
Mach Learn
DOI 10.1007/s10994-016-5597-1

Boosted multivariate trees for longitudinal data

Amol Pande1 · Liang Li2 · Jeevanantham Rajeswaran3 · John Ehrlinger3 ·
Udaya B. Kogalur3 · Eugene H. Blackstone4 · Hemant Ishwaran1

Received: 12 April 2016 / Accepted: 18 October 2016
© The Author(s) 2016

Abstract Machine learningmethods provide a powerful approach for analyzing longitudinal
data in which repeated measurements are observed for a subject over time. We boost multi-
variate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data.
In this model, features are assumed to be nonparametric, while feature-time interactions are
modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In
order to avoid overfitting, we describe a relatively simple in sample cross-validation method
which can be used to estimate the optimal boosting iteration and which has the surprising
added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting
method is shown to be highly flexible, robust to covariance misspecification and unbalanced
designs, and resistant to overfitting in high dimensions. Feature selection can be used to
identify important features and feature-time interactions. An application to longitudinal data
of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an
important feature-time interaction and illustrates the ease with which our method can find
complex relationships in longitudinal data.

Keywords Gradient boosting · Marginal model · Multivariate regression tree · P-splines ·
Smoothing parameter

Editor: Hendrik Blockeel.

B Hemant Ishwaran
hemant.ishwaran@gmail.com

1 Division of Biostatistics, University of Miami, Miami, FL, USA

2 The University of Texas MD Anderson Cancer Center, Houston, TX, USA

3 Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA

4 Department of Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5597-1&domain=pdf

Mach Learn

1 Introduction

The last decade has witnessed a growing use of machine learning methods in place of tra-
ditional statistical approaches as a way to model the relationship between the response and
features. Boosting is one of the most successful of these machine learning methods. It was
originally designed for classification problems (Freund and Schapire 1996), but later suc-
cessfully extended to other settings such as regression and survival problems. Recent work
has also sought to extend boosting from univariate response settings to more challenging
multivariate response settings, including longitudinal data. The longitudinal data scenario in
particular offers many nuances and challenges unlike those in univariate response modeling.
This is because in longitudinal data, the response for a given subject is measured repeat-
edly over time. Hence any optimization function that involves the conditional mean of the
response must also take into account the dependence in the response values for a given sub-
ject. Furthermore, nonlinear relationships between features and the response may involve
time.

An effective way to approach longitudinal data is through what is called the marginal
model (Diggle et al. 2002). The marginal model provides a flexible means for estimating
mean time-profiles without requiring a distributional model for the Y response, requiring
instead only an assumption regarding the mean and the covariance. Formally, we assume
the data is {(yi , ti , xi)}n1 where each subject i has ni ≥ 1 continuous response values yi =
(yi,1, . . . , yi,ni)

T measured at possibly different time points ti,1 ≤ ti,2 ≤ . . . ≤ ti,ni and
xi ∈ R

p is the p-dimensional feature. To estimate the mean time-profile, the marginal model
specifies the conditional mean E(Yi |xi , ti) = μi under a variance assumption Var(Yi |xi) =
Vi . Typically, Vi = φRi where Ri is an ni × ni correlation matrix parameterized by a finite
set of parameters and φ > 0 is an unknown dispersion parameter.

The marginal model expresses the conditional mean μi as a function of features and
time. Typically in the statistical literature this function is specified parametrically as a linear
combination of features and time. In most cases, linear functions can be very restrictive, and
therefore various generalizations have been proposed tomake themodelmoreflexible and less
susceptible to model misspecification. These include, for example, adding two-way cross-
product interactions between features and time, using generalized additive models (Hastie
and Tibshirani 1990) which allow for nonlinear feature or time effects, and time-varying
coefficient models (Hoover et al. 1998). Some of these extensions (e.g., generalized additive
models, time-varying coefficient models) are referred to as being semi-parametric because
the overall structure of the model is parametric, but certain low-dimensional components are
estimated nonparametrically as smooth functions. Although these models are more flexible
compared with linear models, unless specified explicitly, these models do not allow for non-
linear interactions among multiple features or non-linear interactions of multiple features
and time.

To overcome these limitations of standard statistical modeling, researchers have turned
increasingly to the use of boosting for longitudinal data. Most of these applications are based
on the mixed effect models. For example, using likelihood-based boosting, Tutz and Rei-
thinger (2007) described mixed effects modeling using semiparametric splines for fixed
effects, while Groll and Tutz (2012) considered generalized additive models subject to
P-splines (see Tutz and Binder 2006, for background on likelihood-based boosting). The
R-package mboost, which implements boosting using additive base learners for univariate
response (Hothorn et al. 2010, 2016), now includes random effect base learners to handle
longitudinal data. This approach was used by Mayr et al. (2012) for quantile longitudinal

123

Author's personal copy

Mach Learn

regression. All of these methods implement componentwise boosting where only one com-
ponent is fit for a given boosting step (an exception is mboostwhich allows tree base learner
for fitting multiple features simultaneously). Although componentwise boosting has proven
particularly useful for high dimensional parametric settings, it is not well suited for nonpara-
metric settings, especially if the goal is to nonparametrically model feature-time interactions
and identify such effects using feature selection.

1.1 A semi-nonparametric multivariate tree boosting approach

In this article we boost multivariate trees to fit a flexible marginal model. This marginal
model allows for nonlinear feature and time effects as well as nonlinear interactions among
multiple features and time, and hence is more flexible than previous semiparametric models.
For this reason, we have termed this more flexible approach “semi-nonparametric”. Our
model assumes the vector of mean values μi = (μi,1, . . . , μi,ni)

T satisfies

μi, j = β0(xi) +
d∑

l=1

bl(ti, j)βl(xi), j = 1, . . . , ni . (1)

Here, β0 and {βl}d1 represent fully unspecified real-valued functions of x and {bl}d1 are a
collection of prespecified functions that map time to a desired basis and are used to model
feature-time interactions. Examples of {bl}d1 basis functions include the class of low-rank
thin-plate splines (Duchon 1977; Wahba 1990), which correspond to semi-nonparametric
models of the form

μi, j = β0(xi) + ti, jβ1(xi) +
d∑

l=2

|ti, j − κl−1|(2m−1)βl(xi), (2)

where κ1 < · · · < κd−1 are prespecified knots. Another example are truncated power basis
splines of degree q (Ruppert et al. 2003):

μi, j = β0(xi) +
q∑

l=1

t li, jβl(xi) +
d∑

l=q+1

(ti, j − κl−q)
q
+βl(xi).

Another useful class of families are B-splines (De Boor 1978). In this manuscript we will
focus exclusively on the class of B-splines.

According to (1), subjects with the same feature x have the same conditional mean trajec-
tory for a given t as specified by a spline curve: the shape of the curve is altered by the spline
coefficients, {βl(x)}d1 . Two specifications maximize the flexibility of (1). First, each spline
coefficient is a nonparametric function of all p features (i.e., βl(.) is a scalar function with
multivariate input). Second, similar to the penalized spline literature, we use a large number
of basis functions to ensure the flexibility of the conditional mean trajectory (Ruppert et al.
2003). While (1) is in principle very general, it is worth pointing out that simpler, but still
useful, models are accommodated within (1). For example, when d = 1 and b1(ti, j) = ti, j ,
model (1) specializes to β0(xi)+β1(xi)ti, j , which implies that given the baseline features xi ,
the longitudinal mean trajectory is linear with intercept β0(xi) and slope β1(xi). This model
may be useful when there are a small number of repeated measures per subject. When both
β0(xi) and β1(xi) are linear combinations of xi , the model reduces to a parametric longitudi-
nal model with linear additive feature and linear two-way cross-product interactions between
features and time.

123

Author's personal copy

Mach Learn

Let βββ(x) = (β0(x), β1(x), . . . , βd(x))T denote the vector of (d + 1)-dimensional feature
functions from (1). In this manuscript, we estimate βββ(x) nonparametrically by boosting
multivariate regression trees, a method we call boostmtree. While there has been much
recent interest in boosting longitudinal data, there has been no systematic attempt to boost
multivariate trees in such settings. Doing so has many advantages, including that it allows
us to accommodate non-linearity of features as well as non-linear interactions of multiple
featureswithout having to specify them explicitly. The boostmtree approach is an extension of
Friedman’s (2001) tree-based gradient boosting tomultivariate responses. Section 2 describes
this extension and presents a general framework for boosting longitudinal data using a generic
(but differentiable) loss function. Section 3 builds upon this general framework to describe
the boostmtree algorithm. Therewe introduce an �2-loss functionwhich incorporates both the
target mean structure (1) as well as a working correlation matrix for addressing dependence
in response values.

The boostmtree algorithm presented in Sect. 3 represents a high-level description of the
algorithm in that it assumes that parameters such as the correlation coefficient of the repeated
measurements are fixed quantities. But in practice in order to increase the efficiency of
boostmtree, we must estimate these additional parameters. In this manuscript, all parame-
ters except {μi }n1 are referred to as ancillary parameters. Estimation of ancillary parameters
are described in Sect. 4. This includes a simple update for the correlation matrix that can be
implemented using standard software and which can accommodate many covariance models.
We also present a simple method for estimating the smoothing parameter for penalizing the
semiparametric functions {bl}d1 . This key feature allows flexible nonparametric modeling of
the feature space while permitting smoothed, penalized spline-based time-feature estimates.
In addition, in order to determine an optimal boosting step, we introduce a novel “in sam-
ple” cross-validation method. In boosting, the optimized number of boosting iterations is
traditionally determined using cross-validation, but this can be computationally intensive for
longitudinal data. The new in sample method alleviates this problem and has the added ben-
efit that it stabilizes the working correlation estimator which suffers from a type of rebound
effect without this. The unintended consequence of introducing instability while estimating
an ancillary parameter is a new finding we believe, and may be applicable in general to any
boosting procedure where ancillary parameters are estimated outside of the main boosting
procedure. The in sample method we propose may provide a general solution for addressing
this subtle issue.

Computational tractability is another important feature of boostmtree. By using multi-
variate trees, the matching pursuit approximation is reduced to calculating a small collection
of weighted generalized ridge regression estimators. The ridge component is induced by
the penalization of the basis functions and thus penalization serves double duty here. It not
only helps to avoid overfitting, but it also numerically stabilizes the boosted estimator. This
makes boostmtree robust to design specifications. In Sect. 5, we investigate performance
of boostmtree using simulations. Performance is assessed in terms of prediction and feature
selection accuracy.We compare boostmtree to several boosting procedures. Even when some
of these models are specified to match the data generating mechanism, we find boostmtree
does nearly as well, while in complex settings it generally outperforms other methods. We
also find that boostmtree performs very well in terms of feature selection. Without explicitly
specifying the relationship of response with features and time, we are able to select important
features, but also separate features that affect the response directly from those that affect the
response through time interactions. In Sect. 6, we use boostmtree to analyze longitudinal data
of forced 1-second lung expiratory volume (FEV1) for lung transplant patients. We evaluate
the temporal trend of FEV1 after transplant, and identify factors predictive of FEV1 and

123

Author's personal copy

Mach Learn

assess differences in time-profile trends for single versus double lung transplant patients.
Section 7 discusses our overall findings.

2 Gradient multivariate tree boosting for longitudinal data

Friedman (2001) introduced gradient boosting, a general template for applying boosting. The
method has primarily been applied to univariate settings, but can be extended to multivariate
longitudinal settings as follows.We assume a generic loss function, denoted by L . Let (y, t, x)
denote a generic data point. We assume

E(Y|X = x) = μ(x) = F(βββ(x))

where F is a known function that can depend on t. A key assumption used later in our
development is that F is assumed to be a linear operator. As described later, F will correspond
to the linear operator obtained by expanding spline-basis functions over time in model (1).

In the framework described in Friedman (2001), the goal is to boost the predictor F(x),
but because our model is parameterized in terms of βββ(x), we boost this function instead.
Our goal is to estimate βββ(x) by minimizing E [L(Y, F(βββ(x)))] over some suitable space.
Gradient boosting applies a stagewise fitting procedure to provide an approximate solution
to the target optimization. Thus starting with an initial value βββ(0)(x), the value at iteration
m = 1, . . . , M is updated from the previous value according to

βββ(m)(x) = βββ(m−1)(x) + νh(x; am), μ(m)(x) = F(βββ(m)(x)).

Here 0 < ν ≤ 1 is a learning parameter while h(x; a) ∈ R
d+1 denotes a base learner

parameterized by the value a. The notation h(x; am) denotes the optimized base learner
where optimization is over a ∈ A , where A represents the set of parameters of the weak
learner. Typically, a small value of ν is used, say ν = 0.05, which has the effect of slowing
the learning of the boosting procedure and therefore acts a regularization mechanism.

One method for optimizing the base learner is by solving the matching pursuit prob-
lem (Mallat and Zhang 1993):

am = argmin
a∈A

n∑

i=1

L
(
yi ,μ

(m−1)
i + F(h(xi ; a))

)
.

Because solving the above may not always be easy, gradient boosting instead approximates
the matching pursuit problem with a two-stage procedure: (i) find the base learner closest to
the gradient in an �2-sense; (ii) solve a one-dimensional line-search problem.

The above extension which assumes a fixed loss function addresses simpler longitudinal
settings, such as balanced designs. To accommodate more general settings we must allow
the loss function to depend on i . This is in part due to the varying sample size ni , which
alters the dimension of the response, and hence affects the loss function, but also because
we must model the correlation, which may also depend on i . Therefore, we will denote the
loss function by Li to indicate its dependence on i . This subscript i notation will be used
throughout in general to identify any term which may depend on i . In particular, since the
mean may also in general depend upon i , since it depends upon the observed time points, we
will write

E(Yi |Xi = xi) = μi (xi) = Fi (βββ(xi)). (3)

123

Author's personal copy

Mach Learn

In this more general framework, the matching pursuit problem becomes

am = argmin
a∈A

n∑

i=1

Li

(
yi ,μ

(m−1)
i + Fi (h(xi ; a))

)
.

We use multivariate regression trees for the base learner and approximate the above matching
pursuit problem using the following two-stage gradient boosting approach. Let the negative
gradient for subject i with respect to βββ(xi) evaluated at βββ(m−1)(xi) be

gm,i = − ∂Li (yi ,μi)

∂βββ(xi)

∣∣∣∣
βββ(xi)=βββ(m−1)(xi)

.

To determine the �2-closest base learner to the gradient, we fit a K -terminal nodemultivariate
regression tree using {gm,i }n1 for the responses and {xi }n1 as the features, where K ≥ 1 is
prespecified value. Denote the resulting tree by h(x; {Rk,m}K1), where Rk,m represents the
kth terminal node of the regression tree. Letting fk ∈ R

d+1 denote the kth terminal node
mean value, the �2-optimized base learner is

h(x; {Rk,m}K1) =
K∑

k=1

fk1
(
x ∈ Rk,m

)
, fk = 1

|Rk,m |
∑

xi∈Rk,m

gm,i .

This completes the first step in the gradient boosting approximation. The second step typically
involves a line search; however in univariate tree-based boosting (Friedman 2001, 2002), the
line search is replaced with a more refined estimate which replaces the single line search
parameter with a unique value for each terminal node. In the extension to multivariate trees,
we replace {fk}K1 with (d + 1)-vector valued estimates {γγγ k,m}K1 determined by optimizing
the loss function

{γγγ k,m}K1 = argmin
{γγγ k }K1

n∑

i=1

Li

(
yi ,μ

(m−1)
i + Fi

(
K∑

k=1

γγγ k1
(
xi ∈ Rk,m

)
))

.

The optimized base learner parameter is am = {(Rk,m,γγγ k,m)}K1 and the optimized learner is

h(x; am) = ∑K
k=1 γγγ k,m1

(
x ∈ Rk,m

)
. Because the terminal nodes {Rk,m}K1 of the tree form a

partition of the feature space, the optimization of the loss function can be implemented one
parameter at a time, thereby greatly simplifying computations. It is easily shown that

γγγ k,m = argmin
γγγ k∈Rd+1

∑

xi∈Rk,m

Li

(
yi ,μ

(m−1)
i + Fi (γγγ k)

)
, k = 1, . . . , K . (4)

This leads to the following generic algorithm for boosting multivariate trees for longitudinal
data; see Algorithm 1.

3 The boostmtree algorithm

Algorithm 1 describes a general template for boosting longitudinal data. We now use this to
describe the boostmtree algorithm for fitting (1).

123

Author's personal copy

Mach Learn

Algorithm 1 Generic multivariate boosted trees for longitudinal data

1: Initialize βββ(0)(xi) = 000, μ(0)
i = Fi (000), for i = 1, . . . , n.

2: for m = 1, . . . , M do

3: gm,i = − ∂Li (yi , μi)

∂βββ(xi)

∣∣∣∣
βββ(xi)=βββ(m−1)(xi)

, i = 1, . . . , n.

4: Fit a multivariate regression tree h(x; {Rk,m }K1) using {(gm,i , xi)}n1 for data.

5: γγγ k,m = argminγγγ k∈Rd+1
∑

xi∈Rk,m
Li

(
yi , μ

(m−1)
i + Fi (γγγ k)

)
, k = 1, . . . , K .

6: Update:

βββ(m)(x) = βββ(m−1)(x) + ν

K∑

k=1

γγγ k,m1(x ∈ Rk,m)

μ
(m)
i (x) = Fi (βββ

(m)(x)), i = 1, . . . , n.

7: end for

8: Return
{(

βββ(M)(xi), μ
(M)
i

)n
1

}
.

3.1 Loss function and gradient

We begin by defining the loss function required to calculate the gradient function. Assuming
μi as in (1), and denoting Vi for the working covariance matrix, where for the moment we
assume Vi is known, the loss function is defined as follows

Li (yi ,μi) = (yi − μi)
T V−1

i (yi − μi) /2.

This can been seen to be an �2-loss function and in fact is often called the squaredMahalanobis
distance. It is helpful to rewrite the covariance matrix as Vi = φRi , where Ri represents
the correlation matrix and φ a dispersion parameter. Because φ is a nuisance parameter
unnecessary for calculating the gradient, we can remove it from our calculations. Therefore
without loss of generality, we can work with the simpler loss function

Li (yi ,μi) = (yi − μi)
T R−1

i (yi − μi) /2.

We introduce the following notation. Let Di = [111i ,b1(ti), . . . ,bd(ti)]ni×(d+1) denote the
ni ×(d+1) design matrix for subject i where 111i = (1, . . . , 1)Tni×1 and bl(ti) is the expansion

of {bl}d1 over {ti }n1 evaluated at ti . Model (1) becomes

μi = Diβββ(xi) = Di

⎛

⎜⎝
β0(xi)

...

βd(xi)

⎞

⎟⎠ = β0(xi)111i +
d∑

l=1

bl(ti)βl(xi). (5)

Comparing (5) with (3) identifies the Fi in Algorithm 1 as

Fi (βββ) = Diβββ.

Hence, Fi is a linear operator on βββ obtained by expanding spline-basis functions over time.
Working with a linear operator greatly simplifies calculating the gradient. The negative gra-
dient for subject i with respect to βββ(xi) evaluated at the current estimator βββ(m−1)(xi) is

gm,i = − ∂Li (yi ,μi)

∂βββ(xi)

∣∣∣∣
βββ(xi)=βββ(m−1)(xi)

= DT
i R

−1
i

(
yi − μ

(m−1)
i

)
.

123

Author's personal copy

Mach Learn

Upon fitting a multivariate regression tree to {(gm,i , xi)}n1, we must solve for γγγ k,m in (4)
where Fi (γγγ k) = Diγγγ k . This yields the weighted least squares problem

⎡

⎣
∑

xi∈Rk,m

DT
i R

−1
i Di

⎤

⎦γγγ k,m =
∑

xi∈Rk,m

gm,i . (6)

3.2 Penalized basis functions

We utilize B-splines in (5). For flexible modeling a large number of knots are used which are
subject to penalization to avoid overfitting. Penalization is implemented using the differencing
penalty described in Eilers andMarx (1996). Penalized B-splines subject to this penalization
are referred to as P-splines.

As the update to βββ(x) depends on (γγγ k,m)K1 , we impose P-spline regularization by penal-
izing γγγ k,m . Write γγγ k = (γk,1, . . . , γk,d+1)

T for k = 1, . . . , K . We replace (4) with the
penalized optimization problem

γγγ k,m = argmin
γγγ k∈Rd+1

⎧
⎨

⎩
∑

xi∈Rk,m

Li

(
yi ,μ

(m−1)
i + Diγγγ k

)
+ λ

2

d+1∑

l=s+2

(
sγk,l)
2

⎫
⎬

⎭ . (7)

Here λ ≥ 0 is a smoothing parameter and
s denotes the s ≥ 1 integer difference
operator (Eilers and Marx 1996); e.g., for s = 2 the difference operator is defined by

2γk,l =

(

γk,l

) = γk,l − 2γk,l−1 + γk,l−2, for l ≥ 4 = s + 2.
The optimization problem (7) can be solved by taking the derivative and solving for

zero. Because the first coordinate of γγγ k is unpenalized it will be convenient to decompose
γγγ k into the unpenalized first coordinate γk,1 and remaining penalized coordinates γγγ

(2)
k =

(γk,2, . . . , γk,d+1)
T . The penalty term can be expressed as

d+1∑

l=s+2

(
sγk,l)
2 =

(

sγγγ

(2)
k

)T

sγγγ

(2)
k = γγγ

(2)
k

T

T

s

sγγγ
(2)
k , (8)

where

s is the matrix representation of the difference operator
s . Let Ps =

T
s

s , then

the derivative of (8) is 2Bsγγγ k , where

Bs =
[
0 000
000 Ps

]

(d+1)×(d+1)
.

Closed form solutions for Bs are readily computed. Taking the derivative and setting to zero,
the solution to γγγ k,m in (7) is the following weighted generalized ridge regression estimator

⎡

⎣
∑

xi∈Rk,m

DT
i R

−1
i Di + λBs

⎤

⎦γγγ k,m =
∑

xi∈Rk,m

gm,i . (9)

This is the penalized analog of (6).

Remark 1 Observe that the ridgematrixBs appearing in (9) is induced due to the penalization.
Thus, the imposed penalization serves double duty: it penalizes splines, thereby mitigating
overfitting, but it also ridge stabilizes the boosting estimator γγγ k,m , thus providing stability.
The latter property is important when the design matrix Di is singular, or near singular; for
example due to replicated values of time, or due to a small number of time measurements.

123

Author's personal copy

Mach Learn

Remark 2 We focus on penalized B-splines (P-splines) in this manuscript, but in principle
our methodology can be applied to any other basis function as long as the penalization
problem can be described in the form

γγγ k,m = argmin
γγγ k∈Rd

⎧
⎨

⎩
∑

xi∈Rk,m

Li

⎛

⎝yi ,μ
(m−1)
i +

2∑

j=1

D(j)
i γγγ

(j)
k

⎞

⎠ + λγγγ
(2)
k

T
Pγγγ

(2)
k

⎫
⎬

⎭ (10)

where P is a positive definite symmetric penalty matrix. In (10), we have separated Di into
two matrices: the first matrix D(1)

i equals the columns for the unpenalized parameters γγγ
(1)
k ,

the second matrix D(2)
i equals the remaining columns for the penalized parameters γγγ

(2)
k

used for modeling the feature time-interaction effect. For example, for the class of thin-plate
splines (2) with m = 2, one could use

D(1)
i = [

1, ti, j
]
j , D(2)

i = [|ti, j − κ1|3, . . . , |ti, j − κd−1|3
]
j .

As reference, for the P-splines used here,D(1)
i = 111i ,D

(2)
i = [b1(ti), . . . ,bd(ti)], andP = Ps .

3.3 Boostmtree algorithm: fixed ancillary parameters

Combining the previous two sections, we arrive at the boostmtree algorithm which we have
stated formally in Algorithm 2. Note that Algorithm 2 should be viewed as a high-level
version of boostmtree in that it assumes a fixed correlation matrix and smoothing parameter.
In Sect. 4, we discuss how these and other ancillary parameters can be updated on the fly
within the algorithm. This leads to a more flexible boostmtree algorithm described later.

Algorithm 2 Boostmtree (fixed ancillary parameters): A boosted semi-nonparametric mar-
ginal model using multivariate trees

1: Initialize βββ(0)(xi) = 000, μ(0)
i = 000, for i = 1, . . . , n.

2: for m = 1, . . . , M do
3: gm,i = DT

i R
−1
i

(
yi − μ

(m−1)
i

)
.

4: Fit a multivariate regression tree h(x; {Rk,m }K1) using {(gm,i , xi)}n1 for data.
5: Solve for γγγ k,m in the weighted generalized ridge regression problem:

⎡

⎣
∑

xi∈Rk,m

DT
i R

−1
i Di + λBs

⎤

⎦γγγ k,m =
∑

xi∈Rk,m

gm,i , k = 1, . . . , K .

6: Update:

βββ(m)(x) = βββ(m−1)(x) + ν

K∑

k=1

γγγ k,m1(x ∈ Rk,m)

μ
(m)
i (x) = Diβββ

(m)(x), i = 1, . . . , n.

7: end for

8: Return
{(

βββ(M)(xi), μ
(M)
i

)n
1

}
.

123

Author's personal copy

Mach Learn

4 Estimating boostmtree ancillary parameters

In this section, we show how to estimate the working correlation matrix and the smoothing
parameter as additional updates to the boostmtree algorithm. We also introduce an in sample
CV method for estimating the number of boosting iterations and discuss an improved esti-
mator for the correlation matrix based on the new in sample method. This will be shown to
alleviate a “rebound” effect in which the boosted correlation rebounds back to zero due to
overfitting.

4.1 Updating the working correlation matrix

As mentioned, Algorithm 2 assumed Ri was a fixed known quantity, however in practice
Ri is generally unknown and must be estimated. Our strategy is to use the updated mean
response to define a residual which is then fit using generalized least squares (GLS). We use
GLS to estimate Ri from the fixed-effects intercept model

yi − μ
(m)
i = α111i + εεεi , i = 1, . . . , n, (11)

where Var(εεεi) = φRi . Estimating Ri under specified parametric models is straightforward
using available software. We use the R-function gls from the nlme R-package (Pinheiro
et al. 2014; Pinheiro and Bates 2000) and make use of the option correlation to select
a parametric model for the working correlation matrix. Available working matrices include
autoregressive processes of order 1 (corAR1), autoregressive moving average processes
(corARMA), and exchangeable models (corCompSymm). Each are parameterized using
only a few parameters, including a single unknown correlation parameter −1 < ρ < 1.
In analyses presented later, we apply boostmtree using an exchangeable correlation matrix
using corCompSymm.

4.2 Estimating the smoothing parameter

Algorithm 2 assumed a fixed smoothing parameter λ, but for greater flexibility we describe
a method for estimating this value, λm , that can be implemented on the fly within the
boostmtree algorithm. The estimation method exploits a well known trick of expressing
an �2-optimization problem like (7) in terms of linear mixed models. First note that γγγ k,m
from (7) is equivalent to the best linear unbiased prediction estimator (BLUP estimator;
Robinson (1991)) from the linear mixed model

yi = μ
(m−1)
i + Xiαk + Ziuk + εεεi , i ∈ Rk,m,

where

(
uk
εεεi

)
ind∼ N

((
000
000

)
,

[
λ−1Ps−1 000

000 R(m−1)
i

])

andR(m−1)
i denotes the current estimate forRi . In the above,αk is the fixed effect correspond-

ing to γk,1 with design matrix Xi = 111i , while uk ∈ R
d is the random effect corresponding to

γγγ
(2)
k with ni × d design matrix Zi = [b1(ti), . . . ,bd(ti)]. That is, each terminal node Rk,m

corresponds to a linear mixed model with a unique random effect uk and fixed effect αk .

123

Author's personal copy

Mach Learn

Using the parameterization

ỹi =
(
R(m−1)
i

)−1/2 (
yi − μ

(m−1)
i

)

X̃i =
(
R(m−1)
i

)−1/2
Xi

Z̃i =
(
R(m−1)
i

)−1/2
ZiPs−1/2

ũk = Ps1/2uk

ε̃εεi =
(
R(m−1)
i

)−1/2
εεεi ,

we obtain ỹi = X̃iαk + Z̃i ũk + ε̃εεi , for i ∈ Rk,m , where
(
ũk
ε̃εεi

)
ind∼ N

((
000
000

)
,

[
λ−1Id 000
000 Ini

])
.

Perhaps the most natural way to estimate λ is to maximize the likelihood using restricted
maximum likelihood estimation via mixed models. Combine the transformed data ỹi across
terminal nodes and apply a linear mixed model to the combined data; for example, by using
mixed model software such as the nlme R-package (Pinheiro et al. 2014). As part of the
model fitting this gives an estimate for λ.

While a mixed models approach may seem the most natural way to proceed, we have
found in practice that the resulting computations are very slow, and only get worse with
increasing sample sizes. Thereforewe insteadutilize an approximate, but computationally fast
method of moments approach. Let X̃, Z̃ be the stacked matrices {X̃i }i∈Rk,m , {Z̃i }i∈Rk,m , k =
1, . . . , K . Similarly, let ααα, ũ, Ỹ, and ε̃, be the stacked vectors for {αk}K1 , {ũk}K1 , {Ỹi }i∈Rk,m ,
and {ε̃εεi }i∈Rk,m , k = 1, . . . , K . We have

E
[
(Ỹ − X̃ααα)(Ỹ − X̃ααα)T

]
= E

[
(Z̃ũ + ε̃εε)(Z̃ũ + ε̃εε)T

]
= λ−1Z̃Z̃T + E(ε̃εεε̃εεT).

This yields the following estimator:

λ̂ = trace(Z̃Z̃T)

trace[(ỹ − X̃ααα)(ỹ − X̃ααα)T] − N
, N = E(ε̃εεT ε̃εε). (12)

To calculate (12) requires a value for ααα. This we estimate using BLUP as follows. Fix λ̂ at
an initial value. The BLUP estimate (α̂k, ûk) for (αk, ũk) given λ̂ are the solutions to the
following set of equations (Robinson 1991):

X̃T X̃α̂k + X̃T Z̃ûk = X̃T ỹ, Z̃T X̃α̂k +
(
Z̃T Z̃ + λ̂I

)
ûk = Z̃T ỹ. (13)

Substituting the resulting BLUP estimate ααα = α̂αα into (12) yields an updated λ̂. This process
is repeated several times until convergence. Let λm be the final estimator. Now to obtain an
estimate for γγγ k,m , we solve the following:

⎡

⎣
∑

xi∈Rk,m

DT
i

(
R(m−1)
i

)−1
Di + λmBs

⎤

⎦γγγ k,m =
∑

xi∈Rk,m

gm,i .

Remark 3 A stabler estimator for λ can be obtained by approximating N in place of using
N = E(ε̃εεT ε̃εε) = ∑

i ni ; the latter being implied by the transformed model. Let α̂αα and û be

123

Author's personal copy

Mach Learn

the current estimates for ααα and ũ. Approximate ε̃εε using the residual ε̃εε∗ = ỹ − X̃α̂αα − Zû and
replace N with N̂ = ε̃εε∗T ε̃εε∗. This is the method used in the manuscript.

4.3 In sample cross-validation

In boosting, along with the learning parameter ν, the number of boosting steps M is also used
as a regularization parameter in order to avoid overfitting. Typically the optimized value of
M , denoted as Mopt, is estimated using either a hold-out test data or by using cross-validation
(CV). But CV is computationally intensive, especially for longitudinal data. Information
theoretic criteria such as AIC have the potential to alleviate this computational load. Suc-
cessful implementation within the boosting paradigm is however fraught with challenges.
Implementing AIC requires knowing the degrees of freedom of the fitted model which is
difficult to do under the boosting framework. The degrees of freedom are generally under-
estimated which adversely affects estimation of Mopt. One solution is to correct the bias
in the estimate of Mopt by using subsampling after AIC (Mayr et al. 2012). Such solutions
are however applicable only to univariate settings. Applications of AIC to longitudinal data
remains heavily underdevelopedwithwork focusing exclusively on parametricmodelswithin
non-boosting contexts. For example, Pan (2001) described an extension of AIC to parametric
marginal models. This replaces the traditional AIC degrees of freedom with a penalization
term involving the covariance of the estimated regression coefficient. As this is a paramet-
ric regression approach, it cannot be applied to nonparametric models such as multivariate
regression trees.

We instead describe a novel method for estimating Mopt that can be implemented within
the boostmtree algorithm using a relatively simple, yet effective approach, we refer to as
in sample CV. As before, let Rk,m denote the kth terminal node of a boosted multivariate
regression tree, where k = 1, . . . , K . Assume that the terminal node for the i th subject is
Rk0,m for some 1 ≤ k0 ≤ K . Let Rk0,m,−i be the new terminal node formed by removing i .
Let λm be the current estimator of λ. Analogous to (7), we solve the following loss function
within this new terminal node

γ̃γγ
(i)
k0,m,−i = argmin

γγγ k∈Rd+1

⎧
⎨

⎩
∑

x j∈Rk0,m,−i

L j

(
y j , μ̃

(i,m−1)
j + D jγγγ k

)
+ λm

2

d+1∑

l=s+2

(
sγk,l)
2

⎫
⎬

⎭ . (14)

For each i , we maintain a set of n values {μ̃(i,m−1)
j }n1, where μ̃

(i,m−1)
j is the (m−1)th boosted

in sample CV predictor for y j treating i as a held out observation. The solution to (14) is used

to update μ̃
(i,m−1)
j for those x j in Rk0,m . For those subjects that fall in a different terminal

node Rk,m where k �= k0, we use

γ̃γγ
(i)
k,m = argmin

γγγ k∈Rd+1

⎧
⎨

⎩
∑

x j∈Rk,m

L j

(
y j , μ̃

(i,m−1)
j + D jγγγ k

)
+ λm

2

d+1∑

l=s+2

(
sγk,l)
2

⎫
⎬

⎭ . (15)

Once estimators (14) and (15) are obtained (a total of K optimization problems, each solved
using weighted generalized ridge regression), we update μ̃

(i,m−1)
j for j = 1, . . . , n as fol-

lows:

μ̃
(i,m)
j =

{
μ̃

(i,m−1)
j + νD j γ̃γγ

(i)
k0,m,−i if x j ∈ Rk0,m

μ̃
(i,m−1)
j + νD j γ̃γγ

(i)
k,m if x j ∈ Rk,m where k �= k0.

123

Author's personal copy

Mach Learn

Notice that μ̃(i,m)
i represents the in sampleCVpredictor for yi treating i as held out. Repeating

the above for each i = 1, . . . , n, we obtain
{
μ̃

(i,m)
i

}n
1. We define our estimate of the root

mean-squared error (RMSE) for the mth boosting iteration as

C̃V
(m) =

[
1

n

n∑

i=1

1

ni

(
yi − μ̃

(i,m)
i

)T (
yi − μ̃

(i,m)
i

)]1/2

.

It is worth emphasizing that our approach has utilized all n subjects, rather than fitting a
separate model using a subsample of the training data as done for CV. Therefore, the in
sample CV can be directly incorporated into the boostmtree procedure to estimate Mopt. We
also note that our method fits only one tree for each boosting iteration. For a true leave-one-
out calculation, we should remove each observation i prior to fitting a tree and then solve
the loss function. However, this is computationally intensive as it requires fitting n trees per
iteration and solving nK weighted generalized ridge regressions. We have instead removed
observation i from its terminal node as a way to reduce computations. Later we provide
evidence showing the efficacy of this approach.

4.4 Rebound effect of the estimated correlation

Most of the applications of boosting are in the univariate setting where the parameter of
interest is the conditional mean of the response. However in longitudinal studies, researchers
are also interested in correctly estimating the correlation among responses for a given subject.
We show that a boosting procedure whose primary focus is estimating the conditional mean
of the response can be inefficient for estimating correlation without further modification. We
show that by replacing μ

(m)
i by μ̃

(i,m)
i in (11), an efficient estimate of correlation can be

obtained.
Typically, gradient boosting tries to drive training error to zero. In boostmtree, this means

that as the number of boosting iterations increases, the residual {yi − μ
(m)
i }n1 converges to

zero in an �2-sense. The principle underlying the estimator (11) is to remove the effect of
the true mean, so that the resulting residual values have zero mean and thereby making it
relatively easy to estimate the covariance. Unfortunately, μ

(m)
i not only removes the mean

structure, but also the variance structure. This results in the estimated correlation having a
rebound effect where the estimated value after attaining a maximum, will rebound and start
a descent towards zero as m increases.

To see why this is so, consider an equicorrelation setting in which the correlation between
responses for i are all equal to the same value 0 < ρ < 1. By expressing εεεi from (11) as
εεεi = bi111i + εεε′

i , we can rewrite (11) as the following random intercept model

yi − μ
(m)
i = α111i + bi111i + εεε′

i , i = 1, . . . , n. (16)

The correlation between coordinates of yi −μ
(m)
i equals ρ = σ 2

b /(σ 2
b +σ 2

e), where Var(bi) =
σ 2
b and Var(εεε′

i) = σ 2
e Ini . In boostmtree, as the algorithm iterates, the estimate of ρ quickly

reaches its optimal value. However, as the algorithm continues further, the residual yi −μ
(m)
i

decreases to zero in an �2-sense. This reduces the between subjects variation σ 2
b , which in

turn reduces the estimate of ρ. As we show later, visually this represents a rebound effect of
ρ.

On the other hand, notice that the in sample CV estimate μ̃
(i,m)
i described in the previous

section is updated using all the subjects, except for subject i which is treated as being held
out. This suggests a simple solution to the rebound effect. In place of yi − μ

(m)
i for the

123

Author's personal copy

Mach Learn

residual in (11), we use instead yi − μ̃
(i,m)
i . The latter residual seeks to remove the effect

of the mean but should not alter the variance structure as it does not converge to zero as
m increases. Therefore, using this new residual should allow the correlation estimator to
achieve its optimal value but will prevent the estimator from rebounding. Evidence of the
effectiveness of this new estimator will be demonstrated shortly.

4.5 Boostmtree algorithm: estimated ancillary parameters

Combining the previous sections leads to Algorithm 3 given below which describes the
boostmtree algorithm incorporating ancillary parameter updates for Ri and λ, and which
includes the in sample CV estimator and corrected correlation matrix update.

Algorithm 3 Boostmtree with estimated ancillary parameters

1: Initialize βββ(0)(xi) = 000, μ(0)
i = 000, R(0)

i = Ini , for i = 1, . . . , n.
2: for m = 1, . . . , M do

3: gm,i = DT
i

(
R(m−1)
i

)−1 (
yi − μ

(m−1)
i

)
.

4: Fit a multivariate regression tree h(x; {Rk,m }K1) using {(gm,i , xi)}n1 for data.

5: To estimate λ, cycle between (12) and (13) until convergence of λ̂. Let λm denote the final estimator.
6: Solve for γγγ k,m in

⎡

⎣
∑

xi∈Rk,m

DT
i

(
R(m−1)
i

)−1
Di + λmBs

⎤

⎦γγγ k,m =
∑

xi∈Rk,m

gm,i , k = 1, . . . , K .

7: Update:

βββ(m)(x) = βββ(m−1)(x) + ν

K∑

k=1

γγγ k,m1(x ∈ Rk,m)

μ
(m)
i (x) = Diβββ

(m)(x), i = 1, . . . , n.

8: if (in sample CV requested) then

9: Update
{
μ̃

(i,m)
i

}n
1 using (14) and (15). Calculate C̃V(m).

10: EstimateRi from (11), replacingμ
(m)
i by μ̃

(i,m)
i and usingglsunder a parametricworking correlation

assumption. Update R(m)
i ← R̂i where R̂i is the resulting estimated value.

11: else
12: EstimateRi from (11) usinggls under a parametricworking correlation assumption. UpdateR(m)

i ←
R̂i where R̂i is the resulting estimated value.

13: end if
14: end for
15: if (in sample CV requested) then
16: Estimate Mopt

17: Return
{(

βββ(Mopt)(xi), μ
(Mopt)

i

)n
1 , Mopt

}
.

18: else
19: Return

{(
βββ(M)(xi), μ

(M)
i

)n
1

}
.

20: end if

123

Author's personal copy

Mach Learn

5 Simulations and empirical results

We used three sets of simulations for assessing performance of boostmtree.

Simulation I The first simulation assumed the model:

μi, j = C0 +
4∑

k=1

C∗
k x

∗(k)
i +

q∑

l=1

C∗∗
l x∗∗(l)

i + CI ti, j x
∗(2)
i , j = 1, . . . , ni . (17)

The intercept was C0 = 1.5 and variables x∗(k)
i for k = 1, . . . , 4 have main effects with

coefficient parametersC∗
1 = 2.5,C∗

2 = 0,C∗
3 = −1.2, andC∗

4 = −0.2. Variable x∗(2)
i whose

coefficient parameter is C∗
2 = 0 has a linear interaction with time with coefficient parameter

CI = −0.65. Variables x∗∗(l)
i for l = 1, . . . , q have coefficient parameters C∗∗

l = 0 and

therefore are unrelated to μi, j . Variables x∗(2)
i and x∗(3)

i were simulated from a uniform
distribution on [1, 2] and [2, 3], respectively. All other variables were drawn from a standard
normal distribution; all variableswere drawn independently of one another. For each subject i ,
time values ti, j for j = 1, . . . , ni were sampled with replacement from {1/N0, 2/N0, . . . , 3}
where the number of time points ni was drawn randomly from {1, . . . , 3N0}. This creates an
unbalanced time structure because ni is uniformly distributed over 1 to 3N0.

Simulation II The second simulation assumed the model:

μi, j = C0 +
4∑

k=1

C∗
k x

∗(k)
i +

q∑

l=1

C∗∗
l x∗∗(l)

i + CI t
2
i, j

(
x∗(2)
i

)2
. (18)

This is identical to (17) except the linear feature-time interaction is replaced with a quadratic
time trend and a quadratic effect in x∗(2)

i .

Simulation III The third simulation assumed the model:

μi, j = C0 + C∗
1 x

∗(1)
i + C∗

3 x
∗(3)
i + C∗

4 exp(x
∗(4)
i)

+
q∑

l=1

C∗∗
l x∗∗(l)

i + CI t
2
i, j

(
x∗(2)
i

)2
x∗(3)
i . (19)

Model (19) is identical to (18) except variable x∗(4)
i has a non-linear main effect and the

feature-time interaction additionally includes x∗(3)
i .

5.1 Experimental settings

Four different experimental settings were considered, each with n = {100, 500}:
(A) N0 = 5, and q = 0. For each i , Vi = φRi where φ = 1 and Ri was an exchangeable

correlation matrix with correlation ρ = 0.8 (i.e., Cov(Yi, j , Yi,k) = ρ = 0.8).
(B) Same as (A) except N0 = 15.
(C) Same as (A) except q = 30.
(D) Same as (A) except Cov(Yi, j , Yi, j+k) = ρk for k = 0, 1, . . . (i.e., AR(1) model).

123

Author's personal copy

Mach Learn

5.2 Implementing boostmtree

All boostmtree calculations were implemented using the boostmtree R-package (Ish-
waran et al. 2016), which implements the general boostmtree algorithm, Algorithm 3.
The boostmtree package relies on the randomForestSRC R-package (Ishwaran and
Kogalur 2016) for fittingmultivariate regression trees. The latter is a generalization of univari-
ate CART (Breiman et al. 1984) to the multivariate response setting and uses a normalized
mean-squared error split-statistic, averaged over the responses, for tree splitting (see Ish-
waran and Kogalur 2016, for details). All calculations used adaptive penalization cycling
between (12) and (13). An exchangeable working correlation matrix was used where ρ was
estimated using the in sample CV values {μ̃(i,m)

i }n1. All fits used cubic B-splines with 10
equally spaced knots subject to an s = 3 penalized differencing operator. Multivariate trees
were grown to K = 5 terminal nodes. Boosting tuning parameters were set to ν = 0.05 and
M = 500 with the optimal number of boosting steps Mopt estimated using the in sample CV
procedure.

5.3 Comparison procedures

5.3.1 GLS procedure

As a benchmark, we fit the data using a linear model under GLS that included all main effects
for parameters and all pairwise linear interactions between x-variables and time. A correctly
specified working correlation matrix was used. This method is called dgm-linear (dgm is
short for data generating model).

5.3.2 Boosting comparison procedure

As a boosting comparison procedure we used the R-package mboost (Hothorn et al. 2010,
2016). We fit three different random intercept models. The first model was defined as

mboosttr+bs ← αi111i + btreeK (xi) +
d∑

l=1

btreeK (xi , bl(ti)).

The random intercept is denoted by αi . The notation btreeK denotes a K -terminal node tree
base learner. The first tree base learner is constructed using only the x-features, while the
remaining tree-based learners are constructed using both x-features and time. The variable
bl(ti) is identical to the lth B-spline time-basis used in boostmtree. The second model was

mboosttr ← αi111i + btreeK (xi) + btreeK (xi , ti).

This is identical to the first model except time is no longer broken into B-spline basis terms.
Finally, the third model was

mboostbs ← αi111i + btreeK (xi) +
p∑

k=1

bbsd(x
(k)
i � ti).

The term bbsd(x
(k)
i � ti) denotes all pairwise interactions between the kth x-variable and B-

splines of order d . Thus, the third model incorporates all pairwise feature-time interactions.
Notice that the first two terms in all three models are the same and therefore the difference in
models depends on the base learner used for the third term. All three models were fit using

123

Author's personal copy

Mach Learn

Table 1 Test set performance using simulations

Experiment I Experiment II Experiment III

(A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D)

n = 100

dgm-linear .356 .351 .421 .348 .288 .294 .337 .287 .348 .356 .425 .349

mboosttr+bs .456 .445 .487 .438 .270 .256 .304 .269 .220 .198 .269 .221

mboosttr .449 .441 .478 .429 .253 .250 .277 .250 .192 .186 .226 .195

mboostbs .458 .451 .489 .434 .233 .235 .250 .225 .208 .209 .237 .205

boostmtree .427 .417 .532 .414 .237 .236 .288 .231 .173 .158 .226 .178

boostmtree(.8) .428 .416 .532 .423 .239 .236 .306 .240 .180 .159 .257 .190

n = 500

dgm-linear .345 .344 .353 .342 .283 .292 .289 .283 .344 .347 .355 .343

mboosttr+bs .399 .396 .394 .385 .216 .218 .219 .211 .135 .131 .149 .134

mboosttr .397 .395 .391 .384 .211 .217 .211 .206 .128 .128 .137 .126

mboostbs .398 .396 .394 .384 .206 .211 .203 .198 .175 .175 .176 .173

boostmtree .368 .367 .392 .360 .200 .208 .214 .193 .117 .115 .129 .114

boostmtree(.8) .368 .368 .390 .363 .202 .210 .219 .198 .118 .115 .130 .115

Values reported are test set standardized RMSE (sRMSE) averaged over 100 independent replications. Values
displayed in bold identify the winning method for an experiment and any method within one standard error
of its sRMSE

mboost. The number of boosting iterations was set to M = 500, however in order to avoid
overfitting we use tenfold CV to estimate Mopt. All tree-based learners were grown to K = 5
terminal nodes. For all other parameters, we use default settings.

5.3.3 Other procedures

Several other procedures were used for comparison. However, because none compared favor-
ably to boostmtree, we do not report these values here. For convenience some of these results
are reported in Appendix 1.

5.4 RMSE performance

Performance was assessed using standardized root mean-squared error (sRMSE),

sRMSE =
[
1
n

∑n
i=1

1
ni

∑ni
j=1(Yi, j − Ŷi, j)2

]1/2

σ̂Y
, (20)

where σ̂Y is the overall standard deviation of the response. Values for sRMSEwere estimated
using an independently drawn test set of size n′ = 500. Each simulation was repeated 100
times independently and the average sRMSE value recorded in Table 1. Note that Table 1
includes the additional entry boostmtree(.8), which is boostmtree fit with ρ set at the specified
value ρ = 0.8 (this yields a correctly specified correlation matrix for (A), (B), and (C)).
Table 2 provides the standard error of the sRMSE values. Our conclusions are summarized
below.

123

Author's personal copy

Mach Learn

Table 2 Standard errors for Table 1 (multiplied by 1000)

Experiment I Experiment II Experiment III

(A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D)

n = 100

dgm-linear 2.93 2.94 3.72 2.22 1.33 1.25 1.99 1.42 2.72 2.13 2.54 2.32

mboosttr+bs 4.46 4.38 4.77 3.19 1.58 1.51 2.57 2.18 2.48 1.71 3.16 2.63

mboosttr 4.37 4.48 4.74 3.16 1.51 1.41 2.49 1.86 2.00 1.72 2.29 1.92

mboostbs 4.52 4.54 4.94 3.01 1.52 1.55 1.98 1.71 2.25 1.69 2.17 2.03

boostmtree 5.19 4.48 7.24 4.12 1.89 1.69 3.51 1.98 2.73 1.79 3.38 3.44

boostmtree(.8) 5.11 4.39 7.13 4.14 1.95 1.65 3.36 2.35 2.90 1.85 5.06 5.44

n = 500

dgm-linear 1.34 1.36 1.33 1.37 0.97 0.76 0.81 0.82 1.77 1.24 1.49 1.51

mboosttr+bs 1.64 1.74 1.60 1.71 0.87 0.83 0.80 0.64 0.66 0.56 0.81 0.69

mboosttr 1.63 1.74 1.55 1.71 0.82 0.80 0.82 0.60 0.55 0.53 0.66 0.55

mboostbs 1.70 1.68 1.69 1.75 0.87 0.81 0.73 0.57 0.87 0.70 0.88 0.80

boostmtree 1.77 1.56 1.85 1.78 0.83 0.91 0.99 0.57 0.69 0.56 1.03 0.56

boostmtree(.8) 1.78 1.51 1.83 1.87 0.84 0.88 1.06 0.61 0.92 0.56 0.98 0.59

5.4.1 Experiment I

Performance of dgm-linear (the GLSmodel) is better than all other procedures in experiment
I. This is not surprising given that dgm-linear is correctly specified in experiment I. Never-
theless, we feel performance of boostmtree is good given that it uses a large number of basis
functions in this simple linear model with a single linear feature-time interaction.

5.4.2 Experiment II

In experiment II, mboostbs, which includes all pairwise feature-time interactions, is correctly
specified. However, interestingly, this seems only to confer an advantage over boostmtree
for the smaller sample size n = 100. With a larger sample size (n = 500), performance of
boostmtree is generally much better than mboostbs.

5.4.3 Experiment III

Experiment III is significantly more difficult than experiments I and II since it includes a
non-linear main effect as well as complex feature-time interaction. In this more complex
experiment, boostmtree is significantly better than all mboost models, including mboostbs,
which is now misspecified.

5.4.4 Effect of correlation

In terms of correlation, the boostmtree procedure with estimated ρ is generally as good and
sometimes even better than boostmtree using the correctly specified ρ = 0.8. Furthermore,
loss of efficiency does not appear to be a problem when the working correlation matrix is
misspecified as in simulation (D). In that simulation, the true correlation follows an AR(1)

123

Author's personal copy

Mach Learn

0 500 1500

0.
0

0.
2

0.
4

0.
6

0.
8

m

ρ

0 500 1500

0.
0

0.
2

0.
4

0.
6

0.
8

m
ρ

0 500 1500

0.
0

0.
2

0.
4

0.
6

0.
8

m

ρ

Fig. 1 Estimated correlation obtained using in sample CV (solid line) and without in sample CV (dashed
line) for simulation experiment I (left), II (middle), and III (right)

model, yet performance of boostmtree under an exchangeable model is better for Experiment
I and II, whereas results are comparable for Experiment III (compare columns (D) to columns
(A)). We conclude that boostmtree using an estimated working correlation matrix exhibits
good robustness to correlation.

5.5 In sample CV removes the rebound effect

In Sect. 4.4,weprovided a theoretical explanation of the rebound effect for the correlation, and
described how this could be corrected using the in sample CV predictor. In this Section, we
provide empirical evidence demonstrating the effectiveness of this correction. For illustration,
we used the 3 simulation experiments under experimental setting (A) with n = 100. The
same boosting settings were used as before, except that we set M = 2000 and estimated ρ

from (11) with and without the in sample CV method. Simulations were repeated 100 times
independently. The average estimate of ρ is plotted against the boosting iterationm in Fig. 1.

Asdescribed earlier, among the 3 experiments, experiment I is the simplest, and experiment
III is the most difficult. In all 3 experiments, the true value of ρ is 0.8. In experiment I, the
estimate of ρ obtained using μ̃

(i,m)
i quickly reaches the true value, and remains close to this

value throughout the entire boosting procedure,whereas the estimate ofρ obtained usingμ
(m)
i

reaches the true value, but then starts to decline. This shows that the in sample CV method
is able to eliminate the rebound effect. The rebound effect is also eliminated in experiments
II and III using in sample CV, although now the estimated ρ does not reach the true value.
This is less a problem in experiment II than III. This shows that estimating ρ becomes more
difficult when the underlying model becomes more complex.

5.6 Accuracy of the in sample CV method

In this Section, we study the bias incurred in estimating Mopt and in estimating prediction
error using the in sample CVmethod. Once again, we use the 3 simulation experiments under
experimental setting (A). In order to study bias as a function of n, we use n = {100, 300, 500}.
The specifications for implementing boostmtree are the same as before, but with M = 2000.
The results are repeated using 100 independent datasets and 100 independent test data sets
of size n′ = 500. The results for Mopt are provided in Fig. 2. What we find are that the in
sample CV estimates of Mopt are biased towards larger values, however bias shrinks towards
zero with increasing n. We also observe that the in sample CV estimate is doing particularly
well in experiment III.

123

Author's personal copy

Mach Learn

n = 100 n = 300 n = 500

-1
50

0
-1

00
0

-5
00

0
50

0
10

00
15

00

n = 100 n = 300 n = 500-1
50

0
-1

00
0

-5
00

0
50

0
10

00
15

00

n = 100 n = 300 n = 500

-1
50

0
-1

00
0

-5
00

0
50

0
10

00
15

00

Fig. 2 Difference in the estimate of Mopt obtained using in sample CV to that obtained using test set data as
a function of n. The left, middle and right plots are experiments I, II and III, respectively. In each case, we use
100 independent replicates

0 500 1000 1500 2000

-0
.0

30
-0

.0
25

-0
.0

20
-0

.0
15

-0
.0

10
-0

.0
05

0.
00

0

m
0 500 1000 1500 2000

-0
.0

30
-0

.0
25

-0
.0

20
-0

.0
15

-0
.0

10
-0

.0
05

0.
00

0

m
0 500 1000 1500 2000

-0
.0

30
-0

.0
25

-0
.0

20
-0

.0
15

-0
.0

10
-0

.0
05

0.
00

0

m

Fig. 3 Difference in the estimate of sRMSE obtained using in sample CV to that obtained using test set data.
The solid line corresponds to n = 100, the dashed line corresponds to n = 300, and the dotted line corresponds
to n = 500. The left, middle and right plots are experiments I, II and III, respectively. Values are averaged
over 100 independent replicates

Results summarizing the accuracy in estimating prediction error are provided in Fig. 3.
The vertical axis displays the difference in standardized RMSE estimated using C̃V

(m)
/σ̂Y

from the in sample CV method and using (20) by direct test set calculation. This shows an
optimistic bias effect for the in sample CV method, which is to be expected, however bias is
relatively small and diminishes rapidly as n increases. To better visualize the size of this bias,
consider Fig. 4 (n = 500 for all three experiments). This shows that in sample CV estimates
are generally close to those obtained using a true test set.

5.7 Feature selection

We used permutation variable importance (VIMP) for feature selection. In this method, let
X = [

x(1), . . . , x(p)
]
n′×p represent the test data where x(k) = (x1,k, . . . , xn′,k)T records all

123

Author's personal copy

Mach Learn

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m

Fig. 4 Estimated sRMSE obtained using in sample CV (solid line) and obtained using test set data (dotted
line) for n = 500. The left,middle and right plots are experiments I, II and III, respectively. Values are averaged
over 100 independent replicates

test set values for the kth feature, k = 1, 2, . . . , p. At each iteration m = 1, . . . , M , the
test data X is run down the mth tree (grown previously using training data). The resulting
node membership is used to determine the estimate of βββ for the mth iteration, denoted
by β̂ββ

(m)
. Let x∗

(k) = (
x j1,k, . . . , x jn′ ,k

)T represent the kth feature after being “noised-up”
by randomly permuting the coordinates of the original x(k). Using x∗

(k), a new test data
Xk = [x(1), . . . , x(k−1), x∗

(k), x(k+1), . . . , x(p)] is formed by replacing x(k) with the noised up
x∗
(k). The new test data Xk is run down the mth tree and from the resulting node membership

used to estimate βββ, which we call β̂ββ
(m)

k . The first coordinate of β̂ββ
(m)

k reflects the contribution
of noising up the main effect β0(x), while the remaining d coordinates reflect noising up
the feature-time interactions

∑d
l=1 bl(t)βl(x). Comparing the performance of the predictor

obtained using β̂ββ
(m)

k to that obtained using the non-noised up β̂ββ
(m)

yields an estimate of the
overall importance of the feature k.

However, in order to isolate whether feature k is influential for the main effect alone,
removing any potential effect on time it might have, we define a modified noised up estimator
β̂ββ

(m)

k,1 as follows. The first coordinate of β̂ββ
(m)

k,1 is set to the first coordinate of β̂ββ
(m)

k , while the

remaining d coordinates are set to the corresponding coordinates of β̂ββ
(m)

. By doing so, any
effect that β̂ββ

(m)

k,1 may have is isolated to a main effect only. Denote the test set predictor

obtained from β̂ββ
(m)

k,1 and β̂ββ
(m)

by μ̂(m)
k,1 and μ̂(m). The difference between the test set RMSE

for μ̂(m)
k,1 and μ̂(m) is defined as the VIMP main effect for feature k.

In a likewise fashion, a noised up estimator β̂ββ
(m)

k,2 measuring noising up for feature-time

interactions (but not main effects) is defined analogously. The first coordinate of β̂ββ
(m)

k,2 is set

to the first coordinate of β̂ββ
(m)

and the remaining d coordinates to the corresponding values of
β̂ββ

(m)

k . The difference between test set RMSE for μ̂(m)
k,2 and μ̂(m) equals VIMP for the feature-

time effect for feature k. Finally, to assess an overall effect of time, we randomly permute the
rows of the matrix {Di }n1. The resulting predictor μ̂(m)

t is compared with μ̂(m) to determine
an overall VIMP time effect.

To assess boostmtree’s ability to select variables we re-ran our previous experiments under
setting (C) with n = 100 and q = 10, 25, 100. Recall q denotes the number of non-outcome
related variables (i.e. zero signal variables). Thus increasing q increases dimension but keeps

123

Author's personal copy

Mach Learn

Table 3 Standardized VIMP averaged over 100 independent replications for variables x∗(1), . . . , x∗(4), non-
outcome related variables {x∗∗(l)}q1 (values averaged over l = 1, . . . , q and denoted by noise), and time.
VIMP is separated into main effects of feature, time, and feature-time interaction effects

EXPT VIMP effect for features VIMP interaction effect for
features and time

VIMP effect
for time

1 2 3 4 Noise 1 2 3 4 Noise

No of noise variables q = 10

I 107 −0.3 10 0.4 −0.3 0.4 3 0.2 0.1 0 29

II 91 0.3 8 0.3 0 1 90 0.6 0 0.1 312

III 44 5 16 0.7 0.1 −0.3 136 97 −0.1 0 446

No of noise variables q = 25

I 94 −0.1 7 0.4 −0.1 0.2 2 0.2 0.1 0 25

II 80 0.8 5 0.4 0 0.7 82 0.1 0.2 0.1 284

III 38 5 11 0.6 0.1 2 120 83 0 0 399

No of noise variables q = 100

I 53 −0.2 2 0 0 0 0.9 0 0 0 16

II 42 2 1 0.1 0 0.8 54 0 0 0 202

III 16 3 11 0.1 0 0.1 76 51 0 0 288

signal strength fixed. We divided all VIMP values by the RMSE for μ̂(m) and then multiplied
by 100. We refer to this as standardized VIMP. This value estimates importance relative to
the model: large positive values identify important effects. Standardized VIMP was recorded
for each simulation. Simulations were repeated 100 times independently and VIMP values
averaged.

Table 3 records standardized VIMP for main effects and feature-time effects for variables
x∗(1), . . . , x∗(4). Standardized VIMP for non-outcome related variables {x∗∗(l)}q1 were aver-
aged and appear under the column entry “noise”. Table 3 shows that VIMP for noise variables
are near zero, even for q = 100. VIMP for signal variables in contrast are generally positive.
Although VIMP for x∗(4) is relatively small, especially in high-dimension q = 100, this is
not unexpected as the variable contributes very little signal. Delineation of main effect and
time-interactions is excellent. Main effects for x∗(1) and x∗(3) are generally well identified.
The feature-time interaction of x∗(2) is correctly identified in experiments II and III, which
is impressive given that x∗(2) has a time-interaction but no main effect. The interaction is not
as well identified in experiment I. This is because in experiment I, the interaction is linear
and less discernible than experiments II and III, where the effect is quadratic. Finally, the
time-interaction of x∗(3) in experiment III is readily identified even when q = 100.

6 Postoperative spirometry after lung transplantation

Forced 1-second expiratory volume (FEV1) is an important clinical outcome used to monitor
health of patients after lung transplantation (LTX). FEV1 is known (and expected) to decline
after transplantation, with rate depending strongly on patient characteristics; however, the
relationship of FEV1 to patient variables is not fully understood. In particular, the benefit of
double versus single lung transplant (DLTX versus SLTX) is debated, particularly because
pulmonary function is only slightly better after DLTX.

123

Author's personal copy

Mach Learn

Table 4 Variable names from
spirometry analysis Height Height of patient

Weight Weight of patient

FEVPN_PR Forced expiratory volume in 1 s, normalized,
Pre-transplantation

Age Age at transplant

Female Female patient

BSA Body surface area

BMI Body Mass Index

RaceW White race

RaceB Black race

ABO variables Blood types A, B, AB, and O

TRACH_PR Pre-transplant tracheostomy

EISE Eisenmenger disease

PPH Primary pulmonary hypertension

IPF Idiopathic pulmonary fibrosis

SARC Sarcoidosis

ALPH Alpha-antitrypsin disease

COPD Chronic obstructive pulmonary disease

DLTX Double lung transplantation

Left Left lung transplant

Right Right lung transplant

Using FEV1 longitudinal data collected at the Cleveland Clinic (Mason et al. 2012), we
sought to determine clinical features predictive of FEV1 and to explore the effect ofDLTXand
SLTX on FEV1 allowing for potential time interactions with patient characteristics. In total,
9471 FEV1 evaluations were available from 509 patients who underwent lung transplantation
from the period 1990 through 2008 (median follow up for all patients was 2.30 years). On
average, there were over 18 FEV1 measurements per patient; 46% of patients received
two lungs, and for patients receiving single lungs, 49% (nearly half) received left lungs. In
addition to LTX surgery status, 18 additional patient clinical variables were available. Table 4
provides definitions of the variables used in the analysis. Table 5 describes summary statistics
for patients, stratified by lung transplant status.

As before, calculations were implemented using the boostmtree R-package. An
exchangeable working correlation matrix was used for the boostmtree analysis. Adaptive
penalization was applied using cubic B-splines with 15 equally spaced knots under a dif-
ferencing penalization operator of order s = 3. Number of boosting iterations was set to
M = 1000 with in sample CV used to determine Mopt. Multivariate trees were grown to
a depth of K = 5 terminal nodes and ν = .01. Other parameter settings were informally
investigated but without noticeable difference in results. The data was randomly split into
training and testing sets using an 80/20 split. The test data set was used to calculate VIMP.

Figure 5 displays predicted FEV1values against time, stratified byLTXstatus (for compar-
ison, see Appendix 2 for predicted values obtained using the mboost procedures considered
in Sect. 5). Double lung recipients not only have higher FEV1 but values declinemore slowly,
thus demonstrating an advantage of the increased pulmonary reserve provided by double lung
transplant. Figure 6 displays the standardized VIMP for main effects and feature-time inter-
actions for all variables. The largest effect is seen for LTX surgery status, which accounts for

123

Author's personal copy

Mach Learn

Table 5 Summary statistics of patient variables for spirometry data

All patients Single transplant Double transplant
(n = 509) (n = 245) (n = 264)

Age 49.34 ± 12.90 57.22 ± 7.05 42.03 ± 12.80

Sex (F) 242 (48) 110 (45) 132 (50)

Height 167.78 ± 10.13 168.10 ± 9.75 167.47 ± 10.49

Weight 68.86 ± 17.23 70.77 ± 15.25 67.10 ± 18.73

BMI 24.33 ± 5.23 24.97 ± 4.63 23.75 ± 5.68

BSA 1.80 ± 0.27 1.83 ± 0.24 1.77 ± 0.29

FEVPN_PR 28.54 ± 15.38 27.21 ± 14.18 29.78 ± 16.34

RaceW 472 (93) 236 (96) 236 (89)

Blood Gr(A) 210 (41) 103 (42) 107 (41)

Blood Gr(AB) 18 (4) 9 (4) 9 (3)

Blood Gr(B) 61 (12) 22 (9) 39 (15)

TRACH_PR 1 (0) 0 (0) 1(0)

EISE 7 (1) 0 (0) 7 (3)

PPH 18 (4) 2 (1) 16 (6)

IPF 96 (9) 50 (20) 46 (17)

SARC 19 (4) 6 (2) 13 (5)

ALPH 34 (7) 23 (9) 11 (4)

COPD 202 (40) 148 (60) 54 (20)

Values in the table are mean ± standard deviation or n(%), where n denotes the sample size

0 1 2 3 4 5

40
45

50
55

60
65

70

Years

P
re

di
ct

ed
 F

E
V

1

Fig. 5 Predicted FEV1 versus time stratified by single lung SLTX (solid line) and double lung DLTX (dashed
line) status

nearly 10% of RMSE. Interestingly, this is predominately a time-interaction effect (that no
main effect was found for LTX is corroborated by Fig. 5 which shows FEV1 to be similar at
time zero between the two groups). In fact, many of the effects are time-interactions, includ-
ing a medium sized effect for age. Only FEVPN_PR (pre-transplantation FEV1) appears to
have a main effect, although the standardized VIMP is small.

The LTX and age time-interaction findings are interesting. In order to explore these rela-
tionships more closely we constructed partial plots of FEV1 versus age, stratified by LTX

123

Author's personal copy

Mach Learn

T
im

e−
In

te
ra

ct
io

ns

 M
ai

n
E

ffe
ct

s

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R

E
IS

E

P
P

H

IP
F S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft rig

ht

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R

E
IS

E

P
P

H

IP
F S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft rig

ht

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R

E
IS

E

P
P

H

IP
F S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft rig

ht

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e

fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R E
IS

E

P
P

H IP
F

S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft

rig
ht

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e

fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R E
IS

E

P
P

H IP
F

S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft

rig
ht

he
ig

ht

w
ei

gh
t

F
E

V
P

N
_P

R

ag
e

fe
m

al
e

B
S

A

B
M

I

ra
ce

W

ra
ce

B

A
B

O
_A

A
B

O
_A

B

A
B

O
_B

A
B

O
_O

T
R

A
C

H
_P

R E
IS

E

P
P

H IP
F

S
A

R
C

A
LP

H

C
O

P
D

D
LT

X

le
ft

rig
ht

10
5

0
5

V
ar

ia
bl

e
Im

po
rt

an
ce

 (
%

)

Fig. 6 Standardized variable importance (VIMP) for each feature from boostmtree analysis of spirometry
longitudinal data. Top values are main effects only; bottom values are time-feature interaction effects

10 20 30 40 50 60 70

40
50

60
70

Age

P
re

di
ct

ed
 F

E
V

1
(A

dj
us

te
d)

year 1

year 2

year 1

year 3

Fig. 7 Partial plot of FEV1 versus age stratified by single lung SLTX (solid lines) and double lung DLTX
(dashed lines) treatment status evaluated at years 1, . . . , 5

(Fig. 7). The vertical axis displays the adjusted partial predicted value of FEV1, adjusted for
all features (Friedman 2001). The relationship between FEV1 and age is highly dependent
on LTX status. DLTX patients have FEV1 responses which increase rapidly with age, until
about age 50 where the curves flatten out. Another striking feature is the time dependency of
curves. For DLTX, increase in FEV1 in age becomes sharper with increasing time, whereas
for SLTX, although an increase is also seen, it is far more muted.

The general increase in FEV1 with age is interesting. FEV1 is a measure of a patient’s
ability to forcefully breathe out and in healthy patients FEV1 is expected to decrease with
age. The explanation for the reverse effect seen here is due to the state of health of lung
transplant patients. In our cohort, older patients tend to be healthier than younger patients,
who largely suffer from incurable diseases such as cystic fibrosis, and who therefore produce
smaller FEV1 values. This latter group is also more likely to receive double lungs. Indeed,

123

Author's personal copy

Mach Learn

they likely make up the bulk of the young population in DLTX. This is interesting because
not only does it explain the reverse effect, but it also helps explain the rapid decrease in FEV1
observed over time for younger DLTX patients. It could be that over time the transplanted
lung is reacquiring the problems of the diseases in this subgroup. This finding appears new
and warrants further investigation in the literature.

7 Discussion

Trees are computationally efficient, robust, model free, highly adaptive procedures, and as
such are ideal base learners for boosting. While boosted trees have been used in a variety
of settings, a comprehensive framework for boosting multivariate trees in longitudinal data
settings has not been attempted. In this manuscript we described a novel multivariate tree
boosting method for fitting a semi-nonparametric marginal model. The boostmtree algorithm
utilizes P-splineswith estimated smoothing parameter andhas the novel feature that it enables
nonparametric modeling of features while simultaneously smoothing semi-nonparametric
feature-time interactions. Simulations demonstrated boostmtree’s ability to estimate complex
feature-time effects; its robustness to misspecification of correlation; and its effectiveness in
high dimensions. The applicability of the method to real world problems was demonstrated
using a longitudinal study of lung transplant patients. Without imposing model assumptions
we were able to identify an important clinical interaction between age, transplant status, and
time. Complex two-way feature-time interactions such as this are rarely found in practice
and yet we were able to discover ours with minimal effort through our procedure.

All boostmtree calculations in this paper were implemented using the boostmtree
R-package (Ishwaran et al. 2016) which is freely available on the Comprehensive R
Archive Network (https://cran.r-project.org). The boostmtree package relies on the
randomForestSRC R-package (Ishwaran and Kogalur 2016) for fitting multivariate
regression trees. Various options are available within randomForestSRC for customiz-
ing the tree growing process. In the future, we plan to incorporate some of these into the
boostmtree package. One example is non-deterministic splitting. It is well known that
trees are biased towards favoring splits on continuous features and factors with a large num-
bers of categorical levels (Loh and Shih 1997). To mitigate this bias, randomForestSRC
provides an option to select a maximum number of split-points used for splitting a node. The
splitting rule is applied to the random split points and the node is split on that feature and ran-
dom split point yielding the best value (as opposed to deterministic splittingwhere all possible
split points are considered). This mitigates tree splitting bias and reduces bias in downstream
inference such as feature selection. Other tree building procedures, also designed to mitigate
feature selection bias (Hothorn et al. 2006), may also be incorporated in future versions of the
boostmtree software. Another important extension to the model (and software) worthy
of future research will be the ability to handle time-dependent features. In this paper we
focused exclusively on time-independent features. One reason for proposing model (1) is
that it is difficult to deal with multiple time-dependent features using tree-based learners.
The problem of handling time-dependent features is a known difficult issue with binary trees
due to the non-uniqueness in assigning node membership—addressing this remains an open
problem for multivariate trees. None of this mitigates the usefulness of model (1), but merely
points to important and exciting areas for future research.

Acknowledgments This work was supported by the National Institutes of Health (R01CA16373 to H.I. and
U.B.K., RO1HL103552 to H.I., J.R., J.E., U.B.K. and E.H.B).

123

Author's personal copy

https://cran.r-project.org

Mach Learn

Appendix 1: Other comparison procedures

Section 5 used mboost as a comparison procedure to boostmtree. However because mboost
does not utilize a smoothing parameter over feature-time interactions, it is reasonable to won-
der how other boosting procedures using penalization would have performed. To study this,
we consider likelihood boosting for generalized additive models using P-splines (Groll and
Tutz 2012). For compuations we use the R-functionbGAMM from theGMMBoost package. In
order to evaluate performance of thebGAMM procedure,we consider the first experimental set-
ting (A) for each of the three experiments in Sect. 5. For models, we used all features for main
effects and P-splines for feature-time interactions. The bGAMM function requires specifying
a smoothing parameter. This value is optimized by repeated fitting of the function over a grid
of smoothing parameters and choosing that valueminimizing AIC.We used a grid of smooth-
ing parameters over [1, 1000] with increments of roughly 100 units. All experiments were
repeated over 20 independent datasets (due to the length of time taken to apply bGAMM we
used a smaller number of replicates than in Sect. 5). The results are recorded in Fig. 8.We find
bGAMM doeswell in Experiment I as it is correctly specified here by involving only linearmain
effects and a linear feature-time interaction. But in Experiments II and III, which involve non-
linear terms and more complex interactions, performance of bGAMM is substantially worse
than boostmtree (this is especially true for Experiment III which is the most complex model).

Next we consider RE-EM trees (Sela and Simonoff 2012), which apply to longitudinal
and cluster unbalanced data and time varying features. Let {yi, j , xi, j }ni1 denote repeated
measurements for subject i . RE-EM trees fit a normal random effects model, yi, j = zTi, jβββ i +
f (xi, j) + εi, j , for j = 1, 2, . . . , ni , where zi, j are features corresponding to the random
effect βββ i . RE-EM uses a two-step fitting procedure. At each iteration, the method alternates
between: (a) fitting a tree using the residual yi, j − zTi, jβ̂ββ i as the response and xi, j as features;
and (b) fitting a mixed effect model upon substituting the tree estimated value for f (xi, j).
We compare test set performance of RE-EM trees to boostmtree using experimental setting
(A) of Sect. 5. RE-EM trees was implemented using the R-package REEMtree. Figure 9
displays the results and shows clear superiority of boostmtree.

Appendix 2: Comparing predicted FEV1 using boostmtree and mboost

Section 6 presented an analysis of the spirometry data using boostmtree. Figure 5 plotted the
predicted FEV1 against time (stratified by single/double lung transplant status), where the
predicted value for FEV1 was obtained using boostmtree. In Fig. 10 below, we compare the

MMAGbMMAGbMMAGb

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

S
td

. R
M

S
E

eertmtsoobeertmtsoobeertmtsoob

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Experiment I

Experiment II

Experiment III

Fig. 8 Test set performance of bGAMM versus boostmtree using 20 independent datasets

123

Author's personal copy

Mach Learn

Fig. 9 Test set performance of RE-EM trees versus boostmtree using 100 independent datasets

0 1 2 3 4 5

40
50

60
70

80

Years

P
re

di
ct

ed
 F

E
V

1

0 1 2 3 4 5

40
50

60
70

80

Years

P
re

di
ct

ed
 F

E
V

1

0 1 2 3 4 5

40
50

60
70

80

Years

P
re

di
ct

ed
 F

E
V

1

Fig. 10 Predicted FEV1 versus time stratified by single lung SLTX (solid line) and double lung DLTX
(dashed line) status. Thin lines displayed in each of three plots are boostmtree predicted values. Thick lines
are: mboosttr+bs (left), mboosttr (middle), and mboostbs (right)

boostmtree predicted FEV1 to the three mboost models considered earlier in Sect. 5. Settings
for mboost were the same as considered in Sect. 5, with the exception that the total number
of boosting iterations was set to M = 1000. Figure 10 shows that the overall trajectory of
predicted FEV1 is similar among all procedures. However compared to boostmtree, mboost
models underestimate predicted FEV1 for single lung transplant patients, and overestimate
FEV1 for double lung transplant patients. It is also interesting that mboosttr+bs and mboosttr
are substantially less smooth than mboostbs.

123

Author's personal copy

Mach Learn

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.
California: Belmont.

De Boor, C. (1978). A practical guide to splines. Berlin: Springer.
Diggle, P., Heagerty, P., Liang, K.-Y., & Zeger, S. (2002). Analysis of longitudinal data. Oxford: Oxford

University Press.
Duchon, J. (1977). Splinesminimizing rotation-invariant semi-norms in Sobolev spaces. InConstructive theory

of functions of several variables (pp. 85–100). Berlin Heidelberg: Springer.
Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science,

11(2), 89–102.
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the 13th

international conference on machine learning (pp. 148–156).
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics,

29, 1189–1232.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–

378.
Groll, A., & Tutz, G. (2012). Regularization for generalized additive mixed models by likelihood-based

boosting. Methods of Information in Medicine, 51(2), 168.
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (Vol. 43). Boca raton: CRC Press.
Hoover,D.R., Rice, J.A.,Wu,C.O.,&Yang, L.-P. (1998).Nonparametric smoothing estimates of time-varying

coefficient models with longitudinal data. Biometrika, 85(4), 809–822.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference frame-

work. Journal of Computational and Graphical statistics, 15, 651–674.
Hothorn, T., Buhlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2010). Model-based boosting 2.0. Journal

of Machine Learning Research, 11, 2109–2113.
Hothorn, T., Buhlmann, P., Kneib, T., Schmid, M., Hofner, B., Sobotka, A., & Scheipl, F. (2016). mboost:

Model-based boosting, 2016. R package version 2.6-0.
Ishwaran, H., & Kogalur, U. B. (2016). Random forests forsurvival, regression and classification (RF-SRC),

2016. R packageversion 2.2.0.
Ishwaran, H., Pande, A., &Kogalur, U. B. (2016).Boostmtree: Boostedmultivariate trees for longitudinaldata,

2016. R package version 1.1.0.
Loh,W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815–840.
Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on

Signal Processing, 41, 3397–3415.
Mason, D. P., Rajeswaran, J., Liang, L., Murthy, S. C., Su, J. W., Pettersson, G. B., et al. (2012). Effect of

changes in postoperative spirometry on survival after lung transplantation. The Journal of Thoracic and
Cardiovascular Surgery, 144(1), 197–203.

Mayr, A., Hothorn, T., & Fenske, N. (2012). Prediction intervals for future BMI values of individual children-a
non-parametric approach by quantile boosting. BMC Medical Research Methodology, 12(1), 6.

Mayr, A., Hofner, B., & Schmid, M. (2012). The importance of knowing when to stop: A sequential stopping
rule for component-wise gradient boosting. Methods of Information in Medicine, 51, 178–186.

Pan, W. (2001). Akaike’s information criteria in generalized estimating equations. Biometrika, 57, 120–125.
Pinheiro, J. C., & Bates, D. M. (2000).Mixed-effects models in S and S-PLUS. Berlin: Springer.
Pinheiro, J.C., Bates, D.M., DebRoy, S., Sarkar, D., & RCore Team. (2014).nlme: Linear and nonlinear mixed

effects models. Rpackage version 3.1-117.
Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science,

6(1), 15–32.
Ruppert, D.,Wand,M. P.,&Carroll, R. J. (2003). Semiparametric regression. (Vol. 12). Cambridge:Cambridge

University Press.
Sela, R. J., & Simonoff, J. S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered

data. Machine Learning, 86, 169–207.
Tutz, G., & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-

based boosting. Biometrics, 62(4), 961–971.
Tutz, G., & Reithinger, F. (2007). A boosting approach to flexible semiparametric mixed models. Statistics in

Medicine, 26(14), 2872–2900.
Wahba, G. (1990). Spline models for observational data (Vol. 59). Bangkok: SIAM.

123

Author's personal copy

