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a b s t r a c t

Predictionmodels that use gene expression levels are now being proposed for personalized
treatment of cancer, but building accurate models that are easy to interpret remains
a challenge. In this paper, we describe an integrative clinical–genomic approach
that combines both genomic pathway and clinical information. First, we summarize
information from genes in each pathway using Supervised Principal Components (SPCA)
to obtain pathway-based genomic predictors. Next, we build a prediction model based on
clinical variables and pathway-based genomic predictors using Random Survival Forests
(RSF). Our rationale for this two-stage procedure is that the underlying disease process
may be influenced by environmental exposure (measured by clinical variables) and
perturbations in different pathways (measured by pathway-based genomic variables),
as well as their interactions. Using two cancer microarray datasets, we show that
the pathway-based clinical–genomic model outperforms gene-based clinical–genomic
models, with improved prediction accuracy and interpretability.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cancer is a heterogeneous complex disease, influenced by both genetic background and environmental exposure.
Therefore, when weighing treatment options it is important to use accurate prognostic models. Towards this end, it is
common for clinical information such as age, tumor size, histopathologic grade, and lymph node involvement to be used
when modeling cancer prognosis. Tumor specific markers are also increasingly used in modeling. For example, estrogen
receptor and human epidermal growth factor receptor 2 (HER2) are used for breast cancer, and prostate specific antigen
(PSA) for prostate cancer.
However, while clinical prognostic factors are useful at a population level for identifying risk, because of the

heterogeneity and complexity of cancer, they are far from being accurate predictors of an individual’s clinical course. Often,
cancer patients may exhibit the same clinical pattern, but prognosis can vary significantly. The recent development of high-
throughout microarrays for measuring gene expression has given investigators a more accurate way of identifying cancer
subtypes by making use of gene expression profiles. This approach has been successfully applied to tumor classification
and to making prognosis in lung, breast, colon and other cancers (Beer et al., 2002; Perou et al., 2000; Alon et al., 1999).
For predicting survival outcome (death or recurrence) approaches based on the Cox proportional hazard model have been
proposed, including partial least squares (Nguyen and Rocke, 2002), L1-penalized regression (Segal, 2006; Datta et al., 2007),
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L2-penalized regression (Hastie and Tibshirani, 2004), supervised principal component analysis (Bair and Tibshirani, 2004).
By using high-dimensional genomic information, these methods have been shown to improve cancer prognosis compared
to models based on clinical predictors alone.
Although gene-based prediction models is a promising approach, some disturbing inconsistencies among gene

expression profiles have been reported (Ein-Dor et al., 2005). It has been suggested that one reason for these discrepancies
may be that in complex diseases many genes are associated with outcomes, each with only a small marginal effect.
Therefore,many real butweak signals could bemissed, especiallywhen sample sizes are small (Mootha et al., 2003). Because
activities within pathways are key components for cancer development (Wood et al., 2007), pathway analyses that borrow
information from genes within a pathway and associate groups of genes instead of individual genes with clinical outcome,
have become a more popular alternative (Mootha et al., 2003; Wang et al., 2008). Increased power comes from combining
weak signals from a number of genes within each pathway. Signatures from oncogenic pathways have been shown to be
not only effective markers for identifying tumor subtypes, but also a valuable guide for targeting therapies (Bild et al.,
2006). Several recent papers have successfully integrated microarray data with prior pathway knowledge for disease status
prediction (Lee et al., 2008; Chen andWang, 2009) and have shown that pathway-based predictionmodels improve accuracy
and increase reproducibility (Manoli et al., 2006).
In this paper, we propose an integrative clinical–genomic model that combines both genomic pathway and clinical

information. More specifically, we integrate genomic predictors based on pathway information with clinical variables using
Supervised Principal Components (SPCA) and Random Survival Forests (RSF) (Ishwaran et al., 2008). First, we summarize
genomic information from each pathway using supervised principal components (Section 2.1); these are the ‘‘supergenes’’.
Next, using both supergenes and clinical variables as predictors, we use RSF for prediction. Doing so allows us to approximate
the underlying functional gene network by allowing interactions between pathway–pathway and pathway–clinical (or
environmental) factors. One of the important properties of RSF is that it is highly adept at identifying interactions.
Section 2 describes the details of our proposed approach. Section 3 considers two publicly available breast cancer

microarray data sets and compare the performance of our proposed model with three widely used approaches: supervised
principal components, L1-penalized Cox regression, and Cox-based boosting.

2. Method

Our method involves two main steps:

(1) Summarize information from genes in each pathway using SPCA to obtain pathway-based genomic predictors.
(2) Build prediction model based on clinical variables and pathway-based genomic predictors using RSF.

Our rationale for this approach is that the underlying disease process may be influenced by environmental exposure
(measured by clinical variables), perturbations in different pathways (measured by pathway-based genomic variables) as
well as their interactions. We discuss the SPCA method and RSF in more details in the next two sections.

2.1. SPCA

Principal Component Analysis (PCA) is a popular dimension reduction technique for summarizing information from a
group of genes, such as those from the same pathway (Tomfohr et al., 2005; Bild et al., 2006). The first principal component
has been called the ‘‘eigengene’’ or ‘‘metagene’’ (Alter et al., 2000). However, because pathways such as those from Gene
Ontology (Ashburner et al., 2000) are defined a priori in a particular experiment, typically only a subset of genes from a
pathway work together to influence changes in a biological process, which then brings about changes in outcome. When all
the genes in a pathway are used to estimate the principal components, the resulting ‘‘eigengene’’ may be affected by noisy
signals from genes unrelated to outcome. Therefore, we adopt a semi-supervised approach: SPCA to do gene shaving and
dimension reduction within pathways.
SPCA was proposed by Bair and Tibshirani (2004) and Bair et al. (2006) to predict survival outcomes using genome-wide

gene expression data. Instead of using all genes as in standard PCA, a subset of genes having strong correlationswith survival
time are selected for PCA. The estimated principal component scores are used as predictors in a Cox proportional hazard
model for survival prediction.
Although SPCA is an effective prediction model, it can be difficult to interpret because of the large number of genes

often selected in constructing the eigengenes. Rather than assuming a few eigengenes at the genome-wide level, it is more
reasonable to assume an eigengene for each pathway. Towards this end, SPCA was successfully modified and applied to
pathway analysis (Chen et al., 2008; Chen and Wang, 2009). Along the same lines, in this paper, we use the estimated
eigengene (i.e., first principal component score) to represent the latent variable associatedwithunderlying biological process
in a pathway.

2.2. Random survival forests

Random forests (RF) is a state of the art ensemble learningmethod, whichwas introduced by Breiman (2001), and further
developed by Breiman and Cutler. RF grows deep, random trees, which are aggregated to form the ensemble learner. By
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growing a deep tree, the base learner has low bias. By growing the tree randomly (see details below), tree correlation, and
hence variance is kept low. These two competing forces enable RF to be an effective classification and regression procedure
for high-dimensional data.
Random survival forests (RSF) is a new extension of Breiman’s RF methodology to right-censored survival settings

(Ishwaran et al., 2008). The core algorithm used by RSF and RF are similar. First, ntree bootstrap samples are drawn from the
original data. For each bootstrap sample, a single random survival tree is grown. In growing the tree, at each tree node,mtry
variables are randomly selected and the node is split by finding the variable that maximizes the log-rank test across nsplit
randomly selected split points. Each survival tree is grown to full size under the constraint that the minimum number of
unique event times in a node is no less than a pre-defined nodesize value. Each bootstrap sample excludes on average 36.7%
of the data, called out-of-bag (OOB) data, which is used to construct an OOB ensemble used for estimating test set error
(Ishwaran et al., 2008).
To evaluate the survival prediction performance of RSF as well as other procedures, we use Harrell’s concordance index

(C-index) (Harrell et al., 1982), which estimates the probability of concordance between predicted and observed survival.
To measure the error rate, we use 1− C , which is bounded between 0 and 1. An error rate of 0 indicates perfect prediction,
whereas an error rate of 0.5 indicates random guessing.
A key feature of RSF is the ability to assess variable importance (VIMP). VIMP is defined as the prediction error from the

OOB ensemble subtracted from the prediction error of a newOOB ensemble derivedwhen the variable in question is ‘‘noised
up’’ (Ishwaran et al., 2008). A large positive VIMP indicates a predictive variable.

2.3. Analysis details: work flow

The following algorithm describes the work flow used to construct the clinical–genomic model:

(1) Randomly partition the data into training and test sets of sizes n1 and n2, respectively.
(2) Link gene identifiers from microarrays with those from the pathway databases Gene Ontology and KEGG (Ashburner
et al., 2000; Kanehisa et al., 2002). Group genes into different pathways. For genes not assigned to any gene categories,
rather than discarding those genes, perform K -means clustering to group them based on their expression patterns. To
determine the optimal number of cluster, use the Gap statistic (Tibshirani et al., 2001). Genes grouped this way are
referred to as ‘‘pseudo-pathways’’.

(3) Using the training set, use SPCA to select the subset of genes most associated with survival outcome for each pathway
(or pseudo-pathway). Using the gene expressions of the selected genes, the ‘‘supergene’’ for a pathway is estimated by
the first principal component score. A supergene expression matrix is constructed using the supergenes. If there is a
total ofm pathways (including pseudo-pathways), the training set supergene matrix is of dimensionm× n1.

(4) Using survival outcomes as the response, use RSF with the pathway supergene matrix and clinical information as
predictors. Only training data is used.

(5) To assess performance, construct a supergene matrix for the test data (of dimensionm× n2). These calculations use the
eigenvectors estimated from the training data alone. Using the training set derived forest, determine the accuracy of the
resulting predictor on the test set using the test set supergene matrix and test set clinical variables.

3. Results

We studied the performance of our method using two breast cancer microarray datasets. Our first example is the widely
used benchmark microarray dataset from Miller et al. (2005). It included 251 microarray samples (i.e., patients) obtained
from Affymetrix U133A and U133B platforms (GEO accession no. GSE3494). Of the 251 samples, only 236 have follow-
up information; only these data were used for our analysis. In addition to gene expression data, clinical predictors used
included: P53 status, Elston grade, ER, PgR, age, tumor size and lymph node status. The second dataset included 255 early
stage estrogen receptor (ER) positive breast cancer samples from patients receiving tamoxifen adjuvant treatment (Loi et al.,
2008). Three Affymetrix platforms, U133A, U133B and U133PLUS2 were used (GEO accession no. GSE6532). The survival
endpoint was time until first distant metastatic event (distant metastasis free survival). Clinical–pathological predictors
were histological grade, tumor size, age, nodal status, ER (high vs. low expression), PgR (high vs. low expression) and HER2
(high vs. low expression).

3.1. Survival prediction performance

Each dataset was randomly split into training and testing sets using a 2:1 ratio. For the Miller dataset, we mapped
13,441 genes to Gene Ontology ‘‘Biological Process’’ (GO-BP) categories. There were 10,695 genes belonging to 1570 GO-
BP categories with gene set sizes larger than two. The remaining 2746 genes were split into groups with similar gene
expression patterns using K -means clustering in tandem with the Gap Statistic (Tibshirani et al., 2001). There were a total
of 1576 pathways (1570 based on GO categories and 6 based on K -means clustering). These were then used to derive 1576
supergenes. For the Loi dataset, we mapped 11,553 genes to 1656 GO-BP categories, and the remaining 4184 genes were
divided into 12 clusters, yielding a total of 1668 supergenes.
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Table 1
Test set errors for RSF, SPCA, LASSO and CoxBoost using 1− C . Values reported are averaged over 10 independent experiments.

Method RSF SPCA LASSO CoxBoost

Miller’s data Gene-based 0.3066 0.3029 0.3900 0.3634
Pathway-based 0.2823 0.2857 0.3118 0.3140

Loi’s data Gene-based 0.3194 0.3286 0.3473 0.3464
Pathway-based 0.2881 0.3167 0.3241 0.3279

Table 2
Factors contributing to performance of pathway-based RSF prediction models. Test set errors using 1− C , averaged over 10 independent experiments are
shown.

Method Miller et al. (2005) data Loi et al. (2008) data

Pathway-based RSF 0.2823 0.2881
(1) No gene screening in gene sets 0.2992 0.3014
(2) No K -means clusters 0.2903 0.2934
(3) No clinical variables 0.2895 0.2925

RSF was applied as described in Section 2.3. All forests were comprised of ntree = 5000 survival trees, with each tree
grown under random log-rank splittingwith an nsplit value of 10. All RSF applications in this paperwere implemented using
the R-package, randomSurvialForest (Ishwaran and Kogalur, 2007). Default values for the package were used in all examples,
excepting those just listed.
We compared performance with three other popular procedures: (i) SPCA (Bair et al., 2006); (ii) L1-penalized Cox

regression (LASSO) (Park and Hastie, 2007); and (iii) Cox-likelihood-based boosting (Binder and Schumacher, 2008). These
procedures were implemented using the R-packages: superpc, glmpath and CoxBoost, respectively. Table 1 lists test set
errors for all procedures using 1− C (Section 2.2). All results are averaged over 10 independent replicates of the procedure
outlined above. Pathway-based models used supergenes and clinical variables as predictors, whereas gene-based models
used individual genes and clinical variables as predictors. Five-fold cross-validation was used to select tuning parameters
for the comparison procedures (for SPCA, the threshold for selecting genes; for Cox Lasso, the L1 regularization parameter;
and for Cox Boosting, the optimal number of boosting steps). For all procedures, as expected, the pathway-based approach
performed better than the gene-based one. This is not surprising, as these models have incorporated additional prior
biological knowledge. Among all methods, the RSF pathway model had lowest prediction error over both datasets.
To better understand why the RSF-pathway-based approach worked so well, we investigated three sources potentially

contributing to its success: (1) selection of subset of genes for constructing supergenes within each gene set; (2) gene
categories from clustering of genes not annotated in pathway databases; and (3) clinical variables. For each of these
factors, the RSF-based model was constructed by removing the factor being investigated and keeping all other procedures
unchanged. For example, to evaluate the impact of (1), all genes instead of a selected subset of genes were used to estimate
the supergenes for each pathway. For (2) and (3), supergenes from K -means clusters and clinical variables were omitted
from the RSF model, respectively.
Table 2 shows that the selection of a subset of genes for estimating supergenes had the largest impact on prediction

error. This supports our assumption that within each gene set, only a subset of genes play an important role. By removing
noisy signals from non-relevant genes, the pathway-based RSF model improves both prediction performance and biological
interpretation.
Finally, we should remark that while we used K -means and the Gap statistic to form clusters for genes without pathway

annotation in our approach, this may not necessarily be the optimal method for clustering. In deciding what method might
be best, one could use the R-packages ‘‘clValid’’ and ‘‘RankAggreg’’ to evaluate the performances of different clustering
algorithms and to select the optimal approach (Datta and Datta, 2003). However, we note that informal experimentation
with different clustering procedures showed that prediction performance for RSF remained very stable. We believe this
is because most of the predictors in the model were derived based on a priori defined pathway information, which lends
stability to our approach.

3.2. Predictors identified by RSF

A VIMP analysis was used to identify key variables for predicting survival outcome. All predictors, including supergenes
representing the pathways and clinical variables, were ranked by VIMP. To increase precision, bootstrap resampling was
used. We drew 200 independent bootstrap samples and calculated VIMP for each sample. The estimated VIMP for a variable
was calculated as the mean over all bootstrap samples divided by the standard deviation.
Table 3 shows the top 10 variables in terms of standardized VIMP for theMiller et al. (2005) dataset. The list includes one

clinical variable and nine supergenes. The pathways for the supergenes are involved in different biological processes such as
cell proliferation, neuron development, cell cycle, ion transport and amino acid metabolism. The most significant predictor
is endothelial cell proliferation (GO:0001935). It is well known that tumor angiogenesis, which is the development of new
blood vessels and a critical process in tumor progression, is dependent on endothelial cell proliferation. It has been reported



X. Chen et al. / Statistics and Probability Letters 80 (2010) 1313–1319 1317

Table 3
The top 10 predictors with largest standardized VIMP for the Miller et al. (2005) dataset.

Name Description Set size VIMP Gene symbols of selected genes used to estimate
supergenes

GO:0001935 Endothelial cell proliferation 4 1.921 DLG1, HMOX1
GO:0031175 Neuron projection development 13 1.459 LAMB1, CDK5, CHL1, CDK5R1, STX3, EFHD1, NRTN,

GALR2, PTEN, RASGRF1, STMN3, GDNF
GO:0000059 Protein import into nucleus,

docking
16 1.347 CSE1L, RANBP5, IPO4

GO:0000281 Cytokinesis after mitosis 3 1.344 MYH10, NUSAP1
GO:0006537 Glutamate biosynthetic process 3 1.202 PRODH, LOC440792
Lymph node 1.201
GO:0009168 Purine ribonucleoside

monophosphate biosynthetic
process

5 1.160 AMPD1, AMPD3, CECR1

GO:0000077 DNA damage checkpoint 11 1.160 RAD1, RAD9A, FOXN3, CHEK1, RAD17, ATR,
CHEK2, HUS1, ZAK, BRIP1

GO:0015711 Organic anion transport 14 1.139 SLC16A1, SLC16A3, SLC16A5
GO:0018206 Peptidyl-methionine modification 3 1.119 METAP1, PDF

that estrogen directly modulates angiogenesis through endothelial cells and estrogen receptor antagonists can inhibit
angiogenesis in breast tumors (Gagliardi and Collins, 1993). In addition, two GO categories (GO:0000281, GO:0000077)
are related to cell cycle, which is closely related to cancer, which results from uncontrolled division and growth of cells.
The nine supergenes listed in Table 3 were derived from a total of 39 genes (last column). Prior literature has shown

several of these to be directly related to breast cancer. For example, PTEN is a tumor suppressor gene working through the
action of its phosphatase protein product. Inactivating mutations or deletions of the PTEN gene can lead to resistance to
chemotherapy and hormone therapy (Pandolfi, 2004).
Supplementary Table 1 shows the 10 predictors by standardized VIMP for the Loi et al. (2008) data. The first pathway,

negative regulation of apoptosis (GO:0043066), is substantially more predictive than other genomic or clinical predictors. It
has been shown that Tamoxifen (TAM) and its activemetabolite, 4-hydroxytamoxifen (OHT) can induce apoptotic cell death
through ER-dependent and ER-independent pathways (Mandlekar et al., 2000; Obrero et al., 2002). Different studies have
confirmed that multiple non-ER-mediated mechanisms such as MAP kinases, calmodulin and calcium signaling, caspases,
TGF-beta involve TAM-induced apoptosis (Mandlekar and Kong, 2001). The genes in negative regulation of apoptosis and
several other top pathways are closely related to these functions. For example, VEGFA is a pivotal gene in breast tumor
angiogenesis and metastases and elevated VEGFA level is known to be associated with reduced disease free survival for
TAM treated patients (Ryden et al., 2005).

3.3. Interactions identified by RSF

In addition to ranking and identifying important predictors individually, RSF can also be used to identify important
interactions between variables. For a pair of variables, the joint VIMP is defined to be the difference between the prediction
error when both predictors are noised up and the prediction error without noising up. The VIMP for each single variable is
calculated and the sum of two single variable VIMPs is the additive importance. A large difference between the joint VIMP
and the additive importance indicates a potential interaction between two variables (Ishwaran, 2007).
We used the top 30 predictorswith largest single variable VIMPs and evaluated all pairwise interactions of these variables

using the above approach. To increase precision we used a bootstrap standardized measure for the interactions using 200
independent bootstrap draws.
Supplementary Table 2 shows the top 10 pairwise interactions for each dataset. For the Miller et al. (2005) data, we

identified both pathway–pathway and pathway–clinical interactions. An interesting finding relates to the prostaglandin
metabolic process (GO:0006693). Although the individual VIMP ranking for this pathway is 28th, its pairwise interaction
with several other pathways ranked high. Prostaglandin E2 and its receptors play a key role in cancer progression by
activating signaling pathways that involve apoptosis, angiogenesis, migration and cell proliferation (Wang and Dubois,
2006). Several clinical trials have shown that non-steroidal anti-inflammatory drugs (NSAIDs),which inhibits prostaglandins
mediated processes, can reduce the relative risk of developing different cancers such as breast, colorectal, bladder, etc.
(Gupta and Dubois, 2001). Our results suggest that the genes related to the prostaglandin metabolic process exhibit high
connectivity with genes in other pathways and are possible ‘‘hub’’ genes in breast cancer development.
For the Loi et al. (2008) data, a pathway involved in several important interactions is the very-long-chain fatty acid

metabolic process (GO:0000038), which ranked 25th by individual VIMP. This is probably because tamoxifen affects fatty
acid metabolism. Actually, tamoxifen therapy is associated with an increased risk of developing fatty liver (steatosis) and it
is reported that 43% of patients having tamoxifen treatment may develop steatosis within the first two years (Ogawa et al.,
1998). The selected genes in this gene set include ELOVL2, HSD17B4, SLC27A2 and SLC27A6, and these genes are critical
for triglyceride biosynthesis. This perturbed pathway may have effect on other metabolism processes in these tamoxifen
treated breast cancer patients.
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4. Discussion

We have presented a novel approach to predicting survival outcomes by integrating gene expression profiles with
prior biological knowledge and clinical factors. Because the underlying disease process for cancer may be dependent on
perturbations of different pathways, prediction models based on pathways may approximate the true disease process more
closely than models based on genes alone. We have shown that our pathway-based clinical–genomic model improves
prediction accuracy over gene-basedpredictionmodels. Furthermore,we found in addition to grouping genes into pathways,
within each pathway, the selection of the subset of genes most associated with the outcome is a critical step for accurate
prediction performance. This agrees with our hypothesis that only a subset of genes from a pre-defined pathway may
participate in the cellular process influencing survival outcome.
An attractive feature of our methodology is that RSF can handle a large number of clinical and genomic predictors with

mixed types (categorical or continuous). In addition, RSF can automatically discover higher order and nonlinear interactions
between predictors such as clinical–clinical, clinical–pathway and pathway–pathway interactions. This important feature
enables us to closely approximate the underlying disease process, which is influenced bymultiple pathways, environmental
effects, and pathway–environmental interactions. This in turn can shed light on the biological mechanisms behind a disease
process. Although we have described a pathway-based clinical–genomic modeling for survival outcomes, the methodology
is generalizable and can be easily extended to binary, multi-category, or continuous outcomes.
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