplant physicians often rely on heuristics and past
experiences to make decisions that influence whether a
donor’s liver is used or discarded and a given patient is
transplanted or waits for another offer while facing the
risk of death or clinical deterioration.[3,11–13] The
potential advantages of an accurate liver quality score
would include a greater ability to match the projected
longevity of organs to the patient's projected survival
and the potential to enhance the processes of informed
consent.[3,11–13] An accurate liver score could improve
outcomes by supplementing the judgment of human
clinicians, which can be flawed in the setting of fatigue,
distractions, or well-described cognitive biases.

The goal of developing risk models is to create risk
scores with excellent discrimination and calibration.
However, this goal is often not achieved. Journals and
clinicians often focus primarily on measures of discrim-
ination (eg, concordance index [C-index]) when deter-
mining the decision to accept a manuscript or implement
a model in clinical practices.[1] Therefore, our goal is to
present a review of the topics of discrimination and
calibration, using the risk score we developed to
contextualize these important concepts in the specific
context of organ transplantation.

A NOVEL RISK MODEL IN LIVER
TRANSPLANTATION

As part of a set of projects to improve the assessment of
organ quality, we sought to develop a new liver allograft
risk model using state-of-the-art machine learning
methods. We conducted a retrospective cohort study
using data from the Organ Procurement and Trans-
plantation Network (OPTN) of deceased liver donors
from May 1, 2007, to March 31, 2022, and recipients of
those transplanted organs.[14] We included a number of
donor variables that have previously been shown to be
predictive of graft outcome and/or biologically plausibly
related to the outcome of graft failure.[2–6] We included
“baseline” variables (ie, defined only once for a donor
and available at the time of organ procurement), in
addition to longitudinal laboratory variables from the
donor hospitalization at any time point available in
DonorNet, 48 hours prior to cross-clamp (ie, terminal),
24 hours prior to cross-clamp, and terminal values

(Supplemental Table S1, http://links.lww.com/LVT/
A896). The primary study outcome was time-to-graft
failure, a continuous outcome defined as death or re-
transplantation. Secondary outcomes included graft
failure assessed at 1, 3, 5, and 10 years. The models
were built using random survival forest functions using
the “rfsrc” command in R.[15] We used “VarPro” for
dimension reduction (a model-free variable selection
strategy that determines which variables are related to
the outcomes based on the restricted mean survival
time.[16] The restricted mean survival time is a measure
of the average time-to-graft failure from the time of
transplantation to a specific time point.

Despite the inclusion of longitudinal variables not
previously explored in liver allograft models, our models
had only modest discrimination, with a time-dependent
AUC that varied from 0.59 to 0.62, yet excellent
calibration (based on calibration plots and time-depen-
dent Brier scores). This AUC is similar to the magnitude
to that of the DRI and the ID2EAL risk scores,[17,18] a
recently published lung risk score,[1] and the kidney
DRI, which is implemented directly into kidney trans-
plant allocation.[19–21] Later in this paper, we will
contextualize how a model with similar performance
could be implemented in clinical practice.

UNDERSTANDING DISCRIMINATION
AND CALIBRATION

When assessing a risk prediction model, the 2 primary
performance measures are discrimination and calibra-
tion. Simply stated, discrimination refers to the ability to
differentiate between those who will versus will not
develop the outcome of interest. Calibration refers to the
agreement between the frequency of observed events
and the predicted probabilities.[22] Notably, prediction
models differ from explanatory models, in which the
goal is often to gain insight into the relationships
between variables in a model and the outcome.

Discrimination

In organ transplantation, measures of discrimination
might reflect how often a risk score correctly ranks
orders of any 2 donor allografts (or recipients) with
respect to their observed outcome. In liver transplanta-
tion, the relevant outcome is often graft failure, and the
C-statistic reflects whether a model correctly predicts
whether allograft A or B reaches that outcome first.[23]

We can use the example of all livers donated by
deceased donors in the year 2018. Put simply, if any 2
liver allografts are identified from the pool of livers
donated in 2018, a C-index of 0.8 shows that the risk
score correctly predicts 80% of the time which donated
liver will first reach the outcome. Discrimination does not
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assess a model’s accuracy in predicting the rate of the
event of a graft failure overall or in important subgroups;
the C-statistic for 2 models could be identical with
widely varying predictions of the rate. That is why
measures of calibration are also needed.

The time horizon for an outcome is a critical
determination when deriving a risk model because it
impacts the type of model used to derive the score
(eg, logistic regression versus Cox regression) and
the measure of discrimination. Two very common
approaches to discrimination are the receiver operating
curve, used for a binary outcome such as death, and the
time-dependent AUC (or C-statistic) for a time-to-event
outcome. For example, had we decided to focus our
posttransplant model only on short-term posttransplant
mortality (eg, in-hospital mortality, 30-d mortality), we
would have used logistic regression models as the
outcome (death) at any point during follow-up would be
considered a bad outcome by patients, regardless of
when during the short-term postoperative period death
occurred. However, in the model we presented, the
focus was on long-term outcomes (1, 3, 5, and 10 y);
therefore, we fit time-dependent models that accounted
for the outcome (death) and time because a death in a
patient with cirrhosis that occurred 3 months after
diagnosis has more important clinical implications than
one occurring 4 years after diagnosis.[10]

In the setting of binary, rather than time-to-event
outcomes, the AUROC or AUC is equivalent mathe-
matically to Harrell C-index. However, the measures
have slightly different interpretations. The AUC mea-
sures separability (ie, discrimination) based on the
ROC, which plots sensitivity versus specificity. In
contrast, the C-index measures the rank correlation
between predicted risk scores and observed outcomes
(ie, how often does the subject who experiences the
outcome have a higher predicted risk probability than
the person who did not have the outcome).[23–25] Both
metrics have important limitations in the assessment of
time-to-event outcomes, including (1) difficulty account-
ing for censored outcomes and (2) handling of time-
dependence because 2 subjects could have the same
risk score because they both achieve the outcomes
despite vast differences in survival duration (ie, time-to-
the outcome). With respect to censored outcomes, this
is an issue when there is potential for survival beyond
the time horizon that is analyzed. In our model, we
focused on outcomes out to 10 years, even though
median posttransplant survival is 12 years. As a result,
our discrimination at 10 years does not account for
events that occur after 10 years, and deaths at 11 years
and 15 years would both be considered censored
outcomes. With respect to time-dependence, even
when evaluating survival under a time-to-event frame-
work, the AUC in its simplest form still must account for
the outcome in a binary fashion at various time intervals
(eg, 3 y); therefore, deaths at year 1 versus year 2 are

both considered an outcome. Approaches to account
for the time-dependent issue are calculating and
graphically depicting time-dependent AUCs at multiple
time intervals, or more sophisticated methods that
involve integrated AUCs that account for the AUC and
its change over time for the duration of the analytic time
period.[26]

Calibration

Calibration assesses how close a risk score’s prediction
of the expected outcome is to the observed outcome.
For example, a prediction model with poor calibration
might predict that survival probability at 3 years was
75% for livers assessed in the lowest quartile of quality
when the observed (actual) survival is only 50%. Some
liver transplant clinicians and patients might be willing to
consider transplantation in the setting of a 75%
probability of surviving, but not 50%. In practice, a
model is fit for the outcome of interest, which is then
often converted to a risk score based on the beta
coefficients of the model serving as multipliers for the
model variables. For example, if a subgroup of the
recipients in the population that a given model has
assigned a risk score of 2 reach the outcome 30% of the
time (ie, observed), then a perfectly calibrated model
will correctly predict that the outcome rate will be 30%
for this subgroup (ie, expected). Calibration needs to be
assessed in a few different ways. Oftentimes, authors
present a quantitative assessment of calibration, most
commonly using the Brier score. This provides an
overarching measure of the agreement between pre-
dicted versus observed outcomes but can give a false
sense of security because it is a summary metric, that
may overlook subgroups for which a model is poorly
calibrated. As a result, it is critical to also be provided
with a graphical assessment of calibration using a
calibration plot, which compares values of predicted
probability of outcome versus true probability (Figure 1).
Graphically, a well-calibrated model/risk score will have
predicted and true probabilities that nearly overlap (ie,
the model/score predicts the outcome that is close to
reality, as shown in Figure 1), while a model with a lower
Brier score has better calibration.[27]

The techniques to measure calibration are broadly
similar for binary and time-to-event outcomes, in that they
both use Brier scores and calibration plots. However, for
the Brier score, one can calculate time-to-event Brier
scores, which account for the time to an event, but
assess the calibration at different time points. In this way,
the calibration can vary as a function of follow-up times.
Similarly, for calibration plots, one evaluates the
observed versus predicted survival probability (ie, time-
to-event) and can evaluate it for all the follow-ups, as
well as at discrete time points (eg, calibration plots at 1, 3,
and 5 y).
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APPLYING RISK MODELS TO
CLINICAL CASES IN LIVER
TRANSPLANTATION

The ideal scenario is a risk model that has high
discrimination and calibration. However, in organ
transplantation, many risk scores do not have excellent
performance metrics. In the setting of our risk model (or
prior risk models such as the liver DRI or the kidney
DRI), clinicians often have to weigh the pros and cons of
models with different discrimination and calibrations and
determine whether applying a given model will improve
clinical decision-making and/or outcomes.

To help contextualize the impact of discrimination
and calibration on the clinical utility of a risk score, we
present a simple hypothetical example of how a
clinician can apply such models to deceased donor
liver offers. We acknowledge that one must not always
sacrifice discrimination for calibration (and vice versa),
but for the sake of simplicity, we developed an example
where we only varied one of these model performance
parameters (Figures 2A–F).

We present scenarios in which a transplant surgeon
named Dr. Brown has 2 deceased donor liver offers for
a specific patient. We chose extremes for the sake of
simplicity (ie, high discrimination/low calibration vs. low
discrimination calibration/high calibration) using
extremes of liver “quality” (ie, livers with good outcomes
vs. bad outcomes) to contextualize how risk models
could be used in clinical practice.

In example 1 (Figures 2A–C), both donor livers have
good observed outcomes (ie, the actual survival).
However, if Dr. Brown had to rely on a high discrimi-
nation/low calibration model, she would expect both

livers to have bad outcomes (an incorrect prediction due
to the low calibration) and, therefore, decline both livers.
Conversely, if Dr. Brown relied on a high calibration/low
discrimination model (ie, similar to the risk score we
developed), she would likely be willing to accept either
liver but would not be able to accurately determine
which liver would have the better outcomes. In example
1, the C-statistic of 0.60, means that the liver with lower
observed survival would be (incorrectly) estimated to be
“better” (and accepted) 40% of the time. In this scenario,
the C-statistic reflects the proportion of times that
the model would correctly identify the donor that will
have the better outcome (and 1 minus that equals
the proportion of time it would incorrectly categorize the
donor with the worse outcome as the better donor). The
recipient would still have a good outcome because the
surgeon correctly accepted a liver that was accurately
predicted to have excellent long-term survival. In a
sense, the surgeon had a low-risk choice to make,
because both options were good.

In example 2 (Figures 2D–F), we present an
alternative scenario where both liver grafts would have
poor observed outcomes. If the surgeon relied on a high
discrimination/low calibration model, they would be able
to accurately assess which organ would have better
survival and would transplant it, not recognizing that
they were overestimating the predicted longevity of the
organ. Conversely, if the surgeon employed a model
with high calibration, they would decline both offers,
confident in the prediction that both livers would not
have good long-term outcomes.

What these scenarios also highlight is the dangers of
using a well-calibrated (or poorly calibrated) model,
regardless of its discrimination in the setting of organ
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F IGURE 1 Example of a calibration plot of predicted versus observed survival.
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offers, because of the uncertainties about the model's
ability to accurately assess the failure rate of a given
organ. Our hypothetical scenario is an oversimplification
of the complex process of organ offer decision-making,
whereby surgeons need to also consider whether a
patient is better off accepting a given offer or waiting for
another offer. Those decisions need to consider how
sick a patient is and their likelihood of surviving to
receive another offer, as well as the probability the next

offer will be better than the current offer. But our
scenario does highlight one aspect of that process,
whereby a well-calibrated model would allow a surgeon
to feel confident that the given model they are using is
accurately predicting the survival of the offered organ,
and whether that meets an acceptable threshold from
the perspective of the surgeon and the patient.

In a situation where one organ is “good” and one is
“bad,” the impact of discrimination and calibration can

I want an accurate
estimate of how long

each liver will last

I want an accurate
estimate of how long

each liver will last
I want to know

which liver is better
quality

Hello Dr. Smith, this is
Jen from the OPO. We
have two simultaneous
liver offers for your
patient. We need you to
decide within the next
15 minutes which liver
you would like to accept.

Key clinical question: What is more important for the patient?
a) The surgeon correctly accepts the liver that will last longer?
b) The surgeon correctly accepts a liver that will last a long time?

I want to know
which liver is better

quality

Hello Dr. Jones, this is
John from the OPO. We
have two simultaneous
liver offers for your
patient. We need you to
decide within the next
15 minutes which liver
you would like to accept.

Observed outcomes from
livers with similar donor
characteristics: Median
graft survival: 8.1 years

(IQR: 7.8-8.4 years)

Observed outcomes from
livers with similar donor
characteristics: Median
graft survival: 2.4 years

(IQR: 2.1-2.7 years)

Observed outcomes from
livers with similar donor
characteristics: Median
graft survival: 2.0 years

(IQR: 1.7-2.3 years)

Donor A

Observed outcomes from similar livers

Doner risk models available to Dr. Jones

Observed outcomes from similar livers

Donor risk models available to Dr. Smith

Donor A Donor B

Donor B

Observed outcomes from
livers with similar donor
characteristics: Median
graft survival: 7.8 years

(IQR: 7.5-8.1 years)

Key clinical question: What is more important for the patient?
a) The surgeon correctly accepts the liver that will last longer?
b) The surgeon correctly accepts a liver that will last a long time?

○ Will correctly predict which liver will
   last longer 85% of the time
○ May result in both livers being declined
   (not transplanted) because incorrectly
   predicts they will have suboptimal
   survival {i.e., survive <3 years)

High Discrimination Model
○ Correctly predicts (i.e., assigns higher
   score) to livers from donors similar to
   Donor A 85% of the time (i.e.,
   C-statistic=0.85)
○ Predicted median graft survival:

• Livers from donors similar to Donor A:
  2.9 years

○ Interpretation of model performance:
• High discrimination
• Poor calibration

• Livers from donors similar to Donor B:
  2.5 years

○ Correctly predicts (i.e., assigns higher
   score) to livers from donors similar to
   Donor A 60% of the time (i.e.,
   C-statistic=0.60)
○ Predicted median graft survival:

○ Interpretation of model performance:

• Livers from donors similar to Donor A:
  8.0 years
• Livers from donors similar to Donor B:
  7 .8 years

• Moderate discrimination
• High calibration

○ Will correctly predict which liver will
   last longer 60% of the time
○ Will result in either liver being
   transplanted because correctly predicts
   they both will have optimal survival
   (i.e., survive more than 7 years)

(A)

(C)

(E)

(F)

(D)

(B)

High Calibration Model

○ Will correctly predict which liver will
   last longer 90% of the time
○ May result in both livers being
   transplanted because it incorrectly
   over-predicts they will have optimal
   survival {i.e., survive >7 years)

High Discrimination Model
○ Correctly predicts (i.e., assigns higher
   score) to livers from donors similar to
   Donor A 90% of the time (i.e.,
   C-statistic=0.90)
○ Predicted median graft survival:

• Livers from donors similar to Donor A:
  8.2 years

○ Interpretation of model performance:
• High discrimination
• Poor calibration

• Livers from donors similar to Donor B:
  7.8 years

○ Correctly predicts (i.e., assigns higher
   score) to livers from donors similar to
   Donor A 65% of the time (i.e.,
   C-statistic=0.65)
○ Predicted median graft survival:

○ Interpretation of model performance:

• Livers from donors similar to Donor A:
  2.6 years
• Livers from donors similar to Donor B:
  2.2 years

• Moderate discrimination
• High calibration

○ Will correctly predict which liver will
   last longer 65% of the time
○ Will result in both livers not being
   transplanted because correctly predicts
   their suboptimal survival (i.e., survive
   <3 years)

High Calibration Model

F IGURE 2 Simplified schematic of how to apply an allograft risk model for livers with good versus poor observed outcomes. (A) Clinical
scenario for offers of livers with good outcomes. (B) Data on observed outcomes of the 2 donor livers with good outcomes. (C) Implications of
relying on a model with high discrimination/poor calibration versus moderate discrimination/high calibration for livers with good outcomes. (D)
Clinical scenario for offers of livers with poor outcomes. (E) Data on observed outcomes of the 2 donor livers with poor outcomes. (F) Implications
of relying on a model with high discrimination/poor calibration versus moderate discrimination/high calibration poor outcomes.
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be nuanced. If a model had high discrimination but low
calibration, the model would correctly indicate the
better organ but would not be able to determine the
true difference between organ quality (ie, both might
be predicted as “good” or “bad,” or one “good” and one
“bad”). Alternatively, a model with low discrimination
and high calibration is rare. In this case, the
differences between a “good” or “bad” organ should
be clearly discriminated. However, these types of
models often have poor calibration and discrimination
in a small subgroup of the population, which can
lead to biased/poor decision-making and discrimina-
tion/inequity in health care utilization within the
subgroup.

EVALUATING OUR LIVER
ALLOGRAFT RISK SCORE GIVEN
THE DISCRIMINATION AND
CALIBRATION

The risk score we presented in the introduction is best
seen as a teaching example, and not as a clinical tool
that we would propose to implement into real-world care
without further refinement and validation. However, it
helps to contextualize how a risk score with similar
performance to ours could be applied in the scenarios
described in Figure 2. If a surgeon were offered 2
similar livers that in truth would have “good” outcomes
(ie, Figures 2A–C) and used our risk score, they would
only correctly pick the liver with a better-observed
outcome 60% of the time but would believe that it is
reasonable to use either liver because the probability of
a good long-term survival was high. Conversely, if the
surgeon were offered 2 similar livers that would be
expected to have “bad” outcomes (ie, Figures 2D–F)
and used our risk score, their ability to determine which

liver would last longer would be only slightly better than
the flip of a coin (ie, AUC≈0.6), but can decline both
offers knowing that the allograft would have lasted
around 2 years. Therein lies the importance of
calibration at the extremes. As a result, models with
performance similar to the one we are developing could
help to guide clinician decision-making at the time of an
organ offer and to better match donors and recipients
based on the graft’s predicted outcome and the
recipient’s expected posttransplant survival (ie, akin to
the matching of kidney donors and recipients using the
kidney donor profile index [donor] and expected
posttransplant survival [recipient] scores) (Table 1).

CONCLUSIONS

Risk scores that accurately predict allograft survival
have the potential to maximize the good from donated
organs and bolster informed consent. However, both
within and outside organ transplantation, few risk scores
are ever implemented in health care to change practice.
This lack of implementation is due to several factors,
which include the fact that many models (1) have not
been externally validated, (2) have only moderate
predictive ability, (3) are not built to be easy to
implement, and (4) do not address the clinically relevant
questions.[28–31] In the setting of donor and recipient
graft survival prediction, we argue that calibration of
prediction models deserves the same attention as
discrimination, and in some scenarios, calibration may
be more important. Although the optimal scenario is one
where a risk model can determine who will have the
best outcome (ie, discrimination) while correctly pre-
dicting survival in absolute terms (ie, calibration), this is
not always possible. Therefore, in the setting of a model
where one has to balance discrimination versus

TABLE 1 Overview of comparisons of discrimination and calibration

Discrimination Calibration

Goal of measure Ability to differentiate (ie, rank order) those who will
versus will not develop an outcome

Measure of agreement between frequency of
observed events and predicted
probabilities

Question addressed Is patient A or patient B more likely to reach the
outcome?

How accurate is this model in predicting the
true outcome of patient A and patient B?

Measure(s) of performance Binary outcome: ROC
Time-to-event outcome: time-dependent AUC or

C-statistic

Quantitative assessment: Brier score or GOF
test

Qualitative assessment: calibration plots

Definition of “good” performance[23] Moderate/acceptable: 0.60–0.79
Moderate/good: 0.70–0.79
Good/very good: 0.80–0.89
Excellent: 0.90–1.00

Quantitative: 0.0–0.24
Qualitative: Visual inspection calibration plot

Limitations Time-to-event outcomes: censored outcomes and
time dependence

Rank orders but does not assess the accuracy of
predicted outcomes

Brier score only global measure and is
limited to subgroup analyses

Calibration plot interpretation subjective

Abbreviations: AUC, area under the curve; GOF, goodness of fit; ROC, receiver operating curve.
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calibration, it is critical to correctly frame the clinical
question and the manner in which the risk score would
be applied in practice. Only when this is done can one
decide the optimal model for the specific clinical
question. The Transparent Reporting for Individual
Prognosis or Diagnosis initiative includes guidance on
how to report multivariable prediction models, including
addressing issues related to model calibration.[32]

However, because the Transparent Reporting for
Individual Prognosis or Diagnosis checklist for model
development does not specifically call out calibration,
we would urge biomedical journals publishing manu-
scripts involving predictive models to require all manu-
scripts to include a discussion of model discrimination
and calibration, similar to requirements related to IRB
approval.
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