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We consider the properties of the highest posterior probability model in a linear
regression setting+ Under a spike and slab hierarchy we find that although highest
posterior model selection is total risk consistent, it possesses hidden undesirable
properties+ One such property is a marked underfitting in finite samples, a phe-
nomenon well noted for Bayesian information criterion ~BIC! related procedures
but not often associated with highest posterior model selection+ Another concern
is the substantial effect the prior has on model selection+ We employ a rescaling
of the hierarchy and show that the resulting rescaled spike and slab models miti-
gate the effects of underfitting because of a perfect cancellation of a BIC-like
penalty term+ Furthermore, by drawing upon an equivalence between the highest
posterior model and the median model, we find that the effect of the prior is less
influential on model selection, as long as the underlying true model is sparse+
Nonsparse settings are, however, problematic+ Using the posterior mean for vari-
able selection instead of posterior inclusion probabilities avoids these issues+

1. INTRODUCTION

In a Bayesian model averaging setting, at least from a predictive point of view,
it is well acknowledged that averaging over models by their posterior model
probabilities is an effective way to mitigate model uncertainty+ The resulting
predictor, called the Bayesian model averaged predictor, or BMA predictor, is
often found to perform well in applied settings ~Hoeting, Madigan, Raftery,
and Volinsky, 1999!+ However, when the goal is model selection, the paradigm
shifts dramatically from trying to predict the response Y to identifying which
variables are influential in predicting Y+ Because model selection ultimately

Address correspondence to Hemant Ishwaran, Department of Quantitative Health Sciences, Cleveland Clinic,
Cleveland, OH 44195, USA; e-mail: hemant+ishwaran@gmail+com+

Econometric Theory, 24, 2008, 377–403+ Printed in the United States of America+
DOI: 10+10170S026646660808016X

© 2008 Cambridge University Press 0266-4666008 $15+00 377



forces us to choose a single model from our class of models, it generally rules
out the BMA predictor, which does not correspond to any one specific model+
For that matter, model averaging as an approach is often perceived to be at
odds with model selection+

Rather than employing model averaging, an often used approach to model
selection is to choose the model with the highest posterior value, the so-called
highest posterior probability model+ This is the model whose integrated mar-
ginal density when multiplied by the prior probability is the highest among all
such models+ The highest posterior model is conceptually simple to under-
stand, which makes it alluring as a model selection strategy+ It is also attractive
because it is tied to several well-accepted ideas+ Under a uniform prior, for
example, it is the model with a Bayes factor greater than or equal to one for all
pairwise model comparisons+ Furthermore, using a decision theoretic approach,
one can show that the highest posterior model is the model that maximizes the
expected utility under the BMA predictive distribution ~Bernardo and Smith,
1994; Chipman, George, and McCulloch, 2001; Gelfand, Dey, and Chang, 1992!+

The main contribution of the paper is to provide a rigorous analysis of the
highest posterior model as a variable selection tool+ Our discussion centers on
linear regression models+ We assume that Y1, + + + ,Yn are independent responses
such that

Yi � b1 xi,1 � {{{� bK xi,K � «i � x i
'b� «i , i � 1, + + + , n, (1)

where x1, + + + ,xn are nonrandom ~fixed design! K-dimensional covariates+ Here
$«i % are independent variables such that E ~«i ! � 0 and E ~«i

2! � s 2 � 0+
Equation ~1! represents the true data generating mechanism+ Our goal is to

present a frequentist study of the asymptotic properties for the highest poste-
rior model under this framework+ For concreteness we focus specifically on
highest posterior model selection using a class of Bayesian models refered to
as spike and slab models ~a detailed description of these models is given in
Sect+ 3!+ Such models have become popular as a method for variable selection
in regression settings, making a detailed study of the highest posterior model
under such a paradigm of great interest+ Spike and slab models have been used
in a wide variety of applications spanning problems from wavelets ~Clyde, Par-
migiani, and Vidakovic, 1998! to the identification of differentially expressing
genes from microarray data ~Ishwaran and Rao, 2003, 2005a!+ The prototype
spike and slab model was introduced in Mitchell and Beauchamp ~1988!+ Mod-
ern variants were given in George and McCulloch ~1993!+ For background and
further references see Ishwaran and Rao ~2005b!+

Throughout the paper we confine attention to the orthogonal regression set-
ting+ It is assumed throughout that X'X � nI, where X is the n � K design
matrix corresponding to ~1!+ Focusing on the orthogonal model is advanta-
geous because it leads to closed form expressions that help amplify certain theo-
retical results+ We do provide examples, however, that suggest that the theory
extends to nonorthogonal settings+
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1.1. Main Results

Surprisingly, our analysis reveals several deficiencies in highest posterior model
selection+ This is interesting, because although empirical evidence suggesting
caution in using the highest posterior model is documented ~Atkinson, 1978!, it
is generally believed that the highest posterior model possesses good model
selection properties+ Our key findings are as follows:

1+ In the setting considered, the highest posterior model coincides with the
median model ~Barbieri and Berger, 2004!+ This is a direct consequence
of orthogonality of the regressors+ The median model is defined as the
model consisting of those variables with overall posterior inclusion prob-
ability greater than or equal to 50%+ The posterior inclusion probability
for a variable k is the posterior probability for the set consisting of all
models that include k+We find that the highest posterior model, and hence
the median model, is consistent+

2+ Unfortunately, the promising asymptotics do not speak to finite-sample
performance+ The rate at which overfitting vanishes is only of order log~n!,
and even more worrisome is that among underfit models, the highest pos-
terior model may favor smaller ones with large coefficients+ As a result,
finite-sample performance can be far from optimal in terms of total risk+
This is brought out rigorously using a local asymptotic argument in which
all coefficients have small values+ This setup shows that the highest pos-
terior model eventually concentrates on the null model+ This turns out to
be a general phenomenon shared by certain procedures ~see Leeb and
Pötscher, 2005, Rmk+ 4+4!+

3+ We explore a rescaled spike and slab hierarchy where the responses $Yi %
are rescaled by the square root of the sample size, and we show how this
mitigates the underfitting tendencies of the highest posterior model+ Spe-
cifically, we find a perfect cancellation of a log~n! term from the log pos-
terior model probability that is the culprit leading to underfitting in finite
samples+ The trade-off, however, is a lack of consistency+

4+ The choice of prior plays a heavy role in highest posterior model selec-
tion, although less so under rescaling+ By focusing on posterior inclusion
probabilities ~which is motivated by the fact that the highest posterior
model and the median model still coincide under a rescaled spike and
slab framework!, we show that the effect of the prior under rescaling is
less pronounced in sparse models+ However, if the true model is non-
sparse, there is a delicate interplay between overall model complexity and
the prior belief of the informativeness of a predictor that may lead to the
highest posterior model including too many truly zero coefficients+

1.2. The Effect of the Prior on Model Selection

To amplify the preceding point of how the prior can impact model selection,
and to help fix ideas, consider Table 1+ The table is based on a highest posterior
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probability analysis of the body fat data of Hoeting et al+ ~1999!+ The data ana-
lyzed consist of n � 251 subjects, with each subject being measured for per-
centage of body fat+ Also recorded are the age, weight, height, and 10 other
body circumference measurements for the individual+As in Hoeting et al+ ~1999!,
we use body fat for the response in our regression model+ The remaining 13
measurements are predictors for predicting body fat ~see column 1 of Table 1
for a list of these variables!+ Note that with 13 predictors there is a total of
213 � 8,192 models, thus making an all-subsets highest posterior model search
feasible+

Listed in columns 4 through 6 of Table 1 are the highest posterior models
selected under various prior specifications+Models were computed under a non-
scaled spike and slab hierarchy with a uniform model prior ~terminology will
be spelled out later in the paper!+ The three models correspond to different val-
ues for the prior variance ~hypervariance! of the bk coefficients+As can be seen,
as the hypervariance g increases, the highest posterior model quickly moves
from a model larger than the Akaike information criterion ~AIC! selected model
to a model even sparser than the one selected using the Bayesian information
criterion ~BIC!+ This shows how sensitive highest posterior model selection can
be to the choice of prior+ Another interesting point, and one that came as some-
what of a surprise to us, is the relationship model size has with respect to g+

Table 1. Analysis of body fat data from Hoeting et al+ ~1999!+ The first col-
umn records predictor name+ The next two columns are models determined using
BIC ~Schwarz, 1978! and AIC ~Akaike, 1973! penalization+ The next three col-
umns are highest posterior model, M [a,g, selected under different choices for
the hypervariance ~gk � g for g� 1,10, n!+ The last three columns are the cor-
responding posterior inclusion probabilities, pk,g+ Terminology and notation are
explained later in the paper+

Predictors BIC AIC M [a,1 M [a,10 M [a, n pk,1 pk,10 pk, n

Knee � � � � � 1+000 1+000 1+000
Abdomen � � � � — 0+995 0+900 0+561
Wrist — � � — — 0+673 0+449 0+149
Neck � � — � � 0+453 0+889 0+976
Ankle — � � — — 0+993 0+404 0+036
Weight — � — — — 0+388 0+379 0+096
Chest � � � � — 0+735 0+642 0+286
Forearm — — � — — 0+910 0+195 0+031
Thigh — � � — — 0+729 0+367 0+120
Age — — — — — 0+364 0+287 0+138
Biceps — — � — — 0+614 0+195 0+045
Hip — — — — — 0+332 0+151 0+037
Height — — — — — 0+243 0+116 0+027
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Typically, large hypervariances in spike and slab models are used to elicit a
prior belief that a coefficient is informative+ In contrast, Table 1 suggests that
large hypervariances induce sparse models under highest posterior model selec-
tion, thus going in the opposite direction in which priors are typically chosen+
Later we provide a theoretical explanation for this curious property+

Last, consider the final three columns of Table 1, which list the posterior
inclusion probabilities for the three sets of priors used+ Close inspection shows
that the highest posterior model nearly coincides with the median model, that
is, the model formed by choosing predictors k with pk,g � 0+5+ This is interest-
ing because it suggests that our theory, which takes advantage of the equiva-
lence of the two models under orthogonal designs, may apply reasonably well
even in highly correlated settings such as the one considered here+

1.3. Organization of the Paper

The paper is organized as follows+ Section 2 introduces notation and the con-
cept of total risk for variable selection+ Section 3 introduces spike and slab
models and formally defines the highest posterior model and the median model+
Section 4 studies the asymptotic selection performance of the highest posterior
model, and Section 5 makes use of a local asymptotic argument+ Section 6 intro-
duces the idea of rescaled spike and slab hierarchal models and studies their
asymptotic selection performance and impact rescaling has on appropriate choice
of priors+ Section 7 presents a detailed simulation for studying performance of
the procedures+ Section 8 finishes with a discussion+ The Appendixes supply
proofs of results and a discussion of the asymptotics for null and full models+

2. NOTATION

The problem of selecting variables in the linear regression setting can be recast
formally as a model selection problem using the following notation+ For each
subset a � $1, + + + ,K % , let ba be the components of b that are indexed by the
elements of a+ One can think of ba equivalently in terms of the underlying
model associated with it, which we call Ma+ Formally, this model is defined as

Yi � x i,a
' ba� «i , i � 1, + + + , n,

where x i,a are the components of x i indexed by a ~this notation of extracting
coordinates indexed by a will be used repeatedly throughout the paper!+When
we think of ba, we will think of this interchangeably as either a or Ma+ We
define Ka � #Ma to be the size of Ma or, equivalently, the number of vari-
ables in ba+

For example, for ~1!, which is often referred to as the full model, a �
$1, + + + ,K % and Ka � K+ The other extreme model, the null model denoted by
MÀ, corresponds to a � À and the model MÀ defined as

AN IN-DEPTH LOOK AT HIGHEST POSTERIOR MODEL SELECTION 381



Yi � «i , i � 1, + + + , n+ (2)

The size of the null model is KÀ � 0+

2.1. The True Model

Let b0 � ~b1,0, + + + ,bK,0!
' denote the true value for b+ We indicate the true

model by Ma0
, or just a0, where a0 are the indices of the nonzero coefficients

of b0+ Throughout it is assumed that Ma0
is neither the null nor the full model+

In other words, it is assumed that

1 � Ka0
� K � 1+ (3)

Such an assumption might seem at odds with our choice of prior ~to be dis-
cussed shortly!, which allows for the posterior to concentrate on both the null
and full models+ Our reason for assuming ~3! is primarily for ease of presenta-
tion of asymptotic results+ As a convenient way of summarizing the behavior
of the highest posterior model our asymptotic results are cast in the form of
comparisons of posterior model probabilities for overfit and underfit models
relative to Ma0

~this style of presentation is common in the model selection
literature; see, e+g+, Shao, 1993; Zhang, 1993a!+ Unfortunately, for the notion
of an overfit and underfit model to make sense, we must exclude the case when
Ma0

is either the full or the null model+ See, however,Appendix B for how our
results are adjusted when ~3! is violated+

2.2. Total Risk

To measure performance of a model selection procedure, we introduce the notion
of total risk+ The total risk is essentially a composite loss function under zero-
one loss misclassification+ To explain this, first note that a variable selection
procedure can always be recast as a decision rule+ If M [a is the model selected
by the procedure, the corresponding decision rule is Zd � ~ Zd1, + + + , ZdK !

' , where

Zdk � �1 if k is included in [a

0 if k is excluded from [a+

Let dk,0 � 1 if and only if bk,0 � 0+ We define the total risk for a model selec-
tion procedure Zd as

R~ Zd! � �
k�1

K

6 Zdk � dk,0 6� �
k�a0

I$ Zdk � 0%� �
k�a0

c

I$ Zdk � 1%+

We say that a variable selection procedure Zd is total risk consistent if
R~ Zd! a+s+

&& 0+ Notice that this is equivalent to the statement that the model esti-
mator is consistent,

P $M [a � Ma0
%r 1+
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However, the measure of total risk is more meaningful for finite samples, as it
provides a way of comparing procedures in terms of misclassification rates+
See Ishwaran and Rao ~2003, 2005a, 2005b! for further details+ Throughout the
paper we use total risk as a measure of performance+

3. BAYESIAN HIERARCHY

In this section we introduce a spike and slab framework that will be used to
define our highest posterior model selection procedure,M [a+ The properties of
this selection procedure under the data generating mechanism ~1! will then be
explored in Section 4+

Two ingredients are required in specifying the spike and slab frame-
work+ The first involves specifying the prior used for the model space, which
we will denote by p+ This is chosen so that p~Ma! � 0 for each model a and
�ap~Ma!� 1 ~the sum being over all possible 2K models!+ The second ingre-
dient is the likelihood structure used for modeling each regression problem Ma+
This is specified by making use of a Bayesian hierarchy+

Section 3+1 discusses our choice for p in detail and how the resulting hier-
archy is related to a popular class of models referred to as spike and slab mod-
els+ Here we discuss the likelihood for Ma+ This is based on a normal-normal
conjugate hierarchical model+ For each nonnull model Ma, we assume that

~Y6Ma ,X,b! ; Normal~Xaba , [sn
2 I!,

~ba 6Ga! ; Normal~0,Ga!,
(4)

where Y � ~Y1, + + + ,Yn!
' , Ga is the diagonal matrix extracted from G using only

those coordinates in a, and G � diag$g1, + + + ,gK % where 0 � gk � ` are pre-
specified hypervariances+ Typically $gk% are selected to reflect a prior belief in
a coefficient+ Large gk values induce large posterior values for bk and reflect a
belief that the coefficient is informative, whereas small values give small bk

coefficients and indicate a prior belief that the coefficient is noninformative+
Although a normal-normal hierarchical structure makes sense for nonnull mod-

els, special allowance has to be made for the null model MÀ+ To properly accom-
modate model ~2!, we assume

~Y6MÀ ! ; Normal~0, [sn
2 I!+ (5)

In both ~4! and ~5!, [sn
2 p
&& s 2 is assumed to be some consistent estimator for

s 2 + The rationale for introducing [sn
2 in the hierarchy ~4! rather than taking a

more traditional approach of introducing s 2 as a Bayesian parameter with a
prior is that it greatly simplifies our analysis+ However, this is not to say that
there is a loss in inferential capability in doing so+ For example, Ishwaran and
Rao ~2005a! introduced both [sn

2 and a Bayesian parameter s 2 in their setup
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and found only small incremental improvements in their selection procedure
due to the inclusion of s 2 +

3.1. Spike and Slab Models

For p we use an independence prior of the form

p~Ma! � 	
k�1

K

wk
I$k�a%~1 � wk !

I$k�a%, (6)

where 0 � wk � 1 are prespecified probabilities reflecting the prior belief that
a coefficient is nonzero+ Independence priors are a popular choice in Bayesian
variable selection procedures, in both orthogonal and nonorthogonal settings,
because they are easy to specify and simplify computations ~Clyde, DeSimone,
and Parmigiani, 1996; George and McCulloch, 1993, 1997; Hoeting et al+, 1999;
Smith and Kohn, 1996!+ One common choice for ~6! is to set wk � 1

2
_ for each k+

This gives p~Ma!� 2�K for each a and is often referred to as an indifference,
or uniform, prior+ More elaborate setups that involve a prior for wk are also
used ~Ishwaran and Rao, 2005a!+ However, we will not discuss these here+

When p is specified by ~6!, the hierarchy ~4! and ~5! can be written more
compactly using a multivariate normal scale mixture distribution for b+ Let bk;
Bernoulli~wk! be independent Bernoulli random variables+ That is,

P $bk � 1%� wk � 1 � P $bk � 0%+

The vector b � ~b1, + + + ,bK !
' can be uniquely mapped to a specific a model+

Thus, if we use the informal notation of denoting a degenerate multivariate
normal by using zero values for the variance, then ~4!–~6! can be more com-
pactly expressed as

~Y6X,b! ; Normal~Xb, [sn
2 I!,

~b 6b,G! ; Normal~0,diag$b1g1, + + + ,bK gK %!, (7)

~bk 6wk ! ;
ind Bernoulli~wk !, k � 1, + + + ,K+

When written this way, the hierarchy ~7! is often referred to as a spike and slab
model ~Ishwaran and Rao, 2005a, 2005b!+

3.2. The Highest Posterior Model

It is widely believed that the highest posterior probability model possesses opti-
mal model selection properties+ As we show shortly this may not be the case at
all+ To define this model, observe by Bayes theorem that the posterior proba-
bility for a model Ma is
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p~Ma 6Y! �
p~Ma! f ~Y6Ma!

�
a '
p~Ma ' ! f ~Y6Ma ' !

,

where

f ~Y6Ma! �� f ~Y6Ma ,X,b! f ~ba! dba

is the marginal density for Y under Ma+ The model M [a is said to be the high-
est posterior model if

p~M [a 6Y! � max
a
p~Ma 6Y!+

Equivalently,M [a is the highest posterior model if

p~M [a! f ~Y6M [a!

p~Ma! f ~Y6Ma!
� 1, for each a+

Notice that under a flat prior for p this indicates that the highest posterior model
has a Bayes factor that is greater than or equal to one over all model comparisons+

3.3. The Median Model

The issue of whether the highest posterior model is appropriate for inference was
partially considered in Barbieri and Berger ~2004!+ There it was shown in orthog-
onal settings that the optimal model from a Bayesian predictive viewpoint was
not the highest posterior model but the median model+ The median model can
be defined formally as follows+ Let Dk � $a : k � a% denote the set of all
models containing variable k+ The model M [a is said to be the median model if
[a� $k : pk � 1

2
_ % where pk is the posterior inclusion probability defined by

pk � �
a�Dk

p~Ma 6Y!+ (8)

In other words,M [a is the model containing variables that appear with at least
50% posterior probability over all models+

The optimality result for the median model hinges on the definition of
predictive optimality+ This was defined as follows+ For each a, let Zba �
E ~b 6Y,Ma! be the posterior mean for b from Ma+ For convenience we write
Zba as a K-dimensional vector by setting coordinates not in a to equal zero+ Let
Zb be the BMA estimator for b from ~7!+ Then,

Zb � �
a

E ~b 6Y,Ma!p~Ma 6Y!� �
a

Zbap~Ma 6Y!+
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Let ZY � X Zb be the BMA predictor and ZYa � X Zba the predictor for Ma+ The
model M [a is said to be predictively optimal if

E7 ZY � ZY [a72 � min
a

E7 ZY � ZYa72,

where 7{7 denotes the L2-norm and the expectation is over Y with respect to
the BMA predictive distribution+ Thus, M [a is the single model whose predic-
tion is closest to the BMA in an L2-sense+

Although Barbieri and Berger ~2004! illustrated several settings where the
median model and highest posterior model differed, they also showed interest-
ing examples where they coincided+ Arguments given by Barbieri and Berger
~2004! show in fact that spike and slab models of the form ~7! are examples
where the two approaches are equivalent+

THEOREM 1 ~Barbieri and Berger, 2004!+ The highest posterior model and
the median model coincide for spike and slab models of the form (7).

We come back to Theorem 1 later when we more closely examine the expres-
sion for the posterior inclusion probabilities ~8! ~in fact, we will provide an
independent proof of a similar result; see Theorem 5!+ For now, it is enough to
note the two procedures are identical and in particular that their total risks are
equal+ That is, R~ ZdH !� R~ ZdM ! where ZdH and ZdM denote the decision rules for
the highest posterior and median models, respectively+

4. SOME PRELIMINARY ASYMPTOTIC RESULTS

To present our asymptotic findings we follow Shao ~1993! by categorizing mod-
els into two types depending upon whether they contain all the nonzero values
of b0 or not ~see also Nishii, 1984!+ The two categories of models are

Category I � $a :At least one nonzero component of b0 is not in Ma%,

Category II � $a :Ma contains all nonzero components of b0 %+

Category I models are underfit incorrect models that exclude at least one non-
zero coefficient+ Note that a Category I model may include regressors whose
coefficients are truly zero+ On the other hand, Category II models consist of
the true model Ma0

, the model with the smallest dimension, in addition to all
models containing Ma0

as a subset+ These latter models are overfit in the sense
that they include all nonzero coefficients plus at least one truly zero coeffi-
cient+ In Shao ~1993, 1996! it was shown that one could not consistently recover
the true model by minimizing the estimated prediction error using leave-one-
out cross-validation or bootstrapping+ Although the method distinguishes
Category I models from Category II models, and therefore does not underfit, it
cannot distinguish between Category II models in the limit, and therefore it
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overfits asymptotically+ See also the papers by Stone ~1977a, 1977b!, who drew
similar conclusions about cross-validation+Also see Geweke and Meese ~1981!;
Hannan and Quinn ~1979!; Shibata ~1976! for similar results in terms of Akaike’s
criteria+

Perhaps not surprisingly, the highest posterior model does not suffer from
the inconsistency of the previously mentioned procedures+When Bayesians use
normal hierarchical models for model selection they are often implicitly taking
advantage of a BIC penalization, and this penalization makes it possible to dis-
cern the true model from other Category II models, thus avoiding overfitting
asymptotically+ In fact, we show in the following theorem that the highest pos-
terior model is consistent ~for more on BIC-like consistency in linear regres-
sion see Geweke and Meese, 1981; Nishii, 1984; Rao and Wu, 1989; Schwarz,
1978!+ However, although these results may appear promising, we find some
undesirable properties+

THEOREM 2+ Assume that $«i % are independent such that E ~«i ! � 0,
E ~«i

2! � s 2, and E ~«i
4! � M for some M � `. Assume that max1�i�n7x i70

Mn r 0. If (1) represents the data model and (7) the Bayesian model used for
defining the posterior model selection procedure M [a, then the following con-
ditions hold.

(i) R~ ZdM ! � R~ ZdH !
a+s+
&& 0.

(ii) If Ma is a Category II model and Ma ' a Category I model,

P $p~Ma 6Y! � p~Ma ' 6Y!%r 1.

(iii) If Ma and Ma ' are Category I models,

P $p~Ma 6Y! � p~Ma ' 6Y!%r �1 if 7b0,a72 � 7b0,a ' 72

0 if 7b0,a72 � 7b0,a ' 72.
(9)

(iv) If Ma and Ma ' are two distinct Category II models such that Ka �
Ka ' ,

0 � lim
nr`

P $p~Ma 6Y!� p~Ma ' 6Y!% � 1.

Moreover, P $p~Ma6Y! � p~Ma ' 6Y!% r
1
2
_ if g1 � {{{ � gK and p is

uniform.

Part ~i! of Theorem 2 shows that highest posterior model selection is asymp-
totically consistent, but results ~iii! and ~iv! suggest suboptimal finite-sample
performance+ Consider result ~iv!, which pertains to Category II models+A care-
ful inspection of the proof of the theorem ~see equation ~A+1! in the proof !
shows that if a is a Category II model,
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log~p~Ma 6Y!!� log~p~Ma0
6Y!! � 2

1
�~Ka0

� Ka! log~n!� C~a,a0 !� op~1!,

where C~a,a0! is a finite constant depending upon the prior+ The dominating
term in the expression is a BIC-like penalty of order log~n! that ensures, at
least asymptotically, that the highest posterior model will identify the true model
Ma0

over all other Category II models+ However, for a fixed sample size n,
there is a trade-off between the BIC penalty and the other terms in the expres-
sion, making it possible for M [a to equal some Category II model other than
Ma0

+
Given this, it is of interest to consider what the distribution of p~a6Y! might

look like over the space of Category II models+ This would provide some insight
into the behavior of M [a over this space+ Result ~iv! provides some answers+
For example, the result shows that under a uniform model prior and equal hyper-
variances no model has a posterior probability dominating Category II models
of the same dimension+

Under such a setting, this would suggest that if the highest posterior model
selects a Category II model, such selection is approximately uniform from a
class of Category II models of the same dimension ~note that this is only an
informal argument as result ~iv! is not conditional on the behavior of M [a!+
Each instance of selecting a Category II model results in excess variability due
to estimating zero coefficients of the true model+ One way to mitigate this effect
would be to use an estimator that averages over models from the same contour+
However, the highest posterior model does not take advantage of model aver-
aging, and thus we expect it would perform suboptimally when compared to
procedures that use model averaging for selection ~for examples of such proce-
dures, see Ishwaran and Rao, 2003, 2005a, 2005b!+

Result ~iii! is also of concern in finite samples+As is well known, BIC penal-
ization often leads to underfitting in practice, and thus for a fixed sample size,
it is more than likely that the highest posterior model will be a Category I model+
Result ~iii! shows that over Category I models, p~Ma6Y! is asymptotically
larger over those models with large L2-coefficient norms+ Thus, over Category
I models, the highest posterior model could easily favor small models with high
signal coefficients ~again, this is only an informal argument as result ~iii! is not
conditional on the behavior of M [a!+ Although this might not impact prediction
error performance, in terms of variable selection it is undesirable to select a
small high-signal model over one with almost the same L2-coefficient norm
containing many small nonzero coefficients+ Thus, in a finite-sample setting
the highest posterior model may have large total risk+

5. LOCAL ASYMPTOTICS

The tendency for the highest posterior model to favor smaller models can be
studied more carefully by using a local asymptotic argument+ We look at its
behavior in the setting when coefficients shrink to zero at an n�102 rate+ This
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will indicate how the highest posterior model might perform in a finite-sample
setting in which all coefficients are small+

For our analysis we assume that we have a triangular array of observations+
That is, we assume that the true data generating mechanism is

Yni � x i
'bn � «ni , i � 1, + + + , n, (10)

where for each n, $«ni : i � 1, + + + , n% are independent random variables with
mean 0 and variance s 2 + In ~10!, the true bn parameter is bn,0 � sn�102b0+

THEOREM 3+ Assume that for every n, $«ni : i � 1, + + + , n% satisfy the same
conditions as $«i % in Theorem 2. If (10) represents the data model, and (7) the
Bayesian model used for defining the posterior model selection procedure M [a,
then under the same conditions for x i as in Theorem 2 the following conditions
hold.

(i) For any two models Ma and Ma ' such that Ka � Ka ' ,

P $p~Ma 6Y! � p~Ma ' 6Y!%r 1.

In particular, R~ ZdH !
a+s+
&& Ka0

because P $M [a � MÀ% r 1.

(ii) If p is uniform and Ma and Ma ' are any two models such that Ka �
Ka ' ,

lim
nr`

P $p~Ma 6Y! � p~Ma ' 6Y!%

� P ��
k�a

~bk,0 � Zk !
2 � �

k�a

log~gk !

� �
k�a '
~bk,0 � Zk !

2 � �
k�a '

log~gk !� ,

where Zk are independent and identically distributed (i.i.d.) N~0,1! ran-
dom variables.

Part ~i! of Theorem 3 shows that the highest posterior model is inconsistent
under a local asymptotic framework and therefore cannot be uniformly consis-
tent+Moreover, part ~i! shows that asymptotically, p~Ma6Y! will be larger over
small models, which in combination with part ~iii! of Theorem 2 suggests that
the highest posterior model will tend to favor small models if many of the true
coefficients have small values+ This favoring of smaller models coincides with
what is often seen using BIC+ In fact, the phenomenon ~i! where the null model
is preferentially selected under a sequence of shrinking alternatives is known
to be true generally for any pointwise consistent model selection procedure ~see
Leeb and Pötscher, 2005, Rmk+ 4+4!+ Also see Leeb and Pötscher ~2007! and
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Yang ~2005! for more discussion on why consistent model selection procedures
can perform poorly in finite samples+

Part ~ii! of Theorem 3 shows over models of the same size that the posterior
probability involves a delicate interplay between the true size of a coefficient
and the prior hypervariance+ In particular, notice that if gk is small for a given
predictor k, then p~Ma6Y! will become large if k � a, whereas if gk is large,
then p~Ma6Y! is much smaller+ This is quite curious, and undesirable, because
it is counterintuitive to the spike and slab framework+ The hypervariances in
spike and slab models are designed so that large gk values reflect a prior belief
that a covariate is informative, whereas small values reflect a belief that the
variable is noninformative+ In fact, recall how this counterintuitive result was
found earlier in Table 1+ Theorem 3 provides a reasonable explanation for why
this occurs+

6. RESCALED SPIKE AND SLAB MODELS

Recently Ishwaran and Rao ~2005b! discussed the role shrinkage plays in spike
and slab models for high-dimensional variable selection+ They introduced the
notion of a rescaled spike and slab model, arguing that such models are desir-
able because of their property of maintaining a shrinkage effect in the limit+
The effect of rescaling was used by Ishwaran and Rao ~2005b! in tandem with
a spike and slab hierarchy involving continuous bimodal priors+ Although Ish-
waran and Rao ~2005b! considered a more delicate setup than here, the impact
of rescaling nevertheless still holds, and it is of interest to study this+

In the context considered here, the rescaled spike and slab version of ~7! is
defined as follows:

~Y* 6X,b! ; Normal~Xb, nI!,

~b 6b,G! ; Normal~0,diag$b1g1, + + + ,bK gK %!, (11)

~bk 6wk ! ;
ind Bernoulli~wk !, k � 1, + + + ,K,

where Y* � [sn
�1 n102 Y+ Rescaling amounts to replacing Y with an n102 scaled

value and then replacing the variance in the hierarchical model with the value n+

6.1. Inclusion Probabilities

The following theorem provides an explicit characterization of the posterior
inclusion probability for a variable+ Define

~j1, n , + + + ,jK, n !
' � [sn

�1 n�102 X'Y+ (12)

This represents the signal contained in the data for the regression coefficients+
Let pk

* � �a�Dk
p~Ma 6Y* ! denote the posterior inclusion probability for k

under ~11!+
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THEOREM 4+ Under the rescaled spike and slab model (11) we have

~ pk
*!�1 � 1 � ~wk

�1 � 1!~gk � 1!102 exp~� 2
1
�dkjk, n

2 ! , k � 1, + + + ,K,

where dk � gk0~gk � 1! . This should be compared to the posterior inclusion
probability under the nonscaled model (7):

pk
�1 � 1 � ~wk

�1 � 1!~n [sn
�2gk � 1!102 exp~� 2

1
�dk, njk, n

2 ! , k � 1, + + + ,K,

where dk, n � gk0~gk � [sn
20n! .

Theorem 4 shows that pk
* and pk differ significantly over the zero coeffi-

cients+ Under the conditions of Theorem 2, pk
* p
&& 1 and pk

p
&& 1 if k is a non-

zero coefficient, but if k corresponds to a zero coefficient, pk
p
&& 0, whereas,

because the effect of gk does not vanish under rescaling, pk
* has the following

distributional limit:

pk
* �

d
~1 � ~wk

�1 � 1!~gk � 1!102 exp~� 2
1
�dk Zk

2!!�1+

6.2. Asymptotic Results

From these results it is tempting to conclude that it is better to use a nonscaled
model ~7!+ However, in the following theorem we show that rescaling helps to
correct some problems seen for the highest posterior model+ Our proof takes
advantage of a perfect cancellation of a BIC penalty appearing in the expan-
sion of the log of the posterior model probability+ Although the trade-off is that
the highest posterior model selected is no longer risk consistent, the flip side is
that the method no longer breaks down in the local asymptotic case+

THEOREM 5+ Under the Bayesian model (11) the following conditions hold.

(i) The highest posterior model and the median model are equivalent.
(ii) Fixed-parameter asymptotics: results (ii) and (iii) for Theorem 2 hold,

where in (iii) replace b0 by D102b0 for D � diag$d1, + + + ,dK %.
(iii) Local asymptotics: under the conditions of Theorem 3, if p is uniform

and Ma and Ma ' are any two models,

lim
nr`

P $p~Ma 6Y* ! � p~Ma ' 6Y* !%

� P ��
k�a

~dk~bk,0 � Zk !
2 � log~gk � 1!!

� �
k�a '
~dk~bk,0 � Zk !

2 � log~gk � 1!!� .
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Parts ~i! and ~ii! are essentially similar to the nonscaled case+ It is under the
local asymptotic setting, however, where we start to see differences between
the two methods+ Part ~iii! shows that the highest posterior model no longer
concentrates on the null model; in fact, notice the presence of dk in the limiting
probability on the right+ If the true value of a coefficient is zero, and gk is
selected moderately small, then the value Zk

2 � ~bk,0 � Zk!
2 is appropriately

down weighted by the value dk+ The presence of dk, therefore, discourages selec-
tion of models with zero coefficients+ Notice also the presence of log~gk � 1!
appearing in the limit on the right+ This differs from the nonscaled case where
a log~gk! term was found+ Now a small hypervariance 0 � gk � 1, which might
be associated with a coefficient thought to be noninformative, no longer heav-
ily favors selection of models with k � a+

6.3. The Impact of Rescaling

The preceding argument implicitly applies to a paradigm where coefficients are
shrinking to zero+ To further study the relationship between the prior and high-
est posterior model selection under rescaling, we exploit the equivalence between
the highest posterior model and the median model+ By Theorem 4, the pos-
terior inclusion probability satisfies pk

* � 1
2
_ if and only if jk, n

2 � c *~gk,wk!,
where

c *~g,w! �
2~g� 1!

g
log� 1

w
� 1��

g� 1

g
log~g� 1!+

To understand how pk
* varies in terms of these two parameters, we plotted the

contour values of c *~g,w! over a range of g and w values+ See Figure 1+
The thick line superimposed on the figure identifies the contour values for

the function c *~{,0+5!, which corresponds to the use of a uniform prior for p+
For example, note how the line lies between the values of 2 and 3 when g� 10,
whereas its value is approximately 1 when g is small+ Compare this to the non-
scaled setting+ By Theorem 4, a predictor k is selected if and only if jk, n

2 �
c~gk ,wk , n, [sn

2!, where

c~g,w, n,s 2 ! �
2~g� s 20n!

g
log� 1

w
� 1��

g� s 20n

g
log~ns�2g� 1!+

Figure 2 plots the contour values of this function over g and w for n � 50 and
s 2 � 1+ The two plots confirm the mitigation of underfitting effects due to
rescaling+ Even for the small sample size illustrated in Figure 2, one can see
how much larger the contour values are compared to Figure 1+ For example,
under a flat prior, the contour value for small g values is more than 3 as com-
pared to near 1 under rescaling+ It is clear that nonscaled highest posterior model
selection will tend to favor smaller models+
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Rescaling also allows the gk to be set in a more intuitive way+ Consider what
happens if wk � 1

2
_ + If bk,0 is nonzero, then using a large value for gk shows that

k will be selected with high probability because jk, n
2 will eventually be larger

than c *~gk,0+5!, which will be relatively small in comparison+ This is exactly

Figure 1. Contour plot of c *~g,w! as a function of the hypervariance, g, and prior
inclusion probability, w+ Note that c *~g,w! is positive for small values of w and becomes
negative as w increases to one+ The thick line is horizontal value w � 1

2
_ and identifies

contour values for the function c *~{,0+5!+

Figure 2. Contour plot of c~g,w, n,s2! for n � 50 and s2 � 1+ The thick line is
horizontal value w � 1

2
_ and identifies contour values for the function c *~{,0+5, n,s2!+
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what we would like, because large gk values are used to elicit a belief that a
covariate is informative+

On the other hand, consider what happens if bk,0 � 0+ Now if we select gk to
be small, c *~gk,0+5!
 1+ Thus, if bk,0 � 0, the predictor k will be selected with
asymptotic probability P $x1

2 � 1%
 0+32+ Although this appears too large, and
brings into doubt whether gk should be chosen this way, one should note if bk,0

is nonzero, but very small, then k will be selected with roughly the same prob-
ability+ Thus, although one pays a price in overfitting if the coefficient is truly
zero, there is a built-in robustness to misspecification+ In fact, this is exactly
the same effect discussed in Section 6+2 that keeps the rescaled highest poste-
rior model from breaking down in a local asymptotic setting+

Figure 1 also indicates how the highest posterior model might be affected by
the underlying size of the model+ Consider the case when p is chosen such that
wk � w for some hyperparameter w � 0 reflecting overall size or model com-
plexity+ The preceding discussion shows how to choose gk in a meaningful way
when w � 1

2
_ + Namely, we use small values for covariates we expect to be non-

informative and large values for informative covariates+ This type of calibra-
tion also applies when the value for w � 1

2
_ and the model is anticipated to be

sparse+ In fact, now the use of small gk values to indicate noninformative pre-
dictors makes even more sense+ On the other hand, if w � 1

2
_ is large, then we

run into calibration problems+ Now c *~g,w! can be negative for all values of
g+ Clearly overfitting will occur, and there is no sensible way of selecting gk+
This suggests that highest posterior model selection might operate best under
rescaling only under sparse settings+

7. BREIMAN SIMULATIONS

In this section we use simulations to study the empirical performance of high-
est posterior model selection under both the scaled and nonscaled settings+ Our
simulations followed those used by Breiman ~1992!+ Specifically, data were gen-
erated by taking «i to be i+i+d+ N~0,1! variables, and covariates x i were simu-
lated independently from a multivariate normal distribution such that E~xi, k!� 0
and E ~xi, j xi, k! � r 6 j�k 6 , where 0 � r � 1 represents a correlation parameter+
All simulations involved K � 14 predictors with a sample size of n � 50+

We considered four sets of simulations, ~A!, ~B!, ~A'!, and ~B'!, reflecting
different correlation values r and different values for bk+ For simulation ~A!,
12 of the 14 predictors were chosen to be nonzero+ All coefficients were set to
the same small value, this being chosen such that the theoretical R2 value for
the model was 0+5 ~for a discussion of this point, see Breiman, 1992!+ Thus,
simulation ~A! reflects a setting involving many nonzero weak predictors+ In
contrast, simulation ~B! was designed to reflect a setting with few nonzero
strong predictors+ Of the 14 predictors, only six were chosen to be nonzero+
Of these, two had the same large value; the other four had the same medium-
sized value+ The size of coefficients was selected so that the large coefficients
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were 2+4 times larger than the medium-sized ones and such that the theoreti-
cal R2 � 0+75+ Both simulations ~A! and ~B! were based on a correlation of
r � 0, thus reflecting an orthogonal design setting+ On the other hand, simu-
lations ~A'! and ~B'! used r� 0+9, reflecting a highly correlated design+ Except-
ing this, simulation ~A'! was the same as ~A!, and simulation ~B'! was the
same as ~B!+

Each of the four simulations was repeated 1,000 times independently+ For
each experiment we kept track of the false discovery rate ~FDR!, false nondis-
covery rate ~FNR! and total risk performance ~TotalRisk! of a procedure+ The
FDR and FNR are the false discovery and false nondiscovery rates defined as
the false positive and false negative rates for those coefficients identified as
nonzero and zero, respectively+ The TotalRisk equals the total number of falsely
identified nonzero coefficients and falsely identified zero coefficients+Also com-
puted was the prediction error performance ~PE! of a procedure+ This was
defined as the mean square error of the estimated predictor computed over the
original data when compared to a freshly drawn set of Yi responses using the
original x i values+

Highest posterior model selection ~both scaled and nonscaled! was investi-
gated under a uniform model prior for p+ Hypervariances were set to gk � g,
where three different values for g were considered: g � 1,10, n ~this is similar
to what was done in Table 1!+ Additionally, we introduced a hybrid procedure
based on preselected hypervariances+ Prior to estimating the highest posterior
model we ran the spike and slab Gibbs sampler outlined in Ishwaran and Rao
~2005b!+ This was done using both scaled and nonscaled responses+ We then
used the posterior means of gk estimated from the Gibbs sampler as the hyper-
variances used for highest posterior model selection+ Note that a different set
of hypervariances and a different set of highest posterior models were esti-
mated for the scaled and nonscaled settings+ Finally, in addition to examining
highest posterior model selection, we also kept track of models selected using
BIC and AIC penalization+ These are the models with lowest BIC and AIC pen-
alties over all models+ The results for all these procedures are recorded in Table 2+
Values reported are averaged values from the 1,000 simulations+

Our conclusions are summarized as follows:

1+ In simulations ~A! and ~A'!, total risk performance for highest posterior
model selection, and also for other measures of performance, degrades as
g increases+ This is true for both the scaled and nonscaled cases+ This is
because the simulations reflect a setting where almost all coefficients are
relatively small and so the optimal way to select g would be to choose a
small value+ If g is large, estimated models are too small, and perfor-
mance suffers+ Notice also the mitigation effects of rescaling+ This is seen
by the better total risk performance due to a lower FNR brought on by a
less aggressive tendency to underfit—particularly evident here because
of the weak underlying signal+

AN IN-DEPTH LOOK AT HIGHEST POSTERIOR MODEL SELECTION 395



2+ The opposite effect is seen for simulations ~B! and ~B'! under rescaling+
Now highest posterior model performance improves as g increases+ This
is because in these sets of simulations only six coefficients are nonzero,
two being large, the other four nonzero coefficients having moderate size+
As g increases estimated models become small and approach the true
model+ This backfires for nonscaled models though, because sparse mod-
els are approached very rapidly as g becomes larger+ Performance degrades
in this setting because models are just too small and false negative rates

Table 2. Breiman simulations

Simulation ~A! Simulation ~A'!

FDR FNR TotalRisk PE FDR FNR TotalRisk PE

Many nonzero weak predictors
BIC 0+031 0+782 6+962 1+526 0+085 0+850 10+290 1+201
AIC 0+051 0+724 4+931 1+409 0+111 0+851 9+482 1+218

M [a,1
* 0+057 0+665 3+669 1+359 0+085 0+736 4+254 1+167

M [a,10
* 0+040 0+742 5+559 1+444 0+091 0+845 9+373 1+164

M [a, n
* 0+031 0+781 6+972 1+527 0+083 0+847 10+051 1+197

M [a,•
* 0+045 0+721 4+873 1+408 0+097 0+841 8+785 1+150

M [a,1 0+030 0+782 7+008 1+525 0+082 0+847 10+070 1+196
M [a,10 0+019 0+812 8+555 1+627 0+055 0+847 10+507 1+206
M [a, n 0+014 0+823 9+314 1+684 0+041 0+847 10+666 1+223
M [a,• 0+045 0+743 5+446 1+432 0+101 0+848 9+603 1+182

Simulation ~B! Simulation ~B'!

FDR FNR TotalRisk PE FDR FNR TotalRisk PE

Few nonzero strong predictors
BIC 0+091 0+135 1+800 1+287 0+167 0+351 4+570 1+204
AIC 0+195 0+088 2+135 1+274 0+342 0+363 5+185 1+239

M [a,1
* 0+353 0+102 3+754 1+286 0+494 0+022 5+993 1+228

M [a,10
* 0+151 0+101 1+897 1+271 0+245 0+266 3+735 1+164

M [a, n
* 0+090 0+134 1+792 1+287 0+208 0+338 4+468 1+199

M [a,•
* 0+177 0+088 1+963 1+265 0+263 0+258 3+755 1+164

M [a,1 0+086 0+133 1+758 1+284 0+209 0+340 4+494 1+200
M [a,10 0+041 0+182 2+057 1+334 0+105 0+345 4+353 1+192
M [a, n 0+026 0+214 2+365 1+382 0+076 0+344 4+280 1+187
M [a,• 0+121 0+114 1+789 1+273 0+273 0+342 4+693 1+209

Note: BIC and AIC are models selected using BIC and AIC penalization; M [a,g
* and M [a,g are highest posterior

scaled and nonscaled models, respectively, where gk � g; M [a,•
* and M [a,• are highest posterior scaled and non-

scaled models using estimated hypervariances+
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too high+ This behavior could have been predicted from Figure 2, where
contour values under a uniform prior ~i+e+, the thick line! can be seen to
increase quickly with increasing g+ As a result, only a very strong signal
can be detected+

3+ Total risk performance and PE for rescaled highest posterior model selec-
tion is better than in nonscaled selection in almost all examples+ This is
true when comparing models for the same hypervariance or when com-
paring models based on preselected hypervariances+

4+ Total risk performance and PE for rescaled highest posterior model under
preselected hypervariances, M [a,•

* , is better than AIC and BIC in almost
all examples+ The exception occurs in ~B!, where BIC is best with respect
to total risk+ In this particular scenario, BIC appears to discourage over-
fitting enough without inducing too much underfitting+ Interestingly,
M [a,•
* is highly competitive in PE with BIC even in this situation+ It is

also interesting to note that BIC is no longer better than M [a,•
* in the cor-

related case, ~B'!+
5+ The results for simulations ~A'! and ~B'! are in tune with those found for
~A! and ~B!+ This suggests that our theory may also apply to correlated
settings, at least approximately+

8. DISCUSSION

In this paper we have shown rigorously that underfitting using the highest pos-
terior model occurs because of a BIC-like penalization term appearing in the
log-posterior model probability+ Various limiting probabilities were given in sim-
ple closed form expressions to help quantify what this means in practice+ These
kinds of specific details are not often found in the literature ~one nice example
is Zhang, 1993b, where rates at which over- and underfitting occur were estab-
lished within the context of fixed-penalty information criteria!+ Our results show
that underfitting is much worse than first thought—that the highest posterior
model will tend to favor the smallest models with high signal coefficients among
the group of underfit models for finite samples+ This was further amplified by
a local asymptotic argument that showed that the highest posterior model will
eventually concentrate on the null model in cases where true coefficients are
all weak+

We proposed a remedy for this by rescaling the responses and suitably alter-
ing the Bayesian hierarchy+ Highest posterior model selection under the result-
ing rescaled spike and slab models, although no longer risk consistent, will be
more evenly balanced, and the problems of underfitting will be substantially
mitigated+ In addition, calibration of the gk can be done in a way that is intu-
itively consistent with the spike and slab hierarchy+ Interestingly though, under
nonsparse prior settings, things break down because there is no sensible way to
calibrate the gk+ Here, regardless of how the gk are set, overfitting will be the
result+ This suggests that there is a disconnection between the general use of
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the highest posterior model for model selection and the manner in which hyper-
parameters in the prior are chosen+

One promising alternative that does not suffer from these problems is model
selection based on the posterior mean from a rescaled spike and slab hierarchi-
cal model+ Specifically, let Zbn

* � ~ Zb1, n
* , + + + , ZbK, n

* !' denote the posterior mean
for b from ~11!+ Taking advantage of conjugacy and orthogonality, one can
show that

E ~bk 6Y*,Ma! � �
gk

1 � gk

jk, n if k � a

0 if k � a+

Therefore,

Zbk, n
* � �

a�Dk

E ~bk 6Y*,Ma!p~Ma 6Y* !

�
gk

1 � gk

pk
*jk, n , k � 1, + + + ,K+ (13)

Proper calibration of priors is now no longer difficult, even for the nonsparse
setting+ For example, using the notation of Section 6+3, suppose that the model
complexity value is w � 1

2
_ + If gk is chosen to be small for zero coefficients and

large for nonzero coefficients, then pk
* will be nearly one for all coefficients+

However, the posterior mean, because it includes the shrinkage effect gk0~gk �1!,
will shrink the value of pk

* and consequently will be small for zero coefficients
while still being large for nonzero coefficients+

Thus, selection based on using the posterior mean will be free from calibra-
tion problems in all settings+ In fact, effective strategies for model selection
using the posterior mean from rescaled spike and slab models have already been
developed ~Ishwaran and Rao, 2005b!+ These operate by extending the hierar-
chy to include a continuous bimodal prior for the gk and provide automatic
adaptive estimation of the gk ~recall how the effectiveness of such values was
demonstrated in the Breiman simulations!+ The resulting model averaged pos-
terior mean estimates coupled with hard thresholding are then used for selec-
tion+ A detailed theoretical treatment and empirical validation supporting the
use of the posterior mean can be found in Ishwaran and Rao ~2003, 2005a,
2005b! for the interested reader+
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APPENDIX A: Proofs

Proof of Theorem 2. With some algebra, and using Xa
' Xa � nIa, one can show for

each nonnull model Ma,

f ~Y6Ma! � Ca exp�1

2 �
k�a

dk, njk, n
2 �,

where jk, n is defined as in ~12!, dk, n is defined as in Theorem 4, and

Ca � ~2p!�n02n�Ka 02 [sn
�n�Ka exp��

1

2 [sn
2

Y'Y�	
k�a

~gk � [sn
20n!�102+

Therefore, if Ma and Ma ' are two distinct nonnull models,

f ~Y6Ma!

f ~Y6Ma ' !
� � [sn

2

n
�~Ka�Ka ' !02 	

k�a

~gk � [sn
20n!�102

	
k�a '
~gk � [sn

20n!�102

� exp�1

2 �
k�a

dk, njk, n
2 �

1

2 �
k�a '

dk, njk, n
2 �+

Taking logs, and keeping in mind [sn
2 p
&& s2 � 0, it follows that

log~p~Ma 6Y!!� log~p~Ma ' 6Y!!

�
1

2
~Ka ' � Ka! log~n!�

1

2 �
k�a

dk, njk, n
2 �

1

2 �
k�a '

dk, njk, n
2

�
1

2
~Ka� Ka ' ! log~ [s 2 !�

1

2 �
k�a '

log~gk !�
1

2 �
k�a

log~gk !

� log~p~Ma!!� log~p~Ma ' !!� Op~n
�1 !+ (A.1)

Notice that the first term on the right-hand side represents a BIC penalty that penalizes
larger models by a factor of log~n!+ There is a trade-off in size, though, involving the
sums containing jk, n

2 + These terms can be evaluated using a central limit theorem+ In
particular, it follows that if bk,0 � 0, then jk, n

2 �
d
x1

2 , whereas if bk,0 � 0, we have
jk, n � [sn

�1~n102bk,0 � Op~1!!+ Thus over the nonzero coefficients, jk, n
2 is order Op~n!,

which becomes the dominant term in ~A+1!+ Because of this, it is clear that each Cat-
egory II model Ma will have exponentially larger posterior probability than any Cat-
egory I model Ma ' , and thus ~ii! follows ~for the case of the null model a ' � À, simply
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substitute 0 for Ka ' and remove all sums involving a ' in ~A+1!!+ Over Category II
models,

1

2 �
k�a

dk, njk, n
2 �

1

2 �
k�a '

dk, njk, n
2

�
1

2 �
k�a�a0

c

jk, n
2 �

1

2 �
k�a '�a0

c

jk, n
2 � Op~n

�1 !+ (A.2)

Because ~A+2! only involves zero coefficients, the term is order Op~1!, and thus the BIC
penalty becomes the dominant term in ~A+1!+ Because this penalty penalizes larger mod-
els, deduce ~i!+ Furthermore, if Ka � Ka ' , and if p is uniform and g1 � {{{ � gK , then
~A+1! reduces to ~A+2! over Category II models+ If Ma and Ma ' are distinct, the sum
on the right-hand side of ~A+2! converges in distribution to 1

2
_ of the difference between

two i+i+d+ xk
2 variables ~with 2k equaling the total number of distinct zero coefficients in

both models!+ From this deduce the second part of ~iv!+ The first part of ~iv! follows
because ~A+1! reduces to ~A+2! plus an incidental finite constant if p and gk are not
necessarily uniform+

Finally to prove ~iii!, observe that dk, njk, n
2 � [sn

�2 nbk,0
2 � Op~n102! if bk,0 � 0+ These

variables represent the dominating terms in working out the desired probability and are
of order n+ Dividing ~A+1! throughout by [sn

�2 n, and using [sn
2 p
&& s2 � 0, it follows that

the event on the left-hand side of ~9! occurs if and only if

�
k�a�a0

bk,0
2 � �

k�a '�a0

bk,0
2 � Op~n

�102 !� smaller order terms+ �

Proof of Theorem 3. A triangular central limit theorem ~Serfling, 2002! shows under
the local asymptotic setting ~10! that jk, n � sbk,00 [sn � Zk, n where Zk, n �

d
Zk+ Also,

under ~10!, identity ~A+1! continues to hold+ Thus, whenever Ka� Ka ' , the BIC penalty
is the dominant term in ~A+1!, and part ~i! follows+ If Ka � Ka ' , the BIC term disap-
pears+ Part ~ii! follows upon using jk, n �

d
bk,0 � Zk+ �

Proof of Theorem 4. By definition,

pk �

�
a�Dk

p~Ma 6Y!

�
a�Dk

p~Ma 6Y!� �
a�Dk

p~Ma 6Y!

� �1 �

�
a�Dk

p~Ma 6Y!

�
a�Dk

p~Ma 6Y! �
�1

+ (A.3)

In the proof of Theorem 2 we have shown for each nonnull model Ma,

f ~Ma 6Y! � Cn�Ka 02 [sn
Ka exp�1

2 �
k '�a

dk ', njk ', n
2 � 	

k '�a

~gk ' � [sn
20n!�102,
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where C is a constant independent of a ~in fact C � p~MÀ6Y!!+ Assume that a � Dk+
Let a�k � a � $k% + Removing the contribution from the variable k, we have

f ~Ma 6Y! � ~n [sn
�2gk � 1!�102 exp~ 2

1
�dk, njk, n

2 ! f ~Ma�k
6Y!+

Furthermore, because of the special nature of the prior, if we extract the contribution of
k, we have p~Ma! � wk~1 � wk !

�1p~Ma�k
!, and therefore

p~Ma 6Y! � wk~1 � wk !
�1~n [sn

�2gk � 1!�102 exp~ 2
1
�dk, njk, n

2 !p~Ma�k
6Y!+ (A.4)

There is a 1:1 mapping between Dk and Dk
c + In particular, observe that

�
a�Dk

p~Ma�k 6Y! � �
a�Dk

p~Ma 6Y!+

Hence, if we extract the term in ~A+4! depending upon k, the ratio of the sums in ~A+3!
simplifies to

Rk � ~wk
�1 � 1!~n [sn

�2gk � 1!102 exp~� 2
1
�dk, njk, n

2 !+

Therefore, pk
�1 � 1 � Rk+ By carefully tracking back through the arguments, substituting

n for [sn
2 and Y* for Y, one can deduce a similar result for pk

*+ �

Proof of Theorem 5. We first prove ~i! by showing that the posterior model proba-
bility factorizes into a product of the underlying posterior inclusion probabilities+ To do
so we will make use of the product rule of probability+ For convenience we will use
products hereafter to indicate intersection of sets+ Let D be any set of models such that
Dk � D � À and Dk

c � D � À+ We have

p~a � Dk 6a � D,Y* ! �
�

a�Dk�D

p~Ma 6Y* !

�
a�Dk�D

p~Ma 6Y* !� �
a�Dk

c�D

p~Ma 6Y* !

� �1 �

�
a�Dk

c�D

p~Ma 6Y* !

�
a�Dk�D

p~Ma 6Y* ! �
�1

+

By arguing as in the proof of Theorem 4 ~cf+ eqn+ ~A+3!!, one can show this equals pk
*+

The other relevant case for D occurs when Dk � D � $k% and Dk
c � D � À+ In other

words, D � $À, $k%% + Let Rk
* be the value of Rk when n is substituted for [sn

2 and dk for
dk, n+ Then, arguing as before, it is not hard to see that

p~a � Dk 6a � D,Y* ! � �1 �
p~MÀ 6Y* !

p~MÀ 6Y* !0Rk
*��1

� pk
*+
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From this, and the product rule of probability, deduce that for any model

p~Ma 6Y* ! � p�	
k�a

Dk 	
k�a

Dk
c 6Y *�� 	

k�a

pk
* 	

k�a

~1 � pk
*!+

It is clear that the median model is the model that maximizes the posterior model
probability+

Now to prove ~ii! and ~iii!+ Using arguments similar to Theorem 2 deduce

log~p~Ma 6Y* !!� log~p~Ma ' 6Y* !!

�
1

2 �
k�a

dkjk, n
2 �

1

2 �
k�a '

dkjk, n
2

�
1

2 �
k�a '

log~gk � 1!�
1

2 �
k�a

log~gk � 1!� log~p~Ma!!� log~p~Ma ' !!+

Argue as in the proofs of Theorems 2 and 3 to deduce ~ii! and ~iii!+ �

APPENDIX B: Asymptotics for Null and Full Models

We now indicate how our main asymptotic results are affected when assumption ~3! is
violated+ That is, if Ma0

is allowed to be either the null or full model+

1+ Consider first the case when Ma0
is the full model+ Then the space of Category II

models is simply Ma0
+ Because this space contains only one model, part ~iv! of

Theorem 2 no longer applies+ However, the remainder of the theorem continues to
hold+ Theorems 3 and 5 also continue to hold+ This can be seen by noting that the
key expression ~A+1! applies in the full model case+

2+ Now suppose Ma0
is the null model+ Then the space of Category I models is

defined to be empty, and all models are of a Category II type+ Hence, in Theo-
rem 2, parts ~ii! and ~iii! no longer apply because the Category I model space is
empty+ The remainder of the theorem continues to hold, however+ This follows by
noting that ~A+1! applies to the null model by setting the relevant dimension to
zero and removing all sums involving the null model+ Theorem 3 continues to
apply, although the highest posterior model is obviously no longer inconsistent+
Theorem 3 in fact is noninformative in the null model case because the point was
to consider the setting in which coefficients may be small and nonzero+ Theo-
rem 5 also continues to apply except for part ~ii!, which applies to Category I
models+ Note that in Theorems 3 and 5 if a or a ' is set to the null model, simply
replace the relevant sum with the value 0+ Also note that bk,0 � 0 for each k+
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