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opment. Other protocol-specified prospective data collection programs 
address similar questions. 

Examples of new or emerging treatments worthy of such review are easy 
to identify. They include accelerated partial breast irradiation to accompany 
lumpectomy in the treatment of localized breast cancer, bevacizumab to 
treat age-related wet macular degeneration, endovascular repair of thoracic 
aortic aneurysm, intracerebral stenting for the prevention of stroke, endo-
bronchial values as an alternative to lung volume reduction surgery to treat 
emphysema, bronchial thermoplasty to treat moderate-to-severe asthma, 
and injectable bulking agents to treat vesicoureteral reflux in children. 

Final Comments

Given the amount spent on health care in the United States, consumers 
of health services, professionals who provide those services, and purchas-
ers who pay for them are entitled to know what works and what does not. 
They are entitled to know which health services are definitely beneficial, 
which are likely to be beneficial, which have insufficient evidence support-
ing their use to know if they are beneficial, and which services in common 
use today are known to be of no benefit or, worse, that are actively harmful. 
Persons making choices on which treatments to use should understand the 
range of treatments available to them, including advantages, harms, and 
alternatives. However, despite the plethora of information available today, 
such a “single source of truth” does not exist. The foregoing comments 
represent one attempt at defining the knowledge synthesis necessary to 
answer these vital questions.

METHODS THAT NEED TO BE DEVELOPED

Eugene H. Blackstone, M.D., Douglas B. Lenat, Ph.D., and 
Hemant Ishwaran, Ph.D. 

Cleveland Clinic

Overview

RCTs and their meta-analyses are generally agreed to provide the 
highest-level evidence for comparative clinical effectiveness of clinical inter-
ventions and care. However, today cost and complexity impede nimble, 
simple, inexpensive designs to test the numerous therapies for which a 
randomized trial is well justified. Further, it is impossible, unethical, and 
prohibitively expensive to randomize “everything.”

To fill this gap, balancing-score methods coupled with rigorous study 
design can approximate randomized trials. They are less controlled but 
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use real-world observational clinical data. They may provide the only way 
to test therapies when it is impossible to conceive of or conduct RCTs. 
Although a number of their important features remain to be understood 
and refined, they are comparatively inexpensive and use readily available 
electronically stored data. Interestingly, although the intent of EBM is to 
reduce practice variance, this methodology draws its power from hetero-
geneity of care.

Unfortunately, a longitudinal birth-to-death patient-centric health 
record, populated largely with discrete values for variables that would be 
useful for both streamlined randomized and balancing-score-based clini-
cal trials, has not been brought to fruition. Instead, clinical information 
remains locked in narrative, mostly within segregated institutional silos. 
But a new methodology is emerging both to elegantly link these silos and 
to provide a population-centric view of clinical data for analysis: semantic 
representation of data. Meaning is emphasized rather than lexical syntax. 
This has the promise of transforming EBM into information-based medi-
cine. Its elements include storage of patient data as nodes and arcs of graphs 
that can seamlessly link disparate types of data across medical silos, from 
genomics to outcomes, and, in theory, across venues of care to create a 
virtual longitudinal health record, to say nothing of the completely longi-
tudinal personal health record. What is required are (1) a rich ontology of 
medicine, the taxonomy component of which is enough to enable semantic 
searching, and the formal knowledge base component, which is enough to 
permit—even today—natural language query of complex patient data (that 
is, separating logical understanding of query from the need to understand 
underlying data schemata); (2) a worldwide effort to assemble this ontology 
and the assertions that make it useful; and (3) intelligent agents to assist 
discovery of unsuspected relationships and unintended adverse (or surpris-
ingly beneficial) outcomes. 

But if such clinically rich data were available, especially a massive 
amount, could they be put to effective use? Computer-learning methods 
such as bootstrap aggregation (bagging), boosting, and random forests are 
algorithmic, as opposed to the traditional model-based methods that are 
computationally fast and can reveal complex patterns in patient genomic 
and phenotypic data. These methods refocus attention from “goodness of 
fit” to a given set of data to prediction error for new data. Methods like 
this are needed to propel the country yet another step toward personalized 
medicine. 

Thus the results of trials, approximate trials, and automated discovery 
need to be transformed from static publications to dynamic, patient-specific 
medical decision support tools (simulation). Although such methodologies 
are widely used for institutional assessment and ranking, they need to lead 
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to clinically rich, easily used, real-time tools that integrate seamlessly with 
the computer-based patient record. 

This article highlights five foundational methodologies that need 
to be refined or further developed to provide an infrastructure to learn 
which therapy is best for which patient. They are representative of those 
needed for progression from current siloed EBM to semantically integrated 
information-based medicine and on to predictive personalized medicine. 
The five methodologies can be grouped into three categories: 

1. Evidence-based
 • Reengineering RCTs
 • Approximate RCTs 
2. Information-based
 •  Semantically interpreting, querying, and exploring disparate 

clinical data
 • Computer learning methods 
3. Personalized
 • Patient-specific strategic decision support

Reengineering Randomized Controlled Trials

Following intense preliminary work, several cardiac surgical centers 
began designing a randomized trial to answer a simple question: Is sur-
gical ablation of nonparoxysmal atrial fibrillation accompanying mitral 
valve disease effective at preventing the return of the arrhythmia? It took 
a short time—weeks—to design this study, but then it had to be vetted 
through committees, review boards, and the FDA, leading to multiple revi-
sions, additions, and mounting complexity. The case report form became 
extensive and required considerable human abstraction of information 
from clinical records to complete. Two core laboratories were needed and 
competitively bid. After more than 2 years, the trial was launched. From 
inception to completion, the trial is likely to take 5 years at a minimum. 
The cost of what was intended to be a simple, easily deployed trial will be 
about $2 million; large multi-institutional, multinational trials may cost 
upwards of 10 times this figure.

Designing and executing RCTs like this has become one of the most 
demanding of human feats. It may not compare with climbing Mt. Everest, 
but it is close. A major reason to climb this mountain is that RCTs remain 
the gold standard for EBM. They are purpose designed, have endured ethi-
cal scrutiny, ensure concurrent treatment, capture highest-quality data, and 
have adjudicated end points. Their data meet the statistical assumptions of 
the methods used to analyze them. 
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Yet, like the trek up Everest, the design and conduct of an RCT is 
filled with pitfalls that need to be bridged. The following six areas are 
among those that must be addressed if RCTs are to achieve the kind of cost 
effectiveness that evidence-based medical practice requires in the future: 
complexity, data capture, generalizability, equipoise, appropriateness, and 
funding. 

Complexity

A deep pitfall of the current practice of RCTs is what John Kirklin, pio-
neer heart surgeon, called “the Christmas Tree Effect”: ornamenting trials 
with unnecessary variables rather than keeping them elegantly simple and 
focused. Every additional variable increases the cost and difficulty of the 
trials, which reduces available resources, limiting the number of trials that 
can be performed. Nonessential complexity constructs a barrier to progress 
when instead a bridge is needed. In reengineering RCTs, data collection 
should be focused on the small number of variables that directly answer the 
question posed. A series of elegant, scientifically sound, clinically relevant, 
simple, focused trials will provide more answers more quickly than bloated 
multimillion-dollar trials that are justified as providing enormous riches of 
high-quality data for later (observational) data exploration. 

Second, rapid development of simple pilot trials on clinically impor-
tant questions should be encouraged, to be followed with simple, definitive 
trials. The National Heart, Lung, and Blood Institute has put into place a 
number of disease- and discipline-specific networks of centers devoted to 
simple RCTs. This is an important step forward. Two observations: (1) The 
trials being designed are simple only in the number of patients enrolled, 
not in design; funding would be better spent on highly focused, extremely 
simple RCTs. (2) There is no plan for funding pivotal trials based on clinical 
outcomes rather than surrogate and composite end points that stem from 
these pilot trials (Fleming and DeMets, 1996). Perhaps the focus should, 
therefore, shift to funding a mix of simple, inexpensive pilot trials and 
simple but definitive trials. 

Third, adding administrative and bureaucratic complexity to many 
RCTs is needed for investigational device exemptions and new drug exemp-
tions from the FDA. This introduces considerable delay by an organization 
that should itself promote efficient study designs focused on safety and 
efficacy. The heterogeneity of institutional review board requirements adds 
further administrative burden.

Fourth, to “survive,” design and conduct of RCTs has become a “busi-
ness” that is increasingly specialized and complex and distanced from the 
practice of medicine. Physicians with good questions believe they cannot 
attempt to scale the mountain. It was not always this way, and patient 
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recruitment suffers from it because patients’ personal physicians are often 
no longer advocates for clinical trials. Again, simplification is key to bridg-
ing this chasm. 

All four of these complexities argue for applying a kind of symbolic 
sensitivity analysis when an RCT is designed, eliminating variables that are 
more decorative than functional.

Data Capture 

RCT technology as practiced today makes little use of discrete data 
elements acquired as part of clinical practice. Available computer-based 
clinical data could and should be used for patient screening, recruiting, and 
data gathering. With electronic patient records composed of “values for 
variables” (discrete data elements), one could electronically identify patients 
meeting eligibility criteria for trials, generating alerts so that healthcare pro-
viders could be on the front line of informing patients about a trial germane 
to their treatment. Insofar as possible, patient data, including end points, 
should be retrieved directly from the electronic patient record. Instead, 
study coordinators today laboriously fill out case report forms, translating 
from medical records. Reducing the data-gathering burden would not only 
reduce complexity and cost but also bring trials more into the sometimes 
messy reality of clinical practice—the very environment for which infer-
ences about clinical effectiveness from the trial are to be made. Admittedly, 
redundant data abstraction, end point adjudication, and core laboratories 
all contribute to incrementally improving the quality of trial data, but it 
is questionable whether the improvements justify the accompanying costs, 
their impeding the climb, and permitting more climbs. 

Generalizability

RCTs often focus on patient subgroups (usually the lowest-risk patients, 
ostensibly to reduce potential confounding and for which equipoise is 
unquestioned, rather than the spectrum of disease observed in the commu-
nity (Beck et al., 2004). Yet results of these restrictive trials typically are 
extrapolated to the entire spectrum, a practice that may be treacherous no 
matter what the trial shows. One of the first large, costly trials sponsored by 
the NIH was the Coronary Artery Surgery Study of the late 1970s and early 
1980s (NHLBI, 1981). About 25,000 patients were entered into a registry 
of patients with coronary artery disease, but only 780 were randomized 
(Blackstone, 2006). Yet treatment inferences from the study were applied 
to a broad spectrum of patients with coronary artery disease (Braunwald, 
1983). Although it can be argued that pilot studies should be conducted 
in the patient subgroups most likely to demonstrate a treatment difference 
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(so-called enriched trials), these studies should be used to aid developing 
inclusive trials of adequate power. Just as the data acquired from clini-
cal practice is often taken too lightly today, the data acquired from these 
restricted RCTs is often taken too seriously, when in truth both of these 
turn out in hindsight to be no more—and no less—than valuable heuristics 
(Ioannidis, 2005).

Equipoise 

Among physicians’ areas of expertise and responsibility is the task of 
selecting the right treatment for the right patient at the right time. Surgeons 
call this “indications for operation.” This is the antithesis of equipoise. 
Thus, a number of important trials have been stopped or considerably 
protracted for lack of enrollment. Across time periods, nationalities, and 
schools of thought, each physician will follow his or her own generally 
consistent but somewhat idiosyncratic set of rules for deciding appropri-
ate treatment. Thus, whenever one examines clinical practice, considerable 
variance is seen. This gives hope that equipoise on important medical dilem-
mas might be found at times. However, it also suggests the possibility of 
capitalizing on practice heterogeneity to conduct studies that approximate 
RCTs, as described later in this text, rather than seeking artificial, unnatural 
equipoise.

Appropriateness

Most investigators developing RCTs concentrate on efficacy. Studies 
are powered for anticipated (often overly optimistic) efficacy, but rarely 
focus on short- or long-term safety. This is even true of trials conducted 
for FDA approval. Indeed, for cardiovascular devices, the track record of 
mandated FDA safety surveillance is dismal. It usually involves a small 
cohort of patients for whom there is little power to detect increased occur-
rence of adverse events, and it generally employs a follow-up time too short 
to detect untoward effects of long-term device implantation. Rare adverse 
effects caused by long-term exposure to devices (or pharmaceuticals) may 
go undetected for a long time, but when they are finally detected they 
incite public anger, recalls, and withdrawals of effective drugs and devices 
(Nissen, 2006). This reaction might be avoided if a proper surveillance 
program were in place with impartial analysis of data, possibly assisted by 
the computer learning technology discussed later in this paper. The factual 
reporting of findings and a measured response could convince industry, the 
public, regulators, and even skeptics that the process is transparent and 
timely (Blackstone, 2005).

Are all the clinical trials that are being performed actually necessary? 
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Just because a trial can be mounted is no reason to initiate inappropriate 
trials. At the end of the appropriateness scale is the proverbial parachute 
trial. Not only will there not be a randomized trial of efficacy of parachutes, 
there is no compelling reason to do such a trial; magnitude of the effect is 
too large and logically obvious, although we concede that logic can trip us 
up. Many trials are expected at the outset to show no difference in efficacy, 
and yet futile trials are done, often because a regulatory body has required 
it. Many equivalency, nonsuperiority, and noninferiority trials could be 
replaced by objective performance criteria and an intense surveillance pro-
gram (Grunkemeier et al., 2006).

Funding

Typically, the costs of new pharmaceutical and device trials are borne 
by industry sponsors, with their attendant actual and potential conflicts of 
interest. Relative to this, only a small number of trials are sponsored by 
the NIH. Yet in an evidence-based medical system, the obvious benefactors 
are health insurers, and to a lesser extent the pharmaceutical and device 
manufacturers. Shouldn’t insurers be interested in sponsoring clinically rel-
evant RCTs, including making data available from the trials to the scientific 
community or at least bearing the patient costs of RCTs? 

Approximate Randomized Clinical Trials

What effect does chronic exposure to urban pollution have on the risk 
of developing pulmonary disease or cancer? What is the effect of socioeco-
nomic status on response to therapy? What is the effect on long-term out-
comes of complete versus incomplete coronary revascularization? What is 
the effect of chronic atrial fibrillation on stroke? Can severe aortic stenosis 
be managed medically rather than surgically? Is the radial artery a good 
substitute for the right internal thoracic artery for bypass of the circumflex 
coronary system? These are but a few questions for which an evidence basis 
is needed. Some may be answerable with cluster randomized trials (Donner 
and Klar, 2000). Others require epidemiologic studies, and none seem read-
ily amenable to randomized trials. It is not possible to randomize gender, 
disease states, environmental conditions, choice of ancestry, or healthcare 
organizations in local communities. It would be unethical to randomize 
patients to placebo or to incomplete or sham surgery when at least knowl-
edge at the present time, if not solid data, indicates that to do so is unsafe. 
Thus, there is no knowledge in the modern era about the untreated natural 
history of certain diseases, such as critical aortic stenosis, hypoplastic left 
heart syndrome, transposition of the great arteries, untreated renal failure, 
unset fractures, untreated acute appendicitis, or jumping out of an airplane 
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without a parachute. Yet clinical decisions are made on incomplete evidence 
or flawed logic every day. Is it possible to do better than guessing? Is there 
an alternative to “randomizing everything?” 

When literature comparing nonrandomized treatment groups is scru-
tinized, the natural response is to think, “They are comparing apples and 
oranges” (Blackstone, 2002). This is because in real-life clinical practice 
there remains wide variance in practice (that is, selection bias), and this 
results in noncomparable groups. If it is impossible to randomize patients 
or impractical or unethical, or if it can be demonstrated that one cannot 
draw a clean, causal inference even from a randomized trial (such as a 
trial that inextricably confounds treatment with the skill of the person 
implementing the treatment), is there a way to exploit the heterogeneity 
of clinical practice to make better comparisons that are closer to apples to 
apples? Basically, the goal would be to discover within the heterogeneity of 
practice the elements of selection bias and account for these to approximate 
a randomized trial.

A quarter century ago, Rosenbaum and Rubin (1983) introduced the 
improbable notion that observational data can be thought of as a broken 
randomized trial (Rubin, 2007), with an unknown key to the treatment 
allocation process. They proposed that the propensity of a patient to receive 
treatment A versus B be estimated statistically (for example, by logistic 
regression) to find that key. In its simplest form, a quantitative estimate of 
propensity for one versus the other treatment is calculated for each patient 
(propensity score) from the resulting statistical analysis and used for apples-
to-apples comparisons (Blackstone, 2002; Gum et al., 2001; Sabik et al., 
2002). 

How does a single number, the propensity score, seemingly magically 
achieve a balance of patient characteristics that makes it appear as if an 
RCT had been performed (for that is exactly—and surprisingly—what it 
does)? It does so by matching patients with similar propensity to receive 
treatment A. A given pair of propensity-matched patients may have quite 
dissimilar characteristics but similar propensity scores. A set of such pairs, 
however, is well matched (Figure 2-3). What distinguishes these patients 
from those in an RCT is that at one end of the spectrum of propensity 
scores, only a few who actually received treatment A match those who 
actually received treatment B, and at the other end of the spectrum, only a 
few patients who actually received treatment B match those who received 
treatment A. Thus, balance in patient characteristics is achieved by unbal-
ancing n along the spectrum of propensity scores (Figure 2-4). The generic 
idea is called balancing score technology, which can be extended from two 
treatments to multiple treatments, or even to balance continuous variables, 
such as socioeconomic status or age (Rosenbaum and Rubin, 1983).

Unlike an RCT in which the allocation mechanism (randomization) 
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is known explicitly and equally distributes both known and unknown 
factors, propensity score methods can at best account for only those selec-
tion factors that have been measured and recorded, not for those that 
are unknown. Thus claims of causality, which are strong with RCTs, are 
weaker with propensity-based methods. This considerable disadvantage 
is, however, offset in a number of ways: (1) innumerable treatments can 
be studied at low cost based on heterogeneity of practice and availability 
of clinically rich data and (2) treatments or characteristics that cannot 
be randomized (e.g., gender, place of birth, treating facility, presence of 

2-3 fixed image

FIGURE 2-3 Comparison of patient characteristics before mitral valve repair (black 
bars) or replacement (unshaded bars). Unadjusted values are depicted in A and 
propensity-matched patients in B.
NOTE: COPD = chronic obstructive pulmonary disease; LVEF = left ventricular 
ejection fraction; NYHA = New York Heart Association.
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disease) can be analyzed. Thus, there is broad applicability for a relatively 
inexpensive method. 

It is important to say, however, that relying on clinical practice data 
alone is potentially irresponsible, biased, and dangerous, much like stand-
ing on untested terrain that may turn out to be thin ice, and patterns may 
turn out later to be artifactual “false peaks.” However, these techniques 
may play a valuable role as a heuristic for helping to point RCTs in promis-
ing directions when that is possible and as better evidence than apples-to-
oranges comparisons when it is not.

Taking yet another step backward, it has been claimed that traditional 
multivariable analysis is equally accurate in making risk-adjusted nonran-
domized comparison (Sturmer et al., 2006). The problem, however, is that 
until now, there has been no independent support for this claim. It may 
be right more than 80 percent of the time, but what about the other 20 
percent? Propensity-based methods provide this independent assessment. In 
addition, they also permit comparison when important clinical outcomes 
occur at a low frequency by supplying a single risk-adjustment variable: the 
propensity score (Cepeda et al., 2003). 

Propensity methodology (and balancing scores in general) should be 

FIGURE 2-4 Achieving balance of clinical features by unbalancing n. Shown are 
two groups of patients that have been divided according to increasing quintile of 
propensity score. Notice at low propensity scores, the numbers of group 1 patients 
dominate over those of group 2, and at the other extreme, the numbers of group 
2 patients dominate over those of group 1. Within each quintile, patient charac-
teristics are well matched between groups, but these characteristics progressively 
change across quintiles (for example, low-risk profile in quintile 1 and high-risk 
profile in quintile 5).

Figure 2-4, fixed image
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elevated further. First, because propensity models are predictive ones (pre-
dicting which treatment was selected), the computer learning approach pre-
sented later in the text could be exploited to account for possibly complex 
interactions among selection factors. Second, comparisons based on clini-
cally rich vs. administrative vs. electronically available laboratory databases 
should be tested for relative value. Third, the most appropriate method of 
comparing outcomes after propensity matching remains controversial and 
probably requires developing new statistical tests. 

Semantically Interpreting, Querying, and 
Exploring Disparate Clinical Data

Computerized Patient Records

In 1991 the Institute of Medicine described what it called the computer-
based patient record (CPR) (Barnett et al., 1993; IOM, 1991). Its creators 
envisioned a birth-to-death, comprehensive, longitudinal health record 
that contained not just narrative information but also values for variables 
(discrete data) to allow the record to be active, generating medical alerts, 
displaying trends, providing meaningful patient-level clinical decision sup-
port, and facilitating clinical research. It would not be simply an electronic 
embodiment of the paper-based medical record, which is what they believed 
the emerging electronic medical record (EMR) was. 

The need for a CPR is, if anything, more acute today than it was in the 
early 1990s because of the increased complexity of care, the aging of the 
population with multiple chronic diseases, and the multiplicity of care ven-
ues from shopping malls to acute care facilities to clinics to large hospitals, 
to say nothing of OTC medications and a proliferation of alternative and 
complementary therapies, public awareness of clinical outcomes, the need 
to track unanticipated complications of therapy across time, and a cumber-
some built-in redundancy of clinical documentation for reimbursement.

The originators recognized most of the same impediments to imple-
menting such a system as still exist, not the least of which was that medical 
education would need to be altered to train a new generation of physicians 
how to use this new technology optimally. 

What has not been clear to developers of EMRs is how discrete data 
might provide the underpinnings for a learning medical system. Nor did 
those who were willing to give up pen and ink and adopt the electronic 
record demand discrete data gathering as a by-product of patient care. 
Thus, before describing various methods that exploit discrete medical data, 
it is important to ask why discrete data is an asset and envision what could 
be done with this asset. For individual care, discrete data can be used to 
generate smart alerts based on the real-time assessment of data by algo-
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rithms, care plans, or models developed on the basis of past experience. For 
informed patient consent, patient-specific predicted outcomes of therapy 
can be displayed based on models that are risk adjusted for individual 
patient comorbidities and intended therapeutic alternatives (see the later 
section, “Patient-Specific Decision Support”). From a population-centric 
vantage point, discrete data can provide outcomes and process measures 
for quality metrics and necessary feedback for improving patient care. This 
is in part because discrete data can make possible the automated compil-
ing of quality outcomes and process measures along with variables needed 
for proper risk adjustment. Discrete data assist institutions in responding 
to clinical trials eligibility specifications to determine feasibility of studies 
and provide historical outcomes for estimating sample sizes. In addition, 
discreet data could alert physicians that a patient being seen satisfies all eli-
gibility criteria for a clinical trial. Discrete data coupled with an intelligent 
query facility can be used to identify patient cohorts for observational clini-
cal studies and approximate clinical trials. They provide the observational 
data for developing propensity scores, balancing scores, and conducting 
studies of comparative clinical effectiveness. If a true longitudinal record is 
created, then discrete data may identify adverse events and the substrate by 
which unsuspected correlated events may be identified, quite possibly with 
the use of artificial intelligence and computer learning techniques.

Computer-Based Patient Record Efforts at the 
University of Alabama at Birmingham

Kirklin and Blackstone, then at the University of Alabama at Birming-
ham (UAB), recognized the formidable barriers to the CPR and in October 
1993 embarked on a $23 million proof-of-concept CPR in partnership with 
IBM. Initially, they sought an object model of medicine. Two simultaneous 
efforts to accomplish this resulted in the same conclusion: There is no object 
model of medicine because “everything is related to everything.” Require-
ments for complex relationships coupled with the extensibility needed to 
keep pace with rapid medical advancement, assimilation of disparate types 
of data, provisions for examining data from multiple vantage points (e.g., 
viewing diabetes from the vantage points of genetics, anatomy, endocrinol-
ogy, laboratory medicine, pharmacology, and other medical perspectives), 
and the feeding of computer systems without slowing patient care were 
huge challenges. IBM brought to the table experts in a host of different 
types of databases and concluded that nothing existed that would satisfy 
the IOM’s vision of an active CPR. However, a novel vision for a system 
emerged from the collaboration that would be infinitely extensible, self-
defining, active, secure, and fast (response time less than 300 milliseconds 
to those using the system clinically). It required that the container hold-



Copyright © National Academy of Sciences. All rights reserved.

Learning What Works:  Infrastructure Required for Comparative Effectiveness Research: Workshop Summary

THE WORK REQUIRED ���

ing the data know nothing of its content and thus be schemaless. Rather, 
values for variables themselves needed to be surrounded by their context 
(metadata) (Kirklin and Vicinanza, 1999). Such a system was built on the 
IBM-transaction processing facility platform, the same as used at that 
time by airlines and banking. Its major unsolved problem, however, was 
cross-patient (population centric vs. patient centric) queries: In theory, an 
infinitely extensible, comprehensive, centralized data store could take an 
infinite time to query.

Semantic Representation of Data and Knowledge

Meanwhile, computer scientists at Stanford University (Abiteboul et 
al., 1997) and the University of Pennsylvania (Buneman et al., 2000) were 
developing methods to query semistructured (schemaless) data stored as 
directed acyclic graphs (DAGs). We recognized that the storage format of 
our UAB data could also be considered DAGs and be queried by the tech-
niques those investigators were developing. Blackstone’s move to Cleveland 
Clinic in late 1997 provided the opportunity to pursue development of 
the CPR, but in the test bed of a highly productive cardiovascular clinical 
research environment. Clinical researchers know, of course, that discrete 
data are required for statistical analysis, and for the preceding 25 years, 
human abstractors at the clinic had laboriously extracted data elements 
from narratives for every patient undergoing a diagnostic or interventional 
cardiac procedure, resulting in the Cardiovascular Information Registry. We 
also found that other investigators at the clinic had developed more than 
500 clinical data registries, often containing redundant, unadjudicated, 
non-quality-controlled data about various aspects of medicine—even of 
the same patient—stored in disparate clinical silos, such as orthopedics, 
cardiology, oncology, and ophthalmology. For the most part, these registries 
did not communicate with one another. 

We therefore continued our work in developing what we then called 
a semantic database that, like any DAG representation, could be extended 
infinitely, was self-defining, and was also self-reporting by use of intelligent 
agents. Some 15 years and $50 million later, we at last have a technology 
that can underlie an extensible multidisciplinary CPR without the need 
for special integration, because it is natively integrated. Each data element 
in such a system is a node or an arc that connects nodes (databases) in a 
graph resource description framework), along with context and meaning 
(knowledge base). Additional nodes represent medical concepts and these 
are all linked. Each node has an address just like an Internet in a thimble. 
The Internet analogy is not an empty one. The infrastructure for the World 
Wide Web (Cleveland Clinic is 1 of some 400+ organizations worldwide 
that make up the World Wide Web Consortium) is the prime example of a 
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container that is ignorant of content, has all the properties of a DAG, and 
can easily be extended to assimilate new concepts that have never before 
entered the mind of humankind. Our test data set for cardiovascular sur-
gery contains 23 million nodes (terms) and 93 million relationships (state-
ments) representing 200,000 patients.

What are the advantages of such graph structures besides infinite exten-
sibility? First, medical taxonomies, such as those of Systematized Nomen-
clature of Medicine (SNOMED) (Schulz et al., 2009) or the National 
Library of Medicine’s metathesaurus (UMLS [unified medical language 
system]) (Thorn et al., 2007), underlie the data model and enable semantic 
searches. An investigator can search for patients and their data without 
knowing anything about underlying data structure. Specifically, this is 
achieved by separating semantics from the underlying syntax, in much the 
same spirit as the vision for the semantic web (Berners-Lee et al., 2001). 
Rather than being confined to lexical searches for information, a semantic 
web search is based on meaning. An example of this is the contrast between 
a dictionary based on meaning, such as the American Heritage Dictionary 
(Pickett, 2000), and one based on lexical definitions, such as Merriam-
Webster (Merriam-Webster Dictionary, 2004). Thus, a heart attack, myo-
cardial infarction, MI, acute myocardial infarction, AMI, and the variety of 
ways this medical concept may be expressed in both language and specific 
idiosyncratic syntax in a given database, are all recognized as a meaningful 
single semantic concept. Conversely, when the meaning of a term (such as 
myocardial infarction) changes, there is no semantic confusion because at 
the semantic level those are separate terms (Thygesen et al., 2007). There is 
a many-to-many mapping between lexical terms and their semantic denota-
tions; the latter are the loci of medical knowledge.

Second, patients’ graphs are connected by a data model to both general 
and medical ontologies, not just controlled term lists or taxonomies. These 
ontologies are built on a skeleton of taxonomically arranged concepts, but 
they contain as many—and as sophisticated—assertions about those con-
cepts as are needed to compose an adequate model of an area of practice 
(Buchanan and Shortliffe, 1984). Think of an orthopedic ontology: It con-
tains not only a taxonomy of all the bones in the body, but also assertions 
about them, such as “the knee bone’s connected to the thigh bone, and the 
thigh bone’s connected to the hip bone” (Weeks and Bagian, 2000), the type 
of joints between them, relative sizes, and so on. 

Third, because natural language queries that seem clear to human 
investigators are fraught with ambiguous terms and grammatical construc-
tions (e.g., attachment of prepositional phrases), pronouns, elisions, and 
metaphors, the knowledge represented in rich ontologies (vs. a taxonomy) 
suffices—barely—to permit investigators to ask database questions in natu-
ral language rather than in the language of a database expert. For the last 
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few years, Cleveland Clinic has collaborated with Douglas B. Lenat and his 
group in Austin, Texas, who, for the last 24 years, have built a top-down 
ontology of general concepts that starts with “thing” at the top and goes 
all the way down to such domain-specific concepts as “kidney” and “dialy-
sis,” and millions of general rules and facts that interrelate and, therefore, 
partially define those terms and model a portion of human knowledge 
(Lenat and Guha, 1990). Not surprisingly, to cope with divergence across 
humans’ models of the world, that ontology—Cyc—required its knowledge 
base to be segmented into locally consistent (but only locally consistent) 
contexts. Since 2007 a group of us from Cleveland Clinic and Cycorp have 
worked together to tie low-level medical ontology concepts to the general 
Cyc ontology of things. 

An investigator can now type into a Semantic Research Assistant™ a 
simple English sentence such as “Find patients with bacteremia after a peri-
cardial window.” Although complete automatic parsing of realistically large 
and complex investigator queries is still far beyond today’s state-of-the-art 
artificial intelligence software (Lenat, 2008), one thing that is possible 
today, and which the current system does, is to successfully extract enti-
ties, concepts, and relations from the text as it understands the meaningful 
fragments of the query. These fragments are understood as logical clauses 
(in the system’s formal representation), each of which is translated into a 
short, comprehensible English phrase and presented to the investigator. The 
investigator selects those fragments believed to be relevant, at which time 
an amazing thing happens almost every time: There is only a single semanti-
cally meaningful combination of those fragments, and only a single query 
that makes sense, given common sense constraints, domain knowledge con-
straints, and discourse pragma. Combining the fragments entails, for exam-
ple, deciding which variables from each fragment unify with variables from 
other fragments, or whether they represent separate entities, and deciding 
whether each variable should be quantified existentially or universally, and 
in what order. The full query is then assembled, an English paraphrase of it 
is presented to the investigator, and a SPARQL translation of it is presented 
to the semantic database, which returns answers that are displayed to the 
investigator. Often, in the course of this process, some clauses that were not 
explicitly included by the investigator can be suggested; at other points in 
the process, the investigator may tweak the query by replacing a term with 
one of its generalizations or siblings or descendants in the ontology. 

Fourth, a semantic-ontology approach also permits truly intelligent 
patient search of medical concepts. This is becoming increasingly important 
as patients seek out information about their medical conditions. A patient 
might type into a medical semantic search engine, “I have a racing heart.” 
The semantic search engine produces a number of hits that don’t include 
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NASCAR racing but rather tachycardias, such as atrial fibrillation, present-
ing the patient with definitions and treatment options. 

What now needs to be developed to implement semantic databases 
and knowledge bases for intelligent search of all of medicine is a compre-
hensive formal ontology of medicine. This will require a worldwide effort. 
Already some of this is going on. For example, the Cardiovascular Gene 
Ontology provides full annotation for genes associated with cardiac disease 
processes.13

In the future such systems may actively ask relevant questions about 
correlations and trends within longitudinal records by means of true arti-
ficial intelligence. Automated intelligent agents could assist in discovering 
unsuspected relationships, unintended adverse outcomes, and surprising 
beneficial effects (AAAI, 2008). It could be central to realizing a learning 
medical system, a key component of what 21st-century medicine must 
become. 

Computer Learning Methods

As much as one can dream of a longitudinal database that might per-
mit innovative research for information-based medical care, it is important 
to ask, “If we actually had these data, would we know what to do with 
them?” One useful way to look at the issue is to use a “trees and woods” 
analogy in which individual patients, their data, and their genes are like 
the individual trees, and groups of patients or populations are the woods 
(Blackstone, 2007). The expression “Ye can’t see the wood for the trees” 
(Heywood, 1546) implies that there may be patterns in the wood that can 
be discerned by overview that are not visible by attention paid only to 
individual trees. Here is an example: If one sits on the sidelines of an Ohio 
State University football game, one can only see individual band members 
playing at half-time and their feet moving around. But from an aerial view, 
one can see the band is in formation spelling the word Ohio. Patterns in 
medical data represent the general ways that patients react to their disease 
or treatment. They are the incremental risk factors, the modulators, or 
the surrogates for underlying disease and treatment mechanisms (Kirklin, 
1979). 

The rapidly developing science of computer learning promises methods 
far more robust than traditional statistical methods for discovering these 
patterns (Breiman, 2001). Many of them are based on multiple boot-
strap samples (Diaconis and Efron, 1983; Efron, 1979, 1982; Efron and 
Tibshirani, 1986), each of them analyzed and aggregated (Breiman, 1996). 
This can be illustrated by analyzing 15 potential risk factors for death after 

13  See http://www.geneontology.org/GO.cardio.shtml (accessed September 8, 2010).
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mitral valve surgery. These are designated A through O in panel A in Figure 
2-5, which shows the first five bootstrap analyses. The tall vertical bars 
designate variables identified in each analysis. Note that no analysis yields 
identical risk factors. But now consider a running average of these results 
(Figure 2-5, panel B). Notice the running average of these unstable results 
progressively reveals a clear pattern: Variables A, C, D, I, and J are signal, 
and the rest are noise (Figure 2-5, panel C). 

Imagine extending this concept. For example, at each iteration the algo-
rithm could average the contribution of a predictor based on its appearance 
in previous iterations (boosting)—an adaptive weighted average (Bartlett 
et al., 2004; Freund and Schapire, 1996; Friedman, 2001, 2002). Bagging 
produces an average, but unlike boosting, it uses the same weight for each 
iteration.

Other computer learning techniques are being developed, such as 
Bayesian analysis of variants for Microarray methodology, which is being 
used to discover empiric gene expression profiles that are highly predictive 
for colorectal cancer recurrence (Ishwaran and Rao, 2003; Ishwaran et al., 
2006). Unsupervised hierarchical bootstrap clustering almost completely 
separates patients experiencing cancer recurrence from those whose cancer 
has not recurred. What is important to recognize is that these methods 
solve the problem of having a large number of parameters (P) compared to 
number of individuals (n), a key factor in genomic analysis and research.

These methods are still in their infancy; many are based on computer-
intensive methods such as bootstrap sampling or random forest technol-
ogy. Variables may be selected by importance value (Breiman, 1996, 2001; 
Ishwaran, 2007) or by signal-to-noise ratios rather than by traditional P 
values, which become progressively less useful as n becomes large. Predic-
tion error is minimized rather than maximizing goodness of fit. 

An important feature of all ensemble learners is that they are compu-
tationally highly parallelizable—either for large-scale parallel computers or 
for grid computing. This may become important as researchers start look-
ing at a huge number of patients, when speed of computation for clinical 
inferencing may be of the essence.

Patient-Specific Strategic Decision Support

Finally, to come full circle, consider personalized medicine. Joel Verter 
once said that RCTs are “sledgehammers, not fine dissecting instruments.” 
Medicine needs to head toward fine dissecting instruments, toward person-
alized strategic decision support. With n = 1, a new paradigm of RCT needs 
to be developed for genomic-based personalized medicine (Balch, 2006). 

Consider a 59-year-old man with ischemic cardiomyopathy and ante-
rior MI resulting in left ventricular aneurysm. He has an ejection fraction 
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of 10 percent; 4+ mitral valve regurgitation; extensive coronary artery 
disease, including 90 percent left anterior descending coronary artery ste-
nosis; and multiple comorbidities. Should the recommended therapy be 
continued medical treatment, coronary artery bypass graft (CABG), CABG 
plus mitral valve anuloplasty, a Dor operation, or cardiac transplantation? 
This complex information is too multidimensional for assimilation by the 
human mind. It calls for a cognitive prosthesis (Reason, 1999). Ideally, this 
patient’s data would be entered automatically by a CPR into a strategic 
decision aid and the long-term expected survival would be depicted for 
multiple alternative therapies along with uncertainty limits, although not 
all therapies may be applicable. 

Locked in the medical literature even today are static risk factor equa-
tions that could be used in dynamic mode for strategic decision support for 
a patient such as this (Levy et al., 2006). Random forest technology also 
can generate outcome risk estimates for individual patients by “dropping” 
their characteristics down a forest of trees, where they will land at a specific 
node in each tree with patients having similar characteristics and known 
outcome. Results of all patients at each node become the average ensemble 
predicted outcome for an individual patient. Thus, it is possible to imagine 
that in the future there will be methods by which patient-specific prediction 
of outcomes are generated and alternative therapies compared for patient 
decision support. 

A library of modules must be developed for constructing strategic deci-
sion aids such as this. These in turn must be coupled to values for variables 
in a CPR so that no human intervention is required to depict comparable 
predictions of results. Then it must be prospectively verified that the simu-
lated results match actual outcomes. The medical record thus becomes an 
active revealing and learning tool.

FIGURE 2-5 Example of automated variable selection by bootstrap aggregation 
(bagging). Fifteen variables labeled A through O are depicted as potential predic-
tors of death after mitral valve surgery. In column A, analyses of five bootstrap 
samples are shown. Tall bars indicate the variable was selected at P < .05, and gaps 
represent variables not selected. Variables A and D were selected in all cases, but 
otherwise the analyses appear to be unique. Panel B shows a running average of 
these five analyses. Variables A, D, I, and J were selected more often than others. 
Panel C shows averages of 10, 50, 100, 250, and 1,000 bootstrap analyses. Notice 
that no variable was selected 100% of the time, and all 15 were selected at one 
time or another. But if variables appearing in 50% or more analyses are considered 
reliable risk factors, then variables A, C, D, I, and J fit that criterion of “signal,” 
and the rest are “noise.” 
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Summary

Moving beyond today’s Mt. Everest level of difficulty, RCTs need 
to become more nimble and simple to better reflect the real world and 
to have their financing restructured. Heterogeneity in practice facilitates 
approximate randomized trials via propensity score methods that are inex-
pensive and widely accessible but which require patient-level clinical data 
stored as discrete values for variables. Emerging semantic technology can be 
exploited to integrate currently disparate, siloed medical data—responding 
to investigators’ complex queries and patients’ imprecise ones—and in 
the near future holds the promise to automate discovery of unsuspected 
relationships and unintended adverse or surprisingly beneficial outcomes. 
A next generation of analytic tools for revealing patterns in clinical data 
should build on successful methods developed in the discipline of machine 
learning. Both new knowledge learned and resulting algorithms should 
be transformed into strategic decision support tools. These are but a few 
concrete examples of methods that need to be developed to provide an 
infrastructure to determine the right treatment for the right patient at the 
right time.

Resources Needed

What resources are needed to develop this infrastructure?

Reengineering Randomized Controlled Trials 

The cost of an NIH-sponsored simple trial appears to be in the range 
of $2 million, but multi-institutional, multinational large trials driven by 
clinical end points can consume 10 times that figure. If one uses $100 mil-
lion as a metric, this means 5 to 50 such trials of therapy can be supported. 
Considering all the therapies of medicine for which the evidence base is 
weak, it is clear that demanding gold-standard RCTs for everything is unaf-
fordable. The cost of RCTs that are highly focused, ethically unambiguous, 
and feasible could be brought down to a quarter, perhaps even a tenth, of 
this figure based on practical experience. This will require maximum use 
of electronic patient records, consisting of values for variables, and quite 
specifically longitudinal surveillance data to study the long-term side effects 
of therapies.

Approximate Randomized Controlled Trials 

The NIH and National Science Foundation (NSF) should join forces 
and solicit 3-year methodology grants of approximately $250,000 per year, 
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10 per year. For this $7.5 million investment, a strong understanding of 
how best to use nonrandomized data would emerge. With this would come 
production of publicly available statistical software.

If rich discrete clinical data were available for analysis, a typical study 
using these methods for nonrandomized comparison would cost approxi-
mately $75,000. The cost would double if extensive integration of data was 
necessary, possibly over healthcare networks. For $100 million, it would be 
possible to conduct more than 1,000 such approximate randomized trials. 
This could have a major impact on acquiring what might be called “silver-
level” evidence for practice.

Semantically Integrating, Querying, and 
Exploring Disparate Clinical Data

Based on several years of work, it seems that developing a comprehen-
sive ontology of medicine—a new framework for analysis across disparate 
medical domains—will cost about 1 hour of time per term for an analyst, 
programmer, and clinical expert. One need not start from scratch, but can 
exploit SNOMED, UMLS, and other term lists and ontologies to start the 
process. Assuming that 100,000 terms would need to be defined in this 
fashion, that the wages would be $300 per hour, and that 25 ontologists 
would be needed, this work could be completed in 2 years at a cost of 
$36 million. This would include the software that must be programmed to 
implement a global effort in rallying medical experts to this task. 

Computer Learning Methods

Knowledge discovery in medicine involves both methodologic devel-
opment and applications. These should go hand in hand in this new field 
because it would accelerate the development of methods as they encounter 
problems requiring further methodologic work. The NSF has begun an 
initiative called Cyber-Enabled Discovery and Innovation (Jackson, 2007). 
This began with a $52 million first-year budget and is intended to ramp 
up $50 million per year and finish within 5 years for a total of $750 mil-
lion. It would be useful to add $10 million per year for direct application 
to biomedicine, for a total sustained level for these activities within 5 years 
of $50 million.

Patient-Specific Strategic Decision Support

Costs in this area are largely for developing software, including the 
interfaces to EMR systems. This could be done for approximately $10 
million. One could envision every study of clinical effectiveness having a 
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patient-specific prediction component built into it. Again, based on experi-
ence doing this, approximately $25,000 per study would be required to 
adapt and test the software and couple it with EMRs for decision support. 
It is also likely that at some point, the FDA may become involved with tools 
such as this and would introduce regulations that are more costly to meet 
than those of performing the studies. 

COORDINATION AND TECHNICAL ASSISTANCE 
THAT NEED TO BE SUPPORTED

Jean R. Slutsky, Director, Center for Outcomes and Evidence,  
Agency for Healthcare Quality and Research

Overview

CER as a concept and reality has grown rapidly in the past 5 years. 
While it builds on an appreciation for the role of technology assessment, 
comparative study designs, and the increased role of health information 
technology to gather evidence and distribute it to the point of care, the 
capacity and infrastructure for this research has received less targeted 
attention. Understanding the landscape of organizations and health sys-
tems undertaking CER is challenging but essential. Without knowing what 
capacities and infrastructure currently exist, rational strategic planning for 
the future cannot be done. It is also important to address which functions 
can be most effective if they are centralized, which are most effective if 
they are local or decentralized, and how different activities relate to each 
other in a productive way. This paper will explore the practical realities of 
what exists now, what is needed for the future, and how the needs of the 
country’s diverse healthcare system for CER can best be met.

The Agency for Healthcare Research and Quality Perspective

AHRQ plays a significant role in CER. Under a mandate included in 
Section 1013 of the Medicare Prescription Drug, Improvement, and Mod-
ernization Act of 2003, AHRQ is the lead agency for CER in the United 
States. AHRQ conducts health technology assessment at the request of 
CMS and analyzes data and suggests options for coverage with evidence 
development (CED) and post-CED data collection. AHRQ also provides 
translation of CER findings, promotes and funds comparative effective-
ness methods research, and funds training grants focused on comparative 
effectiveness. AHRQ has an annual budget of over $300 million ($372 
million for 2009), and received funds specifically for work on CER ($30 


