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Abstract

The immune system exerts antitumor activity via T cell–
dependent recognition of tumor-specific antigens. Although
the number of tumor neopeptides—peptides derived from
somatic mutations—often correlates with immune activity and
survival, most classically defined high-affinity neopeptides
(CDNs) are not immunogenic, and only rare CDNs have
been linked to tumor rejection. Thus, the rules of tumor anti-
gen recognition remain incompletely understood. Here, we
analyzed neopeptides, immune activity, and clinical outcome
from 6,324 patients across 27 tumor types. We characterized

a class of "alternatively defined neopeptides" (ADNs), which
are mutant peptides predicted to bind MHC (class I or II) with
improved affinity relative to their nonmutated counterpart.
ADNs are abundant and molecularly distinct from CDNs. The
load of ADNs correlated with intratumoral T-cell responses
and immune suppression, and ADNs were also strong pre-
dictors of patient survival across tumor types. These results
expand the spectrum of mutation-derived tumor antigens with
potential clinical relevance. Cancer Immunol Res; 6(3); 276–87.
�2018 AACR.

Introduction
Tumor neopeptides, defined as peptides derived from somatic

mutations in cancer cells, are seen as foreign by the adaptive
immune system and are critical mediators of tumor immunity
(1). Classically defined neopeptides (CDNs) can be bioinforma-
tically identified by predicting the ability of peptides containing
somatic mutations to bind MHC class I or II with high affinity.
Higher predicted CDN load correlates with several favorable
clinical features, including greater lymphocytic infiltration and
survival in untreated colorectal tumors (2) and improved
response toCTLA-4 blockade inmelanoma (3) and PD1blockade
in non–small cell lung carcinoma (4). Strong associations exist
between response to PD1 blockade and mismatch repair defi-
ciency (which results in high neopeptide load; ref. 5), mutation
burden inmelanoma (6), andMHCclass I CDN load in urothelial
carcinoma (7).

Despite these associations, only a small percentage of predicted
CDNs are immunogenic. In an analysis of 3 patients with met-
astatic melanoma, in aggregate, only 2 out of 57 selected CDNs
elicited endogenous T-cell responses (8). Studies also indicate that
CDNs are no more predictive of response to checkpoint blockade
in patients withmetastatic melanoma than overall somatic muta-
tion load (9). Finally, no difference is observed in CDN binding
scores for HLA-A2 or immunogenicity between T cell–inflamed
and non–T cell-inflamed metastatic melanomas (10), suggesting
that the presence of CDNs does not necessarily correlate with T-
cell response. These findings represent a gap in the understanding
of immune recognition of tumor antigens.

To address this gap, we analyzed predicted neopeptides and
immune activity in 6,324 human cancer samples fromTheCancer
Genome Atlas (TCGA), using an open-source discovery pipeline
to evaluate over 228 million mutant peptide predictions from
more than 1 million nonsynonymous missense mutations
(NSMs) within this dataset. This analysis revealed the existence
of a previously underappreciated class of tumor antigens, for
which tumor-associatedmutations significantly increasedpeptide
affinity for class I or class II MHC compared with nonmutated
counterparts. This class of neopeptides—which we refer to as
"alternatively defined neopeptides" (ADNs)—predicted immune
phenotypes and patient survival.

Materials and Methods
Tumor and normal sample datasets

DNA variant, gene expression, and clinical data from TCGA
(11) were obtained in June 2016 from the Genome Data Analysis
Center Firehouse (Spring 2016 run; https://gdac.broadinstitute.
org/). DNA variants that weremanually curated by TCGA analysis
working groups were obtained in mutation annotation format
(MAF). Gene expression data were normalized counts from the
TCGA RNASeq Version 2 pipeline and included all available
"Level 3" samples. Raw tumor and normal paired whole exome
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sequencing reads were obtained through dbGaP (accession
phs000178.v9.p8) and the NCI Cancer Genomics Hub. Samples
selected for analysis were those with DNA variant, gene expres-
sion, and raw exome reads available for download (Supplemen-
tary Fig. S1). Tumor types included in analyses were those with at
least 15 such complete cases. Seven tumor types contained < 15
samples for these required data and were excluded: cholangio-
carcinoma, kidney chromophobe, mesothelioma, ovarian serous
cystadenocarcinoma, rectal adenocarcinoma, thymoma, anduter-
ine carcinosarcoma. Within the remaining included tumor types,
samples with no identified tumor variants resulting in amino acid
changes that passed quality-control filters were excluded from
analysis. Tumor cellularity estimates were determined using
Sequenza and ABSOLUTE (12, 13) and were similar to those
previously reported (Supplementary Fig. S2; refs. 14, 15). For the
non–TCGA-independent datasets (3, 4, 16), variants were assem-
bled from provided Supplementary Tables.

HLA determination
Normal tissue whole-exome sequencing was used for 4-digit

HLA class I and II determination. In cases with multiple normal
tissue samples, the sample with the greatest read depth was used.
HLA class I determination was performed using OptiType (ver-
sion 1.3.1; ref. 17). Thismethod improves on the accuracy of first-
generation HLA determination tools and has been independently
validated on whole-exome sequencing (18). OptiType was used
with default settings. HLA class II determination was performed
using HLAreporter (version 1.0.3; ref. 19). Reads were aligned to
assemblyGRCh38.HLA class I and II determinationwas validated
to have approximately 95% 4-digit accuracy compared with
standard clinical typing using sequence-specific oligonucleotide
probe and primer techniques, in agreement with published esti-
mates (18). For class I and II determinations, samples with
inadequate read-depth or low-certainty results were excluded
(<5%). For the non–TCGA-independent datasets, the provided
HLA alleles were used (3, 4, 16).

MHC binding affinity predictions
Variants predicted to yield NSMs present in tumors, but not

matched normal tissue, were selected for neopeptide prediction.
Validation set variants (3, 4, 16) were re-annotated using SnpEff
(version 4.3k) for consistency across datasets (20). Using TCGA
MAF files, Human Genome Organization, RefSeq, and Entrez
identifiers were converted to Enembl transcript IDs using the R/
Bioconductor package biomaRt (version 2.30.0). Variants were
then filtered for those in genes with RSEM-normalized count
expression of greater than 1. After filtering, a sliding window of
8- to 15-mer peptides centered on each variant site was generated.
Peptides were truncated if the window length extended beyond a
start or stop codon. Estimated binding affinity for each peptide
was then calculated using the Immune Epitope Database and
Analysis Resource (IEDB) MHC class I and II prediction tools
(version 2.15; FASTA input; 8- to 14-mers for MHC class I and 15-
mers only for MHC class II; ref. 21). The "IEDB-recommended"
methodwas chosen for predictions because it considers algorithm
benchmarks in large-scale evaluations, as well as availability
across HLA alleles (http://www.iedb.org/). For HLA alleles with
multiple available prediction methods, the median of all predic-
tion values was used. For MHC class I predictions, the established
median half-maximum inhibitory concentrations ðIC50Þ of
<5,000 nmol/L or <50 nmol/L were used to classify peptides as

potential MHC binders or as CDNs, respectively. These cutoffs
correspond to experimentally confirmed peptide–MHC binding
and immunogenic CDN thresholds, respectively (22, 23). For
MHC class II, peptides with a percentile rank of <4 or <1 were
classified as potential MHC binders and potential CDNs, respec-
tively. Percentile rank is recommended forMHC class II due to the
greater variability in peptide–MHCbinding across MHC types for
class II compared with class I (24, 25).

ADN criteria and peptide characteristics
We identified ADNs asmutant peptides predicted to bindMHC

class I or II with improved affinity relative to nonmutated pep-
tides, a quality known as differential agretopicity (26). Differen-
tial agretopicity index (DAI) is the ratio of MHC binding affinity
between mutant and normal peptide. To identify ADNs, we first
selectedmutant peptides that were at leastminimally able to bind
MHC(median IC50 <5,000nmol/L forMHCclass I andpercentile
rank <4 for MHC class II). DAI then was calculated as the fold
change in binding affinity (MHC class I) or percentile rank (MHC
class II) between mutant and normal peptides. Based on the
distribution of resulting DAI scores, ADNs were identified as
having a DAI > 10 for MHC class I or >4 for MHC class II, which
corresponds to the first percentile by rank. Shannon entropy was
calculated as a diversity index that quantifies the difficulty of
class prediction across a dataset, similar to geometric mean of
abundance.

Random forest survival analysis
Random forest analysis is a multivariable, nonparametric

ensemble partitioning tree method for modeling classification,
regression, or survival problems and was performed as previously
described (27–30). This approach is used to model the effect of
multiple input variables and their interactions on a response
variable of interest. Random forest analysis was used for two
purposes: (i) to determine if a predictive model could be con-
structed for response variables (suppressive index, dysfunction
index, or cumulative survival hazard function) and (ii) to rank
input variables based on their relative contribution to model
predictiveness. Advantages of this approach compared with other
learning methods include excellent discriminatory ability in high
dimensional space, few assumptions about underlying data,
resistance to noise, missing data and overfitting, as well as
built-in error estimates (31).

Random forest analysis was conducted using the randomfor-
estSRCR package (version 2.3.0) as previously described (32, 33).
Data ranked for classification into high and low cohorts for
prediction were scaled from 0 to 100 using an empirical cumu-
lative distribution function within each tumor type. During boot-
strapping, a randomly chosen two-thirds of samples were used to
train each tree and remaining (out-of-bag, OOB) samples were
used for cross-validation and forest-related estimates. No training
was conducted on OOB samples, and no iterative parameter
optimization was performed. Missing values were imputed,
and classification models were built using the following
parameters: ntree ¼ 1500; nodesize ¼ 2; nsplit ¼ 10; mtry ¼
ðinput variable number3=4Þ. A Gini index splitting rule was used
for classification, and undersampling of the majority class was
used when the number of samples in each class differed by greater
than 5-fold.

Cumulative hazard function is the integrated hazard function
over time and, thus, represents the total amount of risk
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accumulated until time t (i.e., the number of times one would
expect to observe an event over a given time period). Prediction
error was calculated using the Harrell concordance index and
estimates the probability that, in two out-of-bag samples, the case
with the worse predicted outcome had an event first.

Variables were then ranked by minimal depth (MD), a dimen-
sionless statistic that measures variable predictiveness in tree-
basedmodels (34).MD is defined as the shortest distance between
the root node of a tree and the parent node of a maximal subtree,
which is the largest subtree whose root node splits on the variable.
Smaller MD values indicate greater predictiveness, and a tree-
averaged thresholdMDwasused to classify variables as predictive.
After predictive variable identification, models were refit using
only predictive variables and tested against out-of-bag samples. If
the number of input variables exceeded the number of samples by
>10-fold, variable hunting was used to select variables prior to
refitting the forest. Variable hunting is a regularized algorithm that
exploits maximal subtrees for more effective variable selection
under conditions where a large number of noisy variables exist,
described previously in detail (34). With variable hunting, the
high dimensional feature space is divided into multiple smaller
subspaces to better estimate MD, which is returned as the average
for each variable across subspaces. Model performance was quan-
tified using geometric mean accuracy (1-mean OOB misclassifi-
cation error rate across replications) and F-score to integrate
predictiveness of models for all response variable categories.
Relative stability was determined using the normalized Brier
score for each model, a proper score function that measures the
mean squared difference between the predicted outcome prob-
abilities from a random forest model and the actual outcome
tested using OOB samples. Each analysis was externally cross-
validated over 20 iterations using resampling without replace-
ment (35), and model performance was determined by aver-
aging OOB error rate, geometric mean accuracy, and normal-
ized Brier score across bootstrap replicates. MD was similarly
averaged for each input variable. Additionally, to guard against
the possibility of overfitting or bias due to differences in input
data size across models, overall accuracy was then compared
with bootstrapped-simulated control data with matched
dimensions. No models of simulated control data were pre-
dictive. Final model significance was determined using the
following criteria: normalized Brier score <90, geometric mean
accuracy >0.55, normalized Brier score relative to control <0.8,
and significantly increased overall/geometric mean accuracy
relative to control by FDR. Final input variable MD importance
was determined by averaging normalized MD across significant
models.

Gene expression analysis
Gene set enrichment scores were generated using the gene set

variation analysis (GSVA) R/Bioconductor package (36). The
GSVA package provides robust enrichment scores because it
implements anonparametric, unsupervisedmethodof estimating
set expression using a Kolmogorov–Smirnov (KS)-like random
walk statistic. This method captures subtle or relative changes in
gene expression from RNA-seq data. Cytolytic index was calcu-
lated using normalized count expression ofGZMA and PRF1. The
suppressive index consists of 11 well-characterized, highly
expressed T-cell checkpoint molecules: ADORA2A (A2AR),
CD274 (PD-L1), PDCD1 (PD1), CTLA4, HAVCR2 (TIM3), IDO1,
IDO2, PDCD1LG2 (PD-L2),TIGIT, VISTA (C10orf54), andVTCN1

(B7-H4; ref. 14). T-cell dysfunction index consists of 567 genes
identified by Schietinger and colleagues (geneset F; ref. 37).

Statistics and software
The neopeptide pipeline for generating peptides, predicting

MHC class I/II binding affinity, and interpreting predictions for
normal and mutant peptides (antigen.garnish R package) is
available for download: https://github.com/andrewrech/anti
gen.garnish. Survival used in the Kaplan–Meier estimates was
determined as the number of days from diagnosis until death or
last contact. Analyses were conducted using all samples or by
tumor type. Age, gender, and tumor stage were assessed as
potential confounders and were not significantly imbalanced
between groups. Tumor types with �50 total samples with
neopeptide predictions were excluded (cholangiocarcinoma, kid-
ney renal clear cell carcinoma, uterine corpus endometrial carci-
noma, colon adenocarcinoma, rectum adenocarcinoma, cervical
squamous cell carcinoma and endocervical adenocarcinoma,
lymphoid neoplasm diffuse large B-cell lymphoma DLBC, Rizvi
and colleagues dataset; ref. 4). Kaplan–Meier estimates, P values,
and hazard ratios were generated using the R package survival
(version 2.3.0). Adjusted P values less than 0.05 were considered
significant. The following additional R (https://www.r-project.
org, version 4.0) packages were used: cowplot (https://CRAN.R-
project.org/package¼cowplot, version 0.6.3): figure layouts; data.
table (http://r-datatable.com, version 1.9.6): general data analy-
sis; gglogo (https://CRAN.R-project.org/package¼gglogo, version
0.1.2):peptide sequencediagrams; ggplot2 (version2.1.0; ref. 38):
general plots; HiveR (https://CRAN.R-project.org/package¼Hi
veR, version 0.2.55): hive plots; pheatmap (https://CRAN.R-proj
ect.org/package¼pheatmap, version 1.0.8): heatmap generation;
stats (version 3.3.2): tests for significance.

Results
Neopeptide landscape in human cancer

To investigate the landscape of neopeptides in human cancer,
we created a simple, performant analytical pipeline for predicting
neopeptides that integrates TCGADNA variants, gene expression,
and raw exome-sequencing reads (available as an R package;
Fig. 1A and Supplementary Fig. S1). We estimated the tumor
DNA fraction for all samples using ABSOLUTE (13) and con-
firmed results using Sequenza (12). The pan-cancer tumor DNA
fraction was 0.79 � 0.08 (mean � SD), similar to previously
published estimates (14), and no correlation existed between the
tumor DNA fraction and nonsynonymous mutation (NSM) load
(SupplementaryFig. S2).HLAclass I and II allelesweredetermined
using OptiType and HLAreporter, respectively (17, 19). We vali-
dated thesemethods to have 95%4-digit accuracy compared with
standard clinical typing, consistent with other analyses (17–19),
andTCGAsampleHLAallele frequenciesparalleled those reported
for the general population in the United States (39).

We then analyzed all peptides generated from NSMs in
expressed genes for the ability to bindMHC class I and II. Peptides
with high predicted affinity were identified as CDNs (<50 nmol/L
for MHC class I or percentile rank < 1 for MHC class II). Out of a
total of 9,928 tumor samples with whole exome sequencing,
paired normal tissue and tumor variant calling required to deter-
mine tumor variants was available for 7,776 samples. Out of
these, raw normal exome sequences (required to determine HLA
alleles) were available for 7,358 samples. These inclusion criteria
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resulted in a total of 3,658,044 high-confidence tumor variants, of
which 29.8%wereNSMs, resulting in 37,754,449unique 8- to 15-
mer peptides (Fig. 1A and Supplementary Fig. S1). Filtering by
tumor RNA expression, 69.2% of NSMs occurred in genes that
were at least minimally expressed (>1 RNA sequencing read
count) and, therefore, potentially presented by MHC. Overall,
MHCbinding affinity selection resulted in495,793predicted class
I and 808,066 predicted class II CDNs from 6,324 samples across
27 tumor types. This higher prevalence of MHC class II CDNs
compared with class I CDNs is consistent with previous reports
and the greaterflexibility of peptide binding in the groove ofMHC
class II (24, 25).

CDN load differed substantially across tumor types, with wide
variability observed within each tumor type (Fig. 1B). The highest

mean number ofMHC class I CDNs per tumor sample occurred in
colon (291 � 556), metastatic (321 � 848) and primary (170 �
222) melanoma, and stomach (183 � 296) types. Results for
MHCclass II CDNswere similar (colon: 1,014� 3,288;metastatic
melanoma: 316 � 513; primary melanoma: 314 � 531; and
stomach: 361 � 864). A close correlation existed between the
total number of NSMs and CDNs, with greater variability in the
case ofMHC class II (Fig. 1C; R2¼ 0.852 and 0.452, respectively).
Despite this correlation in total number, relatively little homology
between MHC class I and II CDNs was seen—fewer than 15% of
MHCclass I CDNswere contained in a class II CDN from the same
sample (Fig. 1D). Thus, tumor heterogeneity results in a wide
range inCDN load across andwithin all tumor types.Only a small
fraction of missense mutations or derived mutant peptides was

Figure 1.

CDNs across human cancer. A, Pipeline of data types and numbers (see Supplementary Fig. S1 for a detailed pipeline). B, Summary of NSMs, predicted
class I (<50 nmol/L IC50) and II (<1% rank) CDNs. Tumor types are ordered from top to bottom by mean number of NSMs. Cohort sizes are shown for MHC
class I predictions. C, Parallel coordinate plot showing frequency of NSMs and MHC class I and II CDNs across all tumor types. Edges are samples in the top
(green) or bottom (purple) quintile by MHC class I CDN load. Each vertex is normalized from 0 to 1. D, Venn diagram of mean percent MHC class I CDNs (left)
contained in class II CDNs (right). Overlapping class I neopeptides are those whose peptide sequence is contained in a class II CDN from the same sample.
E, Most frequent pan-TCGA common CDN-generating genes. Y-axis: total number of neopeptides derived from the indicated gene for MHC class I (top) and II
(bottom). F, Shared MHC class I and II CDNs across all samples. Percentages: total peptides. Neopeptides were considered duplicates across samples if
the same peptide sequence met CDN criteria for sample-specific HLA. G, Most frequent pan-TCGA neopeptides.
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predicted to beCDNs for bothMHCclass I and II. Therefore,MHC
class I and class II neopeptides are drawn from distinct sets of
genetic lesions.

Commondrivermutations critical tooncogenesismay generate
common neopeptides amenable to therapeutic targeting. To
assess the feasibility of targeting these neopeptides, we deter-
mined the number of shared CDNs in TCGA. Genes frequently
mutated in cancer often generated neopeptides, as expected (Fig.
1E). The most common genes with mutations generating pre-
dicted CDNs across all samples were TP53, Ras family members,
and IDH1 for MHC class I and TP53 for MHC class II. Despite the
substantial number of neopeptides derived from commonly
mutated genes—more than 700 unique CDNs from TP53
alone—few neopeptides were widely shared across samples due
to variant and HLA allele diversity. A total of 1,872,298 peptides
generated fromNSMs were shared between�2 samples across all
tumor types (<1% of total), resulting in 5,410 sharedMHC class I
and 6,860 sharedMHC class II CDNs (Fig. 1F). Although a sizable
fraction of samples analyzed contained at least one such CDN
(17% of samples for MHC class I; 70% of samples for MHC class
II), most were shared by only 2 to 3 patients. As a result, only 27
MHC class I or II CDNs were shared between �10 samples.
Commonly shared CDNs were derived from known abundant
NSMs in IDH1 (p.R132H), BRAF (p.V600E), and a conserved RAS
family mutation (p.Q61R; Fig. 1G). The significant outlier in this
analysis was overlapping CDNs derived from IDH1 p.R132H,
which occurred in 90 samples. Thus, variant heterogeneity, even
among common driver mutations, and HLA allele diversity likely
preclude shared neopeptides at frequencies required for widely
applicable therapeutic targeting.

ADNs are a distinct class of tumor antigens
DAI expresses the degree to which peptide binding to MHC

class I or II differs due to the presence of an NSM (26). Across
TCGA, the median DAI of CDNs was 1.183, meaning that most
CDNs have nonmutated counterparts that also bind MHC with
high affinity. In contrast, we define a class of "alternatively
defined neopeptides" (ADN), which are mutant peptides pre-
dicted to bind MHC class I or II with greater affinity relative to
nonmutated counterparts (i.e., peptides with high DAI). In
mice, selection of peptides with high DAI results in a substan-
tially improved rate of experimentally validated epitopes that
mediate protection from tumor growth (26). To determine DAI
across TCGA, mutant peptides that at least minimally bound to
MHC class I or II were selected, and DAI was calculated as the
fold change in binding affinity between nonmutant and mutant
peptides (Fig. 2A). Based on the distribution of the resulting
scores, ADNs were identified as those with DAI > 10 for MHC
class I and >4 for class II.

Applying ADN selection criteria led to the identification of
peptides that were distinct from CDNs. For MHC class I, 20% of
all MHC binding (defined as IC50 < 5,000 nmol/L) peptides
were ADNs, and 28% were CDNs. Yet only a 5.9% overlap
between these neopeptide categories was observed (Fig. 2B).
For MHC class II, a greater proportion of all MHC binders were
ADNs (ADN: 26% vs. CDN: 13%), with only modest overlap
between neopeptide categories (16.6% overlap). A close cor-
relation existed between the number of NSMs and ADNs (R2 ¼
0.810 and 0.827 for MHC class I and II, respectively), as well as
between load of ADNs and CDNs across tumor types (Fig. 2C;
R2 ¼ 0.87 and 0.79 for MHC class I and II, respectively). An

outlier was melanoma, that, for both MHC class I and II, was
characterized by a higher ADN to CDN ratio versus all other
tumor types (FDR < 0.01). Rates of common ADN-generating
genes and shared ADNs paralleled those for CDNs (Supple-
mentary Fig. S3). Thus, MHC class I and II ADNs are abundant,
distinct from CDNs, and enriched in certain tumor types,
including melanoma.

We observed that a wide distribution of ADN load existed
across tumor types and samples (Fig. 2D). For MHC class I, the
highestmedianADN load occurred inmetastatic (518� 960) and
primary melanoma (320 � 392), colon adenocarcinoma (303 �
714), and lung squamous tumor types (261 � 266). Predicted
MHC class II ADN results were similar: metastatic (243 � 765)
and primary melanoma (160 � 197), colon adenocarcinoma
(236 � 632), and lung squamous (90 � 81). Therefore, overall
number of ADNs, like CDNs, is variable and closely related to the
number of NSMs.

To determine whether ADNs and CDNs are distinct at the
molecular level, we investigated amino acid composition by HLA
allele and position across all samples (Fig. 2E). Overall, an
enrichment of nonpolar, hydrophobic and neutral, hydrophilic
mutant amino acids existed for all neopeptide categories. ADNs
and CDNs differed in the position and identity of the mutant
amino acid. For common HLA alleles A

�
02:01 and DRB1

�
04:01,

frequent amino acid substitutions were valine, glutamine, and
leucine. Yet these three amino acids represented a larger propor-
tion of totalmutant amino acid substitutions for ADNs compared
withCDNs (71%vs. 31%;P<0.001). Although themutant amino
acid position was distributed evenly along the length of CDNs in
the binding groove of MHC, mutant amino acids in ADNs were
concentrated at anchor positions, an enrichment that logically
follows from our selection criteria (Fig. 2E; ref. 26). These results
demonstrate that ADNs have a conserved molecular profile dis-
tinct from CDNs.

Given this substantial difference in peptide composition
between ADNs and CDNs, we hypothesized that ADNs may be
generated differently fromNSMs. Todetermine this, we calculated
the neopeptide generator rate as:

generator rate ¼ neopeptides
NSMgenerating � 1 neopeptide

� �

This metric measures the propensity of NSMs to generate
multiple immunogenic peptides, which may correlate with
contribution to tumor immunogenicity. The generator rate
differed substantially between ADNs and CDNs, as well as
across tumor types (Fig. 2F) and was higher for MHC class I
ADNs compared with CDNs (FDR < 1 � 10�10). The ADN
generator rate was also significantly higher in melanoma, liver,
and lung squamous tumor types (FDR < 0.01 vs. all other tumor
types). Compared with CDNs, these results show: (i) ADNs
arise at higher rates from a smaller pool of NSMs compared
with CDNs and (ii) the ADN generator rate is elevated in certain
tumor types, likely due to differences in underlying NSM
composition. These results are consistent with the constrained
profile of mutant amino acid location and identity in ADNs. In
contrast, for CDNs, amino acid substitutions were nearly ran-
dom across the length of peptides, and no significant differ-
ences in the generator rate existed across tumor types. Thus,
somatic mutations that generate ADNs differ in quality and
prevalence across tumor types.
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Distinct tumor microenvironment immune associations
To quantify immune dynamics, we measured cytolytic, sup-

pressive, and T-cell dysfunction immune indices and compared
expression across TCGA samples and tumor types. Rooney and
colleagues developed a metric to assess cytolytic T-cell activity

based on expression of granzyme A (GZMA) and perforin-1
(PRF1; cytolytic index; refs. 40, 41). Cytolytic index reflects the
presence of activated CD8þ cytolytic T cells and correlates with
other metrics of antitumor T-cell immunity. We have previously
identified a gene expression index to quantify activation of

Figure 2.

ADNs are largely distinct from CDNs. A, CDNs were identified based solely on high mutant peptide MHC-binding affinity. ADNs were identified based
on �10-fold improvement in MHC-binding affinity of mutant peptide vs. nonmutant counterparts, quantified as DAI. B, Venn diagrams of overlap between
class I (left) and II (right) neopeptide categories. Denominator for percent overlap: total number of ADNs þ CDNs. C, Predicted MHC class I (left) and II (right)
ADNs and CDNs. R2 values: linear regression; P values: Spearman rho. Dot size: sample number. Shaded gray region: confidence interval. D, Summary of ADNs.
Tumor types are ordered from top to bottom by mean number of predicted MHC class I ADNs. E, Shannon entropy index of mutated amino acids by peptide
position for the MHC class I and II alleles for CDNs (top) and ADNs (bottom). Two HLA alleles are shown: HLA A

�
02:01 and DRB1

�
04:01. F, Summary of generator rate

by neopeptide category and tumor type (see Supplementary Fig. S3 for common ADN-generating genes and shared ADNs).
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immune suppressive molecules (suppressive index; ref. 14).
Across all TCGA tumor types, cytolytic T-cell activity was
correlated with expression of immune suppressive pathways
as measured by these indices (Fig. 3A and B top; R2 ¼ 0.66, P < 1
� 10�200). This correlation suggests that cytolytic and suppres-
sive indices are tightly coupled regardless of mutation or
neopeptide load. Identified outliers included renal clear cell
carcinoma (higher cytolytic index) and low-grade glioma
(higher suppressive index; ratio FDR < 0.01 vs. all other tumor
types). In contrast to the strong correlation between cytolytic
and suppressive indices, a weaker correlation existed between
these indices and neopeptide load (Fig. 3A top vs. bottom; P <
9.423 � 10�58 for pan-TCGA immune indices vs. each neoe-
pitope category).

To further assess immune dynamics across tumor types, we also
measured T-cell dysfunction, using an index characterized by
Schietinger and colleagues (ref. 37; dysfunction index). This index
marks a dysfunctional state of tumor-specific human T cells that is
distinct from cytolytic index, suppressive index, and virally
induced T-cell exhaustion. In contrast to the suppressive index,
no significant correlation existed between cytolytic index and
dysfunction index, suggesting that tumor-specific T-cell dysfunc-
tion, as measured by this index, is either not well-defined by
tumor type or that these immune characteristics are decoupled
(Fig. 3B, bottom).

Analysis of individual genes comprising the suppressive
index revealed that VISTA, IDO1, A2AR, and TIM3 had similarly
high expression across tumor types by hierarchical clustering
(Supplementary Fig. S4A) and were significantly correlated to
cytolytic index (Supplementary Fig. S4B). These checkpoint
molecules contribute to potential mechanisms of immune
evasion (42), and our data suggest they are coordinately
expressed. TIGIT, PD-1, and CTLA-4 expression were also cor-
related (Supplementary Fig. S4A) and were the most tightly
coupled to cytolytic index (Supplementary Fig. S4B), consistent
with upregulation of these molecules in association with CD8þ

T-cell activation (42). TIGIT is a coinhibitory receptor expressed
on T cells and NK cells that regulates T-cell activity, in part,
through interaction with its binding partner PVR on antigen-
presenting cells (43).

We next assessed relationships between ADNs and immune
indices. Across tumor types, mean ADN or CDN load correlated
with mean CD8A expression, cytolytic index, and suppressive
index (Supplementary Fig. S5). An inverse correlation between
mean ADN and dysfunction index approached statistical signif-
icance (P ¼ 0.081). In contrast, despite adequate power to detect
small effects, few meaningful correlations were detectable
between ADN load and the same immune indices case-by-case
across samples within each tumor type (Supplementary Fig. S6).
These data suggest that, in parallel to the relationship between

Figure 3.

Immune activity and neopeptide load correlate across tumor types.A,Cytolytic index and suppressive index across tumor types (top) and corresponding neopeptide
load for the four indicated categories (bottom). Cytolytic index: expressed as the GSVA score of normalized GZMA and PRF1 expression (40, 41). Suppressive
index: the GSVA score of normalized expression for ADORA2A (A2AR), CD274 (PD-L1), PDCD1 (PD1), CTLA4, HAVCR2 (TIM3), IDO1, IDO2, PDCD1LG2 (PD-L2),
TIGIT, VISTA (C10orf54), and VTCN1 (B7-H4). Box and line, the 75th to 25th percentiles and median, respectively. Tumor types are ordered from left to right
by median cytolytic index. P value: ANOVA across tumor types. B, Cytolytic index (x-axis) and suppressive index (top y-axis) or dysfunction index (bottom y-axis).
Dysfunction index: GSVA score of tumor dysfunction genes identified by (37). R2 values: linear regression. P values: Spearman rho. Dot size, sample number.
Shaded gray region, confidence interval.
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cytolytic index and suppressive index, the relationship between
ADN (or CDN) load and T-cell response, as measured by these
immune indices, is defined at the tumor type level, not case-by-
case within a tumor type. Thus, the relationship between ADN
load and T-cell response predominantly depends on tumor
histotype.

Correlation of overall survival and ADNs versus CDNs
To assess the impact of neopeptide loadonpatient outcome,we

evaluated whether an association between overall survival and
ADN or CDN load existed for each TCGA tumor type. Increased
load of predicted immunogenic mutations has been associated
with significantly improved survival in a study of 512 patients

Figure 4.

ADN load is associated with survival. A–C, Kaplan–Meier curves for the indicated neopeptide category and tumor type showing survival difference between
sampleswith high (red) vs. low (blue) neopeptide load, defined as the top and bottomdeciles. Tickmarks, time of last known survival status. P value is unadjusted log
rank. D, Summary of log-rank FDR values. Comparison is between high vs. low neopeptide load samples. Asterisk, improved survival in the low-neopeptide
load cohort; gray box: data not available. Tumor typeswith <50 sampleswith neopeptide predictionswere excluded. Number of observations for each tumor is listed
in Supplementary Table S1.
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across six tumor types (44). This association with improved
survival was found with neopeptides (classified as any peptide
with an IC50 < 500 nmol/L for MHC class I) but not with high
NSM load or when controling for tumor type. Extending this
analysis, we stratified samples in each tumor type by neopeptide
load into high- and low-load cohorts (top vs. bottom decile or
quartile). We hypothesized that significant differences in immu-
nobiology between these cohorts may allow us to uncover asso-
ciations with survival. Inmany tumor types, a minority of tumors
respond to checkpoint blockade (45, 46). Similarly, many tumor
types have a small, transcriptionally identified "immunogenic"
subtype (47–49), and high intratumoral T-cell activity or infil-
tration is a strong predictor of patient survival (50–52). Stratifi-
cation by top and bottom deciles corresponds roughly to the
minimal size of these identified subtypes. To better model the
potential for oligoclonal antitumor responses directed against
neopeptides, samples were additionally stratified by a "top three
neopeptide score," which was defined as the sum of the top three
affinity scores ð 1

IC50
Þ for CDNs or the sum of top three DAIs for

ADNs. The top three were chosen in each case because this is the
minimum number that captures the potential for an oligoclonal
T-cell response and mirrors experimentally confirmed oligoclon-
ality of T-cell responses against human tumors (53, 54). The top
three score was the least correlated to total neopeptide load (vs.
the top 4 through the top 15; R2 ¼ 0.0495) and, therefore, not
purely a derivative of total neopeptide load.

We focused first on melanoma because neopeptide load has
been shown to correlate with response in this tumor type (3, 9). In
both TCGA melanoma and a second, independent melanoma
dataset from Van Allen and colleagues (3), we found that high
MHC class I ADN load correlated with improved survival (Fig. 4A;
P¼0.05132 andP¼0.01047, respectively). Ahigh top three score
also correlated strongly with improved survival in TCGA mela-

noma (ADNs only) and the Van Allen and colleagues dataset
(ADNs and CDNs; Fig. 4B). Using response to checkpoint block-
ade, the CDN top 3 score differentiated lung adenocarcinoma
patients who responded from those who did not (Supplementary
Fig. S7; P¼ 0.0313). In TCGA bladder and lung squamous tumor
types, a high top three score for ADNs, but not CDNs, also
correlated strongly with improved survival (Fig. 4C). Overall,
significantly improved survival was observed in high ADN, but
not CDN, load samples in multiple TCGA tumor types after
adjustment for multiple hypothesis testing, with the exception
of class II CDN load in stomach adenocarcinoma (Fig. 4D, left;
Supplementary Table S1). Few significant correlations between
survival and cytolytic, suppressive, or dysfunction indices were
detected, with the exception ofmelanoma (Fig. 4D, right). Similar
results were obtained by using a 500 nmol/L IC50 cutoff for MHC
class I CDNs, a 1,000 nmol/L IC50 cutoff for class I ADNs, or by
comparing patients in the high and lowneopeptide-load quartiles
(Supplementary Table S1).

We next confirmed and extended these associations between
neopeptide load and survival using random forest (RF) machine
learning, an unbiased, robust analytical method (described in
Materials and Methods). This analysis measured the ability of
ADN load, CDN load, and immune indices to predict cumulative
hazard function (CHF) for each tumor type, as well as indepen-
dent melanoma and lung adenocarcinoma datasets (3, 4, 16).
CHF is the integrated hazard function over time, and CHF
prediction error estimates the probability that, in two out-of-bag
samples, the case with the worse predicted outcome had an event
first. RF analysis confirmed our Kaplan–Meier estimate findings,
showing ability for ADN load, CDN load, CD8A expression, and
cytolytic index to jointly predict CHF in TCGA melanoma, when
considered as independent input variables (Fig. 5A; ref. 3). Thus,
similar to Kaplan–Meier analysis of the high and low neopeptide

Figure 5.

ADNs are strong predictors of survival. A, Overall cumulative hazard function random forest model prediction accuracy for each TCGA tumor type. Model input
variables were ADN and CDN load, CD8A expression, and cytolytic index (top), suppressive index genes (middle) or dysfunction index genes (bottom). An
accuracy of 0.5 is equivalent to randomguessing.B,Pan-cancer survivalmodel importance. X-axis:model input variables frompredictivemodels, ordered from left to
right by importance. P values determined by ANOVA. Error bars, SEM in cross-validation replicates. Only top variables for the dysfunction index are shown.
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load cohorts, RF analysis demonstrated that neopeptide load
contributed to the ability to predict survival in some tumor types.

Suppressive and dysfunction indices were, in general, the best
predictors of survival comparedwithneopeptide load, resulting in
accurate prediction of CHF in many tumor types (Fig. 5A).
Assessing input variable importance to prediction, class I ADN
load was the most important to prediction accuracy and class I
CDN loadwas the least important in predictivemodels, including
only ADN and CDN load (Fig. 5B). For immunosuppressive
index, themost important individual genes for survival prediction
were VISTA, PD-L1, and PD-L2. VISTA is an inhibitory checkpoint
molecule expressed on antigen-presenting cells that is increased
after therapy with CTLA-4 blockade in patients (55). In summary,
ADNs outperformed CDNs for predicting survival, and immune
suppressive molecules—VISTA in particular—and T-cell dysfunc-
tion index are strongly predictive of survival across TCGA tumor
types.

Discussion
Large-scale studies continue to provide insight into the pro-

found influence of the tumor genome on tumor-immune inter-
actions. We investigated the landscape of neopeptides across
human cancer using TCGA, exploring relationships in 27 solid
tumor types and evaluating more than 228 million mutant
peptide predictions. Our analyses characterized a class of preva-
lent neopeptides—both MHC class I and II—which we termed
ADNs and defined based on improved MHC binding of mutant
peptides compared with their nonmutant counterparts. ADNs are
molecularly distinct from CDNs and strongly predict patient
survival, indicating their biological significance and their poten-
tial as an underappreciated source of therapeutic antigens. Nev-
ertheless, suppressive and dysfunction gene signature indices
were, in general, superior predictors of survival compared with
load of ADN neopeptides or load of CDN neopeptides, empha-
sizing the importance of tumor cell–extrinsic immune parameters
in reflecting cancer immunobiology.

ADNs are generated from selective mutations in the peptide–
MHC anchor position (i.e., the agretope) rather than mutations
randomly occurring across the peptide sequence. This feature
leads to two potentially important and unique immunological
characteristics of ADNs. First, unlike CDNs, the TCR-facing pep-
tide sequence in ADNs is likely the same as the corresponding
nonmutant peptide. Second, MHC binding ability of the corre-
sponding nonmutant peptide may be so low that its presentation
in the thymus is minimal and central tolerance may be bypassed.
Experimental evidence provided in previous studies suggests
that neopeptides derived from ADNs can be immunogenic.
Peptides containing anchor residue mutations, which in retro-
spect satisfy our ADN selection criteria, are overrepresented
among murine and human tumor antigens that had been
experimentally confirmed to be immunogenic (23, 26). Muta-
tions in known peptide–MHC anchor residues are very unlikely
to alter TCR recognition, providing explicit evidence of the
potential immunogenicity of ADNs that escape central toler-
ance due to poor thymic presentation. An extensive analysis of
tumor immunity in a patient with ovarian carcinoma showed
that the top six reactive mutant peptides meet our definition of
ADNs (56). Our reanalysis of experimentally validated neopep-
tides from non–small cell lung carcinoma or melanoma
patients (54, 57) showed that one third of these were ADNs

(resulting from an anchor position substitution that improved
MHC affinity > 10-fold). Thus, our findings provide selection
criteria to expand the spectrum of mutation-derived tumor
antigens with therapeutic potential.

ADNs also exhibit unique associations with patient outcome.
High ADN load was associated with improved overall survival in
multiple TCGA tumor types, in contrast to CDN load, for which,
only a single significant association with survival existed after
adjustment formultiple hypothesis testing.Our result differs from
that reported by Van Allen and colleagues (3) due to this adjust-
ment. RF analysis of survival provided confirmation of these
findings, demonstrating that ADN load was more important to
survival prediction thanCDN load across all tumor types.Work in
pancreatic adenocarcinoma, lung adenocarcinoma, and melano-
mahas also identified differential agretopicity as a key neopeptide
selection criteria, in conjunction with homology to infectious
disease-derived peptides, for correlating neopeptide load with
survival (58, 59).Our analysis is a comprehensive investigation of
the landscape of human neopeptides and provides a timely and
critical comparison of CDNs and ADNs for multiple tumor types,
peptide lengths, and MHC class I and II. Evaluation of the ability
of neopeptide selection criteria that incorporate differential agre-
topicity to predict immunogenicity and response will be needed
in future prospective human studies.

We extended our analyses beyond total load of ADNs or CDNs
and also evaluated survival as a function of the predicted highest
quality peptides for each patient (i.e., our top three neopeptide
score analysis). Using this, we found an even stronger association
of survival and the top three score, potentially reflecting the fact
that most potent antitumor T-cell responses are oligoclonal (53).
A straightforward top three score is immediately translationally
and clinically useful because it does not require reconstruction of
tumor clonal structure or quantification of tumor evolutionary
dynamics. The top three score is not tightly correlated with total
neopeptide load, and focusing on the few highest quality ADNs
may also provide a strategy to narrow the choice of peptides to be
used in patient vaccination from among dozens or hundreds of
ADNs (or CDNs) that are otherwise bioinformatically indistin-
guishable with regard to antigenicity. Finally, the significant
associations we identified using a CDN top three score demon-
strated that refined methods of quantifying classic, high-affinity
neopeptides may yet hold promise, especially given that some
high-affinity clones are immunogenic regardless of differential
agretopicity (23, 54).

Neither ADNs nor CDNs were widely shared across samples
in TCGA. One potential exception is IDH1 p.R132H, which was
the source of shared CDNs across 90 samples (1.5% of total
samples), with an average predicted IC50 of 33 nmol/L. Pep-
tides generated from this site were predicted to bind HLA
alleles, including A

�
31:01, A

�
33:03, A

�
68:01, A

�
68:03, A

�
29:01,

A
�
29:02, B

�
35:01, B

�
35:14, and B

�
35:15 (approximate com-

bined U.S. allele frequency: 27.3%; ref. 39). If these predictions
are experimentally confirmed, IDH p.R132H may be an
immune target many times more frequent than other suggested
shared neopeptides such as KRAS p.G12D in C

�
08:02þ patients,

which has an HLA allele frequency of only 4% to 8% in non-
Asian, non-Ashkenazi Jewish individuals in the United States
(39, 60, 61). Other than IDH p.R132H, even among commonly
mutated oncogenic drivers, tumor variant and HLA allele diver-
sity likely precludes shared neopeptides at frequencies amena-
ble to therapeutic targeting.

Alternative Neopeptides Predict Survival and Immunity

www.aacrjournals.org Cancer Immunol Res; 6(3) March 2018 285

on July 3, 2021. © 2018 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2018; DOI: 10.1158/2326-6066.CIR-17-0559 

http://cancerimmunolres.aacrjournals.org/


The overall landscape of tumor neopeptides we revealed here
suggests that T-cell immunity to checkpoint blockade or other
strategies is not limited to high mutation load patients or tumor
types. Our data indicate that a higher quantity of tumor-specific
neopeptides alone—ADNs, CDNs, or both—is not necessarily
sufficient to elicit a positive immune response discernable by the
transcriptome or survival. Many tumor types with high mutation
rates were not associated with improved survival in patients
belonging to the top decile by mutation or neopeptide load. In
low-grade glioma and liver adenocarcinoma, survival and neo-
peptide load were negatively correlated. Studies have suggested a
cutoff of 192 NSMs per tumor—based on published checkpoint
inhibitor response rates—to discriminate patients likely to
respond to checkpoint blockade (62). These likely responders
include bladder, colon, gastric, and endometrial cancers.
Although these patients may be more likely to respond, only a
small number of neopeptides are required to drive therapeutically
effective antitumor T-cell responses (63). Landmark studies have
shown that patients with renal clear-cell carcinoma commonly
respond to immune checkpoint therapy despite a low median
neopeptide load relative to other tumor types with poorer rate of
response, such as colorectal adenocarcinoma (45, 46). We found
that neopeptide-immune associations primarily correlated by
tumor type, not case-by-case within a tumor type, indicating that
tumor histotype plays a dominant role in dictating the nature of
the immune response. Thus, our findings support the hypothesis
that T-cell immunity in solid tumors is not primarily determined
by the abundance of T-cell antigens derived from somatic mis-
sense mutations.

Efforts to enhance immunomodulatory strategies such as
CTLA-4 and PD-1 blockade may need prioritized consideration
of tumor microenvironmental cues on a case-by-case basis. This
notion is supported by our ability to model survival more accu-
rately using T-cell suppressive and dysfunction genes, such as
VISTA (ref. 55; was highly expressed, was an important predictor
of survival, and did not correlate with total neopeptide load; P ¼

0.49). In summary, MHC class I and II ADNs are prevalent across
human cancer and correlate with immunogenicity and survival.
Our results demonstrate that the potential pool of existing
immune targets is more diverse than currently appreciated. These
ADNselectioncriteria canbeused invaccinestudies toevaluate the
importance of ADNs as tumor rejection antigens alongside CDNs.
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15. Şenbabao�glu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco
G, et al. Tumor immune microenvironment characterization in clear
cell renal cell carcinoma identifies prognostic and immunothe-
rapeutically relevant messenger RNA signatures. Genome Biol
2016;17:231.

Rech et al.

Cancer Immunol Res; 6(3) March 2018 Cancer Immunology Research286

on July 3, 2021. © 2018 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2018; DOI: 10.1158/2326-6066.CIR-17-0559 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://cancerimmunolres.aacrjournals.org/


16. Snyder A,MakarovV,HellmannM,RizviN,MerghoubT,Wolchok JD, et al.
Genetics and immunology: reinvigorated. OncoImmunology 2015;4:
e1029705.

17. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics 2014;30:3310–6.

18. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al.
Comprehensive analysis of cancer-associated somatic mutations in class I
HLA genes. Nat Biotechnol 2015;33:1152–8.

19. Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, et al.
HLAreporter: a tool for HLA typing from next generation sequencing data.
Genome Med 2015;7:25.

20. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al.
A program for annotating and predicting the effects of single nucleo-
tide polymorphisms, SnpEff. Fly 2014;6:80–92.

21. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al.
Immune epitope database analysis resource. Nucleic Acids Res 2012;40:
W525–30.

22. Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. HLA class I
alleles are associated with peptide-binding repertoires of different size,
affinity, and immunogenicity. J Immunol 2013;191:5831–9.

23. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ. HLA-binding
properties of tumor neoepitopes in humans. Cancer Immunol Res
2014;2:522–9.

24. Wang P, Sidney J, Dow C, Moth�e B, Sette A, Peters B. A systematic
assessment of MHC class II peptide binding predictions and evaluation
of a consensus approach. PLoS Comput Biol 2008;4:e1000048.

25. Kreiter S, Vormehr M, van de Roemer N, Diken M, L€ower M, Diekmann J,
et al. Mutant MHC class II epitopes drive therapeutic immune responses to
cancer. Nature 2015;520:692–6.

26. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.
Genomicandbioinformaticprofilingofmutationalneoepitopesrevealsnew
rules to predict anticancer immunogenicity. J ExpMed 2014;211:2231–48.

27. Breiman L. Random forests. Machine learning. Berkeley, CA: Statistics
Department, University of California. 2001.

28. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics
2012;99:323–9.

29. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival
forests. Ann Appl Stat 2008;2:841–60.

30. Ishwaran H, Kogalur UB. Consistency of random survival forests. Stat
Probab Lett 2010;80:1056–64.

31. Boulesteix A-L, Janitza S, Kruppa J, K€onig IR. Overview of random forest
methodology and practical guidance with emphasis on computational
biology and bioinformatics. Wiley Interdiscip Rev Data Min Knowl Discov
2012;2:493–507.

32. Twyman-Saint VC, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E,
et al. Radiation and dual checkpoint blockade activate non-redundant
immune mechanisms in cancer. Nature 2015;520:373–7.

33. IshwaranH, Gerds TA, Kogalur UB,Moore RD, Gange SJ, Lau BM. Random
survival forests for competing risks. Biostatistics 2014;15:757–73.

34. Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS. High-dimen-
sionalvariable selectionfor survivaldata. JAmStatAssoc2010;105:205–17.

35. Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. Conditional
variable importance for random forests. BMC Bioinformatics 2008;9:307.

36. H€anzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics 2013;14:7.

37. Schietinger A, Philip M, Krisnawan VE, Chiu EY. Tumor-specific T cell
dysfunction is a dynamic antigen-driven differentiation program initiated
early during tumorigenesis. Immunity 2016;45:389–401.

38. WickhamH. ggplot2: elegant graphics for data analysis. New York: Spring-
er; 2016.

39. Gonz�alez-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT,
da Silva ALS, et al. Allele frequency net 2015 update: new features for HLA
epitopes, KIR and disease and HLA adverse drug reaction associations.
Nucleic Acids Res 2015;43:D784–8.

40. Johnson BJ, Costelloe EO, Fitzpatrick DR, Haanen JBAG, Schumacher
TNM, Brown LE, et al. Single-cell perforin and granzyme expression reveals
the anatomical localization of effector CD8þ T cells in influenza virus-
infected mice. Proc Natl Acad Sci USA 2003;100:2657–62.

41. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell
2015;160:48–61.

42. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a
common denominator approach to cancer therapy. Cancer Cell 2015;
27:450–61.

43. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The
surface protein TIGIT suppresses T cell activation by promoting the
generation of mature immunoregulatory dendritic cells. Nat Immunol
2009;10:48–57.

44. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al.
Neo-antigens predicted by tumor genome meta-analysis correlate with
increased patient survival. Genome Res 2014;24:743–50.

45. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al.
Safety and activity of anti-PD-L1 antibody in patients with advanced
cancer. N Engl J Med 2012;366:2455–65.

46. TopalianSL,Hodi FS, Brahmer JR,Gettinger SN, SmithDC,McDermottDF,
et al. Safety, activity, and immune correlates of antiPD-1 antibody in
cancer. N Engl J Med 2012;366:2443–54.

47. Cancer Genome Atlas Research Network. Comprehensive molecular char-
acterization of gastric adenocarcinoma. Nature 2014;513:202–9.

48. Cancer Genome Atlas Network. Genomic classification of cutaneous
melanoma. Cell 2015;161:1681–96.

49. Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, et al.
Genomic analyses identifymolecular subtypes of pancreatic cancer. Nature
2016;531:47–52.

50. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al.
Integrative analyses of colorectal cancer show immunoscore is a stronger
predictor of patient survival than microsatellite instability. Immunity
2016;44:698–711.

51. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pag�es
C, et al. Type, density, and location of immune cells within human
colorectal tumors predict clinical outcome. Science 2006;313:1960–4.

52. Schumacher K,HaenschW, R€oefzaadC, Schlag PM. Prognostic significance
of activated CD8(þ) T cell infiltrations within esophageal carcinomas.
Cancer Res 2001;61:3932–6.

53. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al.
Prospective identification of neoantigen-specific lymphocytes in the
peripheral blood of melanoma patients. Nat Med 2016;22:433–8.

54. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti
AA, et al. A dendritic cell vaccine increases the breadth and diversity of
melanoma neoantigen-specific T cells. Science 2015;348:803–8.

55. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, et al. VISTA is
an inhibitory immune checkpoint that is increased after ipilimumab
therapy in patients with prostate cancer. Nat Med 2017;57:3325–34.

56. Jim�enez-S�anchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas
HA, et al. Heterogeneous tumor-immune microenvironments among
differentially growing metastases in an ovarian cancer patient. Cell
2017;170:927–938.e20.

57. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK,
et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to
immune checkpoint blockade. Science 2016;351:1463–9.

58. Balachandran VP, èukszaM, Zhao JN,Makarov V,Moral JA, Remark R, et al.
Identification of unique neoantigen qualities in long-term survivors of
pancreatic cancer. Nature 2017;551;512–6.

59. èuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov
A, et al. A neoantigenfitnessmodel predicts tumour response to checkpoint
blockade immunotherapy. Nature 2017;551;517–20.

60. Tran E, Robbins PF, Lu Y-C, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer
therapy targetingmutant KRAS in cancer. NEngl JMed2016;375:2255–62.

61. Rech AJ, Vonderheide RH. T-cell transfer therapy targeting mutant KRAS.
N Engl J Med 2017;376:e11.

62. Colli LM, Machiela MJ, Myers TA, Jessop L, Yu K, Chanock SJ. Burden of
nonsynonymous mutations among TCGA cancers and candidate immune
checkpoint inhibitor responses. Cancer Res 2016;76:3767–72.

63. Lu YC, Yao X, Li YF, El-Gamil M, Dudley ME, Yang JC, et al. Mutated
PPP1R3B is recognized by T cells used to treat a melanoma patient who
experienced a durable complete tumor regression. J Immunol 2013;190:
6034–42.

www.aacrjournals.org Cancer Immunol Res; 6(3) March 2018 287

Alternative Neopeptides Predict Survival and Immunity

on July 3, 2021. © 2018 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2018; DOI: 10.1158/2326-6066.CIR-17-0559 

http://cancerimmunolres.aacrjournals.org/


2018;6:276-287. Published OnlineFirst January 16, 2018.Cancer Immunol Res 
  
Andrew J. Rech, David Balli, Alejandro Mantero, et al. 
  
Neopeptides in Human Cancer
Tumor Immunity and Survival as a Function of Alternative

  
Updated version

  
 10.1158/2326-6066.CIR-17-0559doi:

Access the most recent version of this article at:

  
Material

Supplementary

  
 http://cancerimmunolres.aacrjournals.org/content/suppl/2018/10/22/2326-6066.CIR-17-0559.DC2
 http://cancerimmunolres.aacrjournals.org/content/suppl/2018/01/23/2326-6066.CIR-17-0559.DC1

Access the most recent supplemental material at:

  
  

  
  

  
Cited articles

  
 http://cancerimmunolres.aacrjournals.org/content/6/3/276.full#ref-list-1

This article cites 61 articles, 18 of which you can access for free at:

  
Citing articles

  
 http://cancerimmunolres.aacrjournals.org/content/6/3/276.full#related-urls

This article has been cited by 9 HighWire-hosted articles. Access the articles at:

  
  

  
E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

  
Subscriptions

Reprints and 

  
.pubs@aacr.orgat

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department

  
Permissions

  
Rightslink site. 
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)

.http://cancerimmunolres.aacrjournals.org/content/6/3/276
To request permission to re-use all or part of this article, use this link

on July 3, 2021. © 2018 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst January 16, 2018; DOI: 10.1158/2326-6066.CIR-17-0559 

http://cancerimmunolres.aacrjournals.org/lookup/doi/10.1158/2326-6066.CIR-17-0559
http://cancerimmunolres.aacrjournals.org/content/suppl/2018/01/23/2326-6066.CIR-17-0559.DC1
http://cancerimmunolres.aacrjournals.org/content/suppl/2018/10/22/2326-6066.CIR-17-0559.DC2
http://cancerimmunolres.aacrjournals.org/content/6/3/276.full#ref-list-1
http://cancerimmunolres.aacrjournals.org/content/6/3/276.full#related-urls
http://cancerimmunolres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://cancerimmunolres.aacrjournals.org/content/6/3/276
http://cancerimmunolres.aacrjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice




